Natural Convection
Natural Convection
Natural Convection
Innaturalconvection,thefluidmotionoccursbynaturalmeanssuchasbuoyancy.Since
the fluid velocity associated with natural convection is relatively low, the heat transfer
coefficientencounteredinnaturalconvectionisalsolow.
MechanismsofNaturalConvection
Considerahotobjectexposedtocoldair.Thetemperatureoftheoutsideoftheobject
willdrop(asaresultofheattransferwithcoldair),andthetemperatureofadjacentairto
theobjectwillrise.Consequently,theobjectissurroundedwithathinlayerofwarmerair
andheatwillbetransferredfromthislayertotheouterlayersofair.
Warmair
Coolair
Hotobject
Fig.1:Naturalconvectionheattransferfromahotbody.
Thetemperatureoftheairadjacenttothehotobjectishigher,thusitsdensityislower.As
aresult,theheatedairrises.Thismovementiscalledthenaturalconvectioncurrent.Note
thatintheabsenceofthismovement,heattransferwouldbebyconductiononlyandits
ratewouldbemuchlower.
Inagravitationalfield,thereisanetforcethatpushesalightfluidplacedinaheavierfluid
upwards.Thisforceiscalledthebuoyancyforce.
Ship
Water
W
Displaced
volume
Buoyancyforce
Fig.2:Buoyancyforcekeepstheshipfloatinwater.
Themagnitudeofthebuoyancyforceistheweightofthefluiddisplacedbythebody.
M.BahramiENSC388(F09)NaturalConvection1
Fbuoyancy=fluidgVbody
whereVbody isthevolumeoftheportionofthebodyimmersedinthefluid.Thenetforce
is:
Fnet=WFbuoyancy
Fnet=(bodyfluid)gVbody
Notethatthenetforceisproportionaltothedifferenceinthedensitiesofthefluidand
thebody.ThisisknownasArchimedesprinciple.
Weallencounterthefeelingofweightlossinwaterwhichiscausedbythebuoyancy
force.Otherexamplesarehotballoonrising,andthechimneyeffect.
Note that the buoyancy force needs the gravity field, thus in space (where no gravity
exists)thebuoyancyeffectsdoesnotexist.
Densityisafunctionoftemperature,thevariationofdensityofafluidwithtemperature
at constant pressure can be expressed in terms of the volume expansion coefficient ,
definedas:
T P
1
K
1
T
T
at constant P
Itcanbeshownthatforanidealgas
ideal gas
where T is the absolute temperature. Note that the parameter T represents the
fraction of volume change of a fluid that corresponds to a temperature change T at
constantpressure.
Since the buoyancy force is proportional to the density difference, the larger the
temperaturedifferencebetweenthefluidandthebody,thelargerthebuoyancyforcewill
be.
Whenevertwobodiesincontactmoverelativetoeachother,africtionforcedevelopsat
the contact surface in the direction opposite to that of the motion. Under steady
conditions,theairflowratedrivenbybuoyancyisestablishedbybalancingthebuoyancy
forcewiththefrictionalforce.
GrashofNumber
Grashofnumberisadimensionlessgroup.Itrepresentstheratioofthebuoyancyforceto
theviscousforceactingonthefluid:
Gr
viscous forces
2
M.BahramiENSC388(F09)NaturalConvection2
Itisalsoexpressedas
Gr
g Ts T 3
where
g=gravitationalacceleration,m/s2
=coefficientofvolumeexpansion,1/K
=characteristiclengthofthegeometry,m
=kinematicsviscosityofthefluid,m2/s
The role played by Reynolds number in forced convection is played by the Grashof
numberinnaturalconvection.ThecriticalGrashofnumberisobservedtobeabout109for
vertical plates. Thus, the flow regime on a vertical plate becomes turbulent at Grashof
number greater than 109. The heat transfer rate in natural convection is expressed by
Newtonslawofcoolingas:Qconv=hA(TsT)
Fig.3:Velocityandtemperatureprofilefornaturalconvectionflowoverahotvertical
plate.Grcritical=109
NaturalConvectionoverSurfaces
Natural convection on a surface depends on the geometry of the surface as well as its
orientation. It also depends on the variation of temperature on the surface and the
thermophysicalpropertiesofthefluid.
Thevelocityandtemperaturedistributionfornaturalconvectionoverahotverticalplate
areshowninFig.3.
Note that the velocity at the edge of the boundary layer becomes zero. It is expected
sincethefluidbeyondtheboundarylayerisstationary.
M.BahramiENSC388(F09)NaturalConvection3
The shape of the velocity and temperature profiles, in the cold plate case, remains the
samebuttheirdirectionisreversed.
NaturalConvectionCorrelations
The complexities of the fluid flow make it very difficult to obtain simple analytical
relationsfornaturalconvection.Thus,mostoftherelationshipsinnaturalconvectionare
basedonexperimentalcorrelations.
TheRayleighnumberisdefinedastheproductoftheGrashofandPrandtlnumbers:
g Ts T 3
Ra Gr Pr
Pr
TheNusseltnumberinnaturalconvectionisinthefollowingform:
Nu
h
CRa n
k
wheretheconstantsCandndependonthegeometryofthesurfaceandtheflow.Table
141inCengelbookliststheseconstantsforavarietyofgeometries.
Theserelationshipsareforisothermalsurfaces,butcouldbeusedapproximatelyforthe
caseofnonisothermalsurfacesbyassumingsurfacetemperaturetobeconstantatsome
averagevalue.
IsothermalVerticalPlate
Foraverticalplate,thecharacteristiclengthisL.
0.59 Ra 1 / 4 10 4 Ra 10 9
Nu
1/ 3
9
13
0
.
1
Ra
10
Ra
10
Notethatforidealgases,=1/T
IsothermalHorizontalPlate
ThecharacteristicslengthisA/pwherethesurfaceareaisA,andperimeterisp.
a)Uppersurfaceofahotplate
0.54 Ra 1 / 4 10 4 Ra 10 7
Nu
1/ 3
10 7 Ra 1011
0.15 Ra
b)Lowersurfaceofahotplate
Nu 0.27 Ra 1 / 4
10 5 Ra 1011
Example1:isothermalverticalplate
Alarge verticalplate 4 mhighismaintainedat60Candexposedtoatmospheric airat
10C.Calculatetheheattransferiftheplateis10mwide.
M.BahramiENSC388(F09)NaturalConvection4
Solution:
Wefirstdeterminethefilmtemperatureas
Tf=(Ts+T)/2=35C=308K
Thepropertiesare:
=1/308=3.25x103,k=0.02685(W/mK),=16.5x106,Pr=0.7
TheRayleighnumbercanbefound:
Ra Gr Pr
9.8m / s 2 3.25 10 3 K 1 60 10 C 4m
16.5 10
6 2
TheNusseltnumbercanbefoundfrom:
1/ 3
720.7
Theheattransfercoefficientis
Nu k 720.7 0.02685
4.84
L
4
W / m K
2
Theheattransferis
Q=hA(TsT)=7.84W/mC2(4x10m2)(6010C)=9.675kW
NaturalConvectionfromFinnedSurfaces
Finnedsurfacesofvariousshapes(heatsinks)areusedinmicroelectronicscooling.
Oneofmostcrucialparametersindesigningheatsinksisthefinspacing,S.Closelypacked
finswillhavegreatersurfaceareaforheattransfer,butasmallerheattransfercoefficient
(duetoextraresistanceofadditionalfins).Aheatsinkwithwidelyspacedfinswillhavea
higherheattransfercoefficientbutsmallersurfacearea.Thus,anoptimumspacingexists
thatmaximizesthenaturalconvectionfromtheheatsink.
Fig.4:Averticalheatsink.
M.BahramiENSC388(F09)NaturalConvection5
ConsideraheatsinkwithbasedimensionW(width)andL(length)inwhichthefinsare
assumed to be isothermal and the fin thickness t is small relative to fin spacing S. The
optimumfinspacingforaverticalheatsinkisgivenbyRohsenowandBarCohenas
S opt 2.714
Ra 1 / 4
whereListhecharacteristiclengthinRanumber.Allthefluidpropertyaredeterminedat
thefilmtemperature.Theheattransfercoefficientfortheoptimumspacingcanbefound
from
h 1.31
S opt
Note:asaresultofabovementionedtwoopposingforces(buoyancyandfriction),heat
sinkswithcloselyspacedfinsarenotsuitablefornaturalconvection.
Example2:Heatsink
A12cmwideand18cmhighverticalhotsurfacein25Cairistobecooledbyaheatsink
withequallyspacedfinsofrectangularprofile.Thefinsare0.1cmthick,18cmlonginthe
verticaldirection,andhaveaheightof2.4cmfromthebase.Determinetheoptimumfin
spacingandtherateofheattransferbynaturalconvectionfromtheheatsinkifthebase
temperatureis80C.
W=0.12m
H=2.4cm
Ts =80C
L = 0.18
T =25C
t=1mm
S
Assumptions:
ThefinthicknesstismuchsmallerthanthefinspacingS.
Solution:
M.BahramiENSC388(F09)NaturalConvection6
Thepropertiesofairareevaluatedatthefilmtemperature:
Tf=(T+Ts)/2=52.5C=325.5K
At this temperature, k = 0.0279 W /mK, = 1.82 x 105 m2/s, Pr = 0.709, and assuming
idealgas=1/Tf=1/325.5K=0.0030721/K.
ThecharacteristiclengthisL=0.18m.
Ra
g Ts T L3
Pr 2.067 10 7
Theoptimumfinspacingisdetermined
S opt 2.714
L
0.0072 m 7.2 mm
Ra 1 / 4
Thenumberoffinsandtheheattransfercoefficientfortheoptimumfinspacingcaseare
W
15 fins
S t
h 1.31
k
W
5.08
S opt
mK
Therateofnaturalconvectionheattransferbecomes:
Q h2nLH Ts T 36.2 W
M.BahramiENSC388(F09)NaturalConvection7