Nothing Special   »   [go: up one dir, main page]

MIT Calculus 18-001 Ans To Odd Numbers

Download as pdf or txt
Download as pdf or txt
You are on page 1of 33
At a glance
Powered by AI
Some of the key concepts covered in the text include derivatives, integrals, and differential equations as they relate to calculus, linear algebra, and discrete mathematics.

Examples of derivatives discussed include the derivative of a function, powers and polynomials, and the derivative at an instant.

Examples of integrals discussed include area under a curve, volume of a solid of revolution, and line integrals.

A- 0 Answers t o Odd-Numbered Problems

CHAPTER 1 INTRODUCTION TO CALCULUS


Section 1.1 Velocity and Distance
(page 6)
2for 0 < t < 10 0 for 0 < t < T
1v = 30,0, -30;v = -10,20 3 v(t) = 1for 10 < t < 20 v(t) = for T < t < 2T
-3for 20 < t < 30 0 for 2T < t < 3T
20for t < .2 20t for t 5 .2
5 25; 22; t + 10 7 6; -30 9 v(t) = {
Ofor t > .2 1110%; l2$%
29 Slope -2; 15 f 5 9 3 1 v(t) =
8 for O < t < T 8t for 0 5 t T
-2 for T < t < 5 T lt) = { lOT -2t for T 5 t _( ST
47 %v;;V
49 input * input -+ A input * input -+ A B * B -+ C input +I + A
input +A --+ output input +A --+ B B + C --+ output A * A -+ B
A + B --+ output
6 1 3t + 5,3t + 1,6t -2,6t - 1,-3t - 1,9t -4; slopes 3,3,6,6,-3,9
Section 1.2 Calculus Without Limits
(page 14)
12 + 5 + 3 = 10;f = 1,3,8,11;10 3 f = 3, 4, 6, 7, 7, 6; max f at v = 0 or at break from v = 1to -1
5 1.1,-2,s; f (6) = 6.6, -11,4; f (7) = 7.7, -l 3, 9 7 f (t) = 2t for t 5 5,10 + 3(t - 5) for t 2 5; f (10) = 25
9 7, 28, 8t + 4; multiply slopes 11f (8) = 8.8, -15,14; = 1.1,-2,5
13 f (z)= 3052.50 + .28(x -20,350); then 11,158.50 is f (49,300) 1 5 19+%
1 7 Credit subtracts 1,000, deduction only subtracts 15% of 1000 1 9 All vj = 2;vj = (-l)j-' ;vj = ($)j
2 1 L's have area 1,3,5,7 23 f j = j ; sum j2+ j ; sum + 25 (1012 -9g2)/2 = 7 27 V j = 2 j 29 f31 = 5
31 a j = -f j 35 0; 1; .1 35 v = 2,6,18,54; 2 3j-I 37 = 1,.7177, .6956, .6934 -+ln 2 = .6931 in Chapter 6
39 V, = -(i)j 4 1 vj = 2(-l)j, sum is f j - 1 45 v = 1000,t = lO/V
47 M, N 5 1 4 < 2 . 9 < 92 < 29; (i)2< 2( i ) < @< 2lI9
Section 1.3 The Velocity at an Instant
(page 21)
16, 6, ya , - 12, 0, 13 34, 3. 1, 3+h, 2. 9 5 Ve l o c i t y a t t =l i s 3 7 Ar e a f =t +t 2 , s l o p e o f f i s 1 +2 t
9 F; F; F; T 112; 2t 1 3 12 + 10t2; 2 + lot2 1 5 Time 2, height 1, stays above from t = $ to
1 7 f(6) = 18 2 1 v(t) = -2t then 2t 23 Average to t = 5 is 2; v(5) = 7 25 4v(4t) 27 v,,, = t, v(t) = 2t
Section 1.4 Circular Motion
(page 28)
1l or , (0, -11, (- 1,O) 3 (4 cos t, 4 sin t ) ;4 and 4t; 4 cos t and -4 sin t
5 3t; (cos 3t, sin 3t); -3 sin 3t and 3 cos 3t 7 z = cost; J2/2; -&/2 9 2x13; 1; 2a
11Clockwise starting at ( 1, O) 1 3 Speed $ 1 5 Area 2 1 7 Area 0
Answers to Odd-Numbered Problems A-1
19 4 from speed, 4 from angle 2 1 from radius times 4 from angle gives 1in velocity
23 Slope i ; average (1 - $)/(r/6) = = .256 25 Clockwise with radius 1from (1,0), speed 3
27 Clockwise with radius 5 from (0,5), speed 10 29 Counterclockwise with radius 1from (cos 1,sin I), speed 1
31Left and right from (1,O) to (-1,0), u = -sin t 33 Up and down between 2 and -2; start 2 sin 8, u = 2 cos(t+8)
36Upanddownfrom(O, -2)to(0, 2);u=si ni t 3 7 ~ = c o s ~ , ~ = s i n ~ , s p e e d ~ , u ~ , = c o s ~ 360
Section 1.5 A Review of Trigonometry
(page 33)
1Connect corner to midpoint of opposite side, producing 30' angle 3 n 7 $ -r area i r 28
9 d = 1,distance around hexagon < distance around circle 11T; T; F; F
13cos(2t+t) = cos2tcost -sin2tsint = 4cos3t -3cost
1 5 i c o s ( s - t ) + ~ c o s ( s + t ) ; ~ c o s ( s - t ) - i c o s ( s + t ) 1 7 c o s 8 = s e c B = ~ t l a t 8 = n r
19Us ecos ( t - s - t ) =cos ( t - s ) cos t +s i n( t - s ) s i nt 2 3 8 = ~ + r n u l t i p l e o f 2 n
25 8 = f + multiple of n 27 No 8
29 4 = f
31 lOPl= a, 1OQ1= b
CHAPTER 2 DERIVATIVES
Section 2.1 The Derivative of a Function
(page 49)
1(b) and (c) 3 12+ 3h; 13 + 3h;3; 3 6 f(x) + 1 7 -6 9 2 x +Ax + 1; 2x+ 1
-4
1 1 &d = &+ 3 - 137;9;corner 1 5 A= 1 , B = - 1 1 7 F ; F ; T ; F
19 b = B; mand M; mor undefined 2 1 Average x2 + xl + 2x1
25 i ; no limit (one-sided limits 1,-1); 1; 1if t # 0, -1 if t = 0
27 ft(3); f (4) - f (3)
29 2x4(4x3) = BX7 31 = l=2 33 X = - L .
,, f1(2) doesn't exist d~ 2u 2 f i AX 36 2 f 5 = 4 u 3 2
Section 2.2 Powers and Polynomials
(page 56)
1 5 3x2 - 1= 0 at x =
fi
and A 17 8 ft/sec; - 8 ft/sec; 0 19 Decreases for -1 < x <
fi
z+h)-x
23 1 5 10 10 5 1adds to (l+l)'(x = h = 1)
253x2;2hisdifferenceofx's 2 7 % =2x+Ax+3x2+3xAx+(Ax)2 +2x+3x2=sumofseparatederivatives
1 4 1
2 9 7 ~ ~ ; 7 ( x + l ) ~ 3 1 ~ x 4 p l ~ ~ a n y c u b i c 3 3 x + ~ x 2 + $ x 3 + f x 4 + C 3 5 ~ x , 1 2 0 x 6
37 F; F; F; T; T 39 = .12 so 4= i(.12); sixcents 4 1 4= 1C- * =
-3 AX AX + A A d z
4 3 E = X 1 10. l X n + l .
2x+3 4 5 t t o f i t 4 7 i 5 x , n+l , d i v i d e b y n +l =O
Section 2.3 The Slope and the Tangent Line
(page 63)
A-2 Answers to Odd-Numbered Problems
17 (-3,19) and (8, E)
1 9 c = 4, y = 3 -x tangent at x = 1
21 (1+ h)3; 3h + 3h2 + h3; 3 + 3h + h2; 3 23 Tangents parallel, same normal
25 y = 2ax -a2, Q = (0, -a2) ; distance a2 + i ; angle of incidence = angle of reflection
fi' 2 7 ~ = 2 p ; f o c u s h a s y = $ = p 2 9 y - & = x + L - x = - 2 -4 - 4
31 y - = -1 2a ( x- a ) ; y= a 2 + $ ; a = $ 33 ($)(1000) = 10 at x = 10 hours 55 a = 2
41
57 1.01004512; 1+ 10(.001) = 1.01 39 (2 + AX)^ - (8 +6Ax) = AX)' + AX)^ 4 1 xl = i;x2 = -
40
43T=8s e c ; f ( T) =96me t e r s 45a >t me t e r s / s e c 2
Section 2.4 The Derivative of the Sine and Cosine
(page 70)
1(a) and (b)
3 0; 1; 5; $
5 sin(x + 2s); (sin h)/ h -t 1; 2 s 7 cos2B w 1-8' + f B4; f B4 is small
9 s i n i Bmi B 11:;4 13PS=s i nh; ar e aOPR=i s i nh<c ur ve dar e ai h
1 5 c o s x = l - d - + L - . . .
1 7 &(cos(x+ h) -cos(x - h)) = ;(-sinxsinh) -+ -si nx
2.1 4.3.2.1
1 9 3 / = c o s x - s i n x = Oa t x = q + n s 2 l ( t a n h ) / h = s i n h / h c o s h < ~ - + l
-1.
2 , 2 , n o 25y=2c os x+s i nx; y" =- y 2 7 y = - ~ c o s 3 x ; y = ~ s i n 3 x 2 3 S l o p e ~ c o s ~ x = ~ , 0 ,
1.
29 In degrees (sin h)/ h -+2x1360 = .01745 31 2 sin x cos x + 2 cos x(- sin x) = 0
Section 2.5 The Product and Quotient and Power Rules
(page 77)
122 5&-* 5 (2 -2)(x -3) + (2 - 1)(x-3) + (x - 1)(x-2)
7 - ~ ~ s i n ~ + 4 x c o s x + 2 s i n x9 2 x - 1 - ~ 1 1 2 ~ s i n x c o s x + ~ x - 1 / 2 s i n 2 x + ~ ( s i n x ) - 1 / 2 c o s ~
134x3cosx-x4sinx+cos4x-4xcos3x sinx 1 5 ~ ~ ~ ~ 0 s x + 2 x ~ i n x 1 7 0 1 9 - ~ ( ~ - 5 ) ~ ~ / ~ + ~ ( 5 - ~ ) - ~ / ~ ( = 0 ? )
2 1 3(sin x cos X) ~ ( COS ~ x -sin2 x) + 2 cos 22 23 u'vwz + v'utuz + w'uvz +z'uvw 25 -csc2 x -sec2 x
27 v = t;ytt, vt = cost-t sint-t' si nt
(l+t)' A = ~ ( & + ~ c o s ~ + % ) A ' = 2 ( ~ o s t - t s i ~ t + ' - ~ ~ ~ ~ lint
29 l ot for t < 10, &for t > 10
31 (l +t )' p 2t3+6t'
.(t+l)'-iTi)
(l+t)?
53 unv + 2u1v' + uu"; ut"v + 3u"v1 + 3u1v" + v"' 35 isin2 t; i tan2 t; ![(I + t)3/2 - 11
5 9 T ; F ; F ; T ; F 41degr ee2n- l / degr ee2n 4 3 v ( t ) = c o s t - t s i n t ( t < $ ) ; v ( t ) = - : ( t > : )
45 y = 9+ 9,h a 2 = 0 at x = 0 (no crash) and at x = -L (no dive). Then 2 = ?($ + f ) and
6 ~ ' h 2s
$#= r ( Z + 1).
Section 2.6 Limits (page 84)
after 5; 1.1111, y,all n; a,1, after 38; a- 1!, L = 0, after N = 10; E,oo, no N; i , ~ , 4, $, all n;
-i Ei , e = 2.718..., after N = 12. 3 (c) and (d)
5 Outside any interval around zero there are only a finite number of a's 9 111
7 $
1 3 1 1 5 sin 1 1 7 No limit 1 9 $ 21 Zero if f (x) is continuous at a 23 2
25.001,.0001,.005,.1 27l f ( x) - LI ; & 2 9 0 ; X=1 0 0 534; 03; 7; 7 353; nol i mi t ; O; l
if lrl < 1; no limit if lrl 2 1 39 .0001; after N = 7 (or 8?) 37
4 1 $
43 9;8;;an -8 = $(a,-1 -8) -+ 0
45 a, -L 5 b, - L 5 c, -L so Ib, - LI < E if la, -LI < E and Ic, -LI < E
Answers to Odd-Numbered Problems
Section 2.7 Continuous Functions
(page 89)
I c = s i n l ; n o c 3Anyc; c=O 5 c = Oo r 1; noc 7 c = l ; n o c 9 no c; no c
11 c = 1.
64, ' = 64
1 3 c =- l ; c =- 1 1 5 c = l ; c = l 1 7 c =- l ; c =- 1
1 9 c =2 , 1 , 0 , - 1 , ~ ~ ~ ; s a me c 21f ( x) =Oe xc e pt a t x=l 2 3 d x 25-ff 2 7 A
29One;two;two 31No;yes;no 3 3 x f ( x ) , ( f ( ~ ) ) ~ , ~ , f ( ~ ) , 2 ( f ( ~ ) - ~ ) , f ( ~ ) + 2 + 3 5 F ; F ; F ; T
37 Step; f (x) = sin $ with f (0) = 0 39 Yes; no; no; yes (f4(0) = 1)
41 g( i ) = f (1) - f (i) = f (0) - f (i) = -g(O); zero is an intermediate value between g(0) and g(;)
43 f(x) - x is 2 0 at x =O and 5 0 at x = 1
CHAPTER 3 APPLICATIONS OF THE DERIVATIVE
Section 3.1 Linear Approximation
(page 95)
I Y = ~ 3y =I +~( x - : ) 5 ~ = 2 ~ ( ~ - 2 4 726+6. 25. . 001 9 1
11 1 - I(-.02) = 1.02 13 Error .000301 vs. i (.0001)6 1 5 .0001- $lo-' vs. i(.0001)(2)
1 7 Error .59 vs. ?(.01)(90) 19 = A 2- = a a t x = O
2 1 $ ~ ~ = r f i = & a t u = 0 , c + ~ = c + $ l+u 2SdV=3(10)~(. 1)
25 A = 47rr2, dA = 87rr dr 27 V = 7rr2h, dV = 27rrh dr (plus 7rr2 dh) 29 1 + i x 31 32nd root
Section 3.2 Maximum and Minimum Problems
. (page 103)
1 x = -2: absmin 3 x = -1: relmax, x=0: abs mi n, x=4: absmax
5 x = -1: abs max, x = 0 , l : abs min, x = : re1 rnax 7 x = -3: abs min, x = 0 : re1 max, x = 1: re1 min
9 x = 1, 9 : abs min, x = 5 : abs rnax 11 x = : re1 max, x = 1 : re1 min, x = 0 : stationary (not rnin or max)
x = 0,1,2, . . : abs min, x = i, 4, 4, . . : abs rnax
151x/
1 : all min, x = -3 abs max, x = 2 re1 rnax
x = 0 : re1 min, x = $ : abs max, x = 4 : abs min
x = 0 : abs min, x = 7r : stationary (not min or rnax), x = 27r : abs rnax
19= 0 : re1 min, tan B = -? (sin B = 2 and cosB = - % abs max, sin B = - $ and COSB = % abs min),
8 = 27r : re1 rnax
h = $(62" or 158 cm); cube 25 A; 2 6 gallons/mile, miles/gallon at v = fi
(b) B = = 67.5' 29 x = compare Example 7; f = 4
6'
R z - C s . dR dC
R(x)-C(x); Ox ds; pr ~f i t 33x=+; r er o 3 5 x = 2
2( b 4
2
V=x( 6- 9) ( 12- 2x) ; xw1. 6 3 9 A=nr 2 +x 2 , x =f ( 4 - 2 a r ) ; r , , , i , =~
ma x a r e a 2 5 0 0 v s ~ = 3 1 8 5 4 3 x = 2 , y = 3 45P(x)=12-x;thinrectangleupyaxis
H
h = F , r = z 3 V = = ~f c ~n e v o l u me
r = , * ; best cylinder has no height, area 27rR2 from top and bottom (?)
r = 2, h = 4 53 25 and 0 55 8 and -00
dFG-2 + Jq2 + (S - x)2. * = A -
8-2
9 d~
&- = 0 when sin a = sinc
y = x2 =
6 1 (1-1) ( - )
63 m = 1 gives nearest line 65 m = $ 67 equal; x = $
kx2
71 'Rue (use sign change of f")
Radius R, swim 2 R cos 0, run 2 RB, time + ; max when sin 0 = A, min all run
A-4 Answers t o Odd-Numbered Problems
Section 3.3 Second Derivatives: Bending and Acceleration
(page 110)
3 y = - l - x2; no . . . 5 False 7Tr ue 9Tr ue( f 1has 8zer os , f "has 7)
11 x=3i s mi n: f M( 3 ) =2 1 3 x = On o t ma x o r mi n ; x = ~ i s mi n :f M( ; ) =81
1 5 x = a is max: f " ( y ) = -a;x = is min: ft1(?) = fi
17 Concave down for x > $ (inflection point)
1 9 ~ = 3 i s ma x : f " ( 3 ) = - 4 ; z = 2 , 4 a r e mi n b u t f " = O 2 1 f ( Ax ) =f ( - Az ) 2 3 l + x - $
8 25 1-$ 27 1- ;x - Lx2 29 Error f " ( x ) ~ x 31 Error OAx + &f " ' ( x ) ( ~ z ) ~
37 & = 1. 0101~; = .909m 39 Inflection 4 1 18 vs. 17 43 Concave up; below
Section 3.4 Graphs (page 119)
1 120; 150; 9 3 Odd; x = 0, y = x 5 Even; x = 1,x = -1, y = 0 7 Even; y = 1 9 Even
11 Even; x = l , x = -1, y = 0 13 x =O, x =- l , y =O 1 5 x = 1,y = 1 1 7 Odd 1 9 3
21 x + & 23 d G 25 Of the same degree 27 Have degree P < degree Q; none
29 x = 1and y = 32 + C if f is a polynomial; but f (x) = (x - 1)'13+ 32 has no asymptote x = 1
3 1 ( ~ - 3 ) ~ 3 9 x = f i , x = - &y = x 4 1 ~ = 1 0 0 s i n ~ 4 5 ~ = 3 , d = l O ; c = 4 , d = 2 0
47 X* = JS= 2.236 49 t j = x - 2; Y = X ; y = 2~ 5 1 xmax = -281,Zmin = 6.339; xinfl = 4.724
53 xmin = -393, xmaX = 1.53, xmin = 3.33; Zinfl = .896,2.604
55 xmin = -.7398, xmaX = .8l35; xins = .O4738;x~~,,,, = k2.38 57 8 digits
Section 3.5 Parabolas, Ellipses, and Hyperbolas
(page 128)
1dyldx = 0 at 2 3 V = (1,-4), F = (1,-3.75) 5 V = ( O, O) , F = (0,-1) 7 F = (1,l)
9 V=( O, f 3 ) ; F=( o , f f i ) 11V = ( O , f l ) ; F = ( ~ , f f i ) 1 3 Twolines, a = b = c = O; V= F = ( 0 , 0 )
11
1 5 t ~ = 5 x ~ - 4 x 1 7 Y + P = J x 2 + ( Y - p ) 2 - - + 4 p y = x 2 ; ~ = ( ~ , ~ ) , Y = - ~ ; ( f ~ , 1 2 )
19 x =a y 2 with a > 0 ; y = W ; y = - a x 2 +a x wi t h a >0
z2+ Y1
,
= 1.
,
( x- 3) ' + ( ~ - 1 ) ~
21 $ + y 2 = 1 ; ~ + ( y - 1 ) 2 = 1 2 3 % ,,
= 1;x2 + y2 = 25
-
25 Circle, hyperbola, ellipse, parabola 27 *= -2; y = -$x +5
32
29 b*2 = 1
dz 49 40 , 2 ( ~ 5)
2 333x12+y12=2 ~ 5 ~ ~ - $ ~ ~ = 1 . ~ - ~ = l ; ~ ~ - ~ ~ = 5 ~ 1 ~ i r ~ l ~ ; ( 3 , 1 ) ; 2 ; X = y , Y = ~ ' 9 9
37 2 - & = 1 39 # -4y + 4, 2x2 + 122 + 18; -14, (-3,2), right-left 25
41 ~ = ( k $ , ~ ) ; y = k : 43 ( ~ + y + 1 ) ~ = 0
45 (a2 - 1)x2+ 2abxy + (b2 - 1)y2 + 2acx + 2bcy + c2 = 0; 4(a2 + b2 - 1); if a2 + b2 < 1then B2 -4AC < 0
Section 3.6 Iterations xn+l = F( x n )
(page 136)
1-.366;oo 3 1 ; l 5: ; f oo 7-2; -2
9 attracts, 9repels; $ attracts, 0 repels; 1attracts, 0 repels; 1 attracts; $ attracts, 0 repels;
f \ / Z repel
11Negative 13 .900 1 5 .679 17 la1 < 1 19 Unstable IFII> 1 21 x* = k;la1 < 1
Answers to Odd-Numbered Problems
23 $2000; $2000
25 XO, 6/ 00, X O, ~ / x o , . .
27 F' = - A x - 3 / 2 2 = -: at . *
29 F1 = 1 - 2cx = 1 - 4c at x* = 2;O < c < ) succeeds
31 F1 = 1 - 9c(x - 2)8 = 1 - 9c at x* = 3; 0 < c < succeeds
xa -2. sin 2 %-
SQ xn+l = Xn - &;
= xn- C 0 8 X m
3 5 ~ * =4 i f x O > 2. 5; ~* = 1 i f ~ o < 2.5
37 m = 1 + c at x* = 0, m = 1 - c at x* = 1 (converges if 0 < c < 2)
39 0 43 F' = 1 at x* = 0
Section 3.7 Newton's Method and Chaos (page 145)
1 b:+;Y =
25 r is not afraction 27= f x : + ) + S;Z = A 29 162 - 80z2 + 1282 - 64z4; 4; 2
31 lxol < 1 33 A x = 1, one-step convergence for quadratics 55 = *; x2 = 1.86
37 1.75 < x* < 2.5; 1.75 < x* < 2.125 39 8; 3 < x* < 4 4 1 Increases by 1; doubles for Newton
45 xl = xo + cot xo = xo + r gives x2 = xl + cot xl = X I + r 49 a = 2, Y' s approach ;
Section 3.8 The Mean Value Theorem and 1'H6pita19s Rule
(page 152)
I c = fi S No c 5 c = 1 7 Corner at ) 9 Cusp at 0
11 sec2 x - tan2 x = constant 13 6 15 -2 17 -1 l 9 n 21 -) 23Not %
1 -sin x
25 -1 27 1; TT~;;;; has no limit
29 f l (c) = $$;c = \/j
31 0 = x* - xn+1 + -#$(x* - xn)' gives M m 33 f l (0); v; singularity 35 # -+ 37 1
CHAPTER 4 DERIVATIVES BY THE CHAIN RULE
Section 4.1 The Chain Rule
(page 158)
1s = y3,y = x2 - 3,s' = 6x(x2 - 3)2 3 2 = cosy, y = x3,z' = -3x2sinx3
5 ~ = ~ , ~ = s i n x , z ' = c o s x / 2 ~ ~ 7 z =t a ny +( 1 / t a nx ) , y =l / x , d=( ~) s e c 2 ( ~) - ( t a nx ) - 2 s e c 2 x
9z =cosy, y=x2+x+1, d=- ( 2x+1) si n( x2+x+1) 1117cos17x 13si n(cosx)si nx
15x2cosx+2xsi nx 1 7 ( ~ o s ~ ~ ) ~ ( x + l ) - ' / ~ 1 9 ) ( 1 + s i n ~ ) - ~ ~ ~ ( c o s z ) 2 l c o s ( & - ) ( ~ ~ )
2 3 8 ~ ' = 2 ( ~ ~ ) ~ ( 2 ~ ~ ) ( 2 x ) 2 5 2 ( ~ + 1 ) + c o s ( x + r ) = 2 ~ + 2 - ~ o s x
27 (x2 + +I 2 + 1; sin U from 0 t o sin 1; U(sin x ) is 1 and 0 with period 27r; R from 0 t o x; R(sin x ) is half-waves.
29 g(x) = x + 2, h( x ) = x2 + 2; k ( x ) = 3
31 f t ( f ( x ) ) f l ( x ) ; no; ( - l / ( l / ~ ) ~ ) ( - l / x ~ ) = 1 and f ( f ( x ) ) = x
33 ? ( ) x + 8) + 8; i x + 14; &
35 f ( g( x) ) = x, g ( f ( y ) ) = y
37 f ( g( x) ) = d f (4) = 1 - $ 8 f ( f (4) = x = g(g(x)), g ( f ( g( x) ) ) = = f ( g ( f (4))
39 f ( y) = y - 1, g(x) = 1
48 2 cos(x2 + 1) - 4x2 sin(x2 + 1); - (x2 - 1)-'I2; - (cos &)/4x + (sin f i / 4 x 3 I 2
45f ' ( u( t ) ) u1( t ) 47( c os 2u( x ) - s i n2u( x ) ) g 4 9 2 x u ( x ) + x 2 ~ 511/4d=4=
53 df / dt 55 f ' (g(z))g1(x) = = 122" 57 3600; 4; 18 59 3; 5
A-6 Answers to Odd-Numbered Problems
Section 4.2 Implicit Differentiation and Related Rates
(page 163)
I -xn-l / yn-l 3 2 4 5 2 = 1 7 ( y2-2xy) / ( x2-2xy) or 1 1
F' ( v) g & o r ~ i ; l
11 First 2 = -E , second 2 = j 13 Faster, faster 15 222' = 2yyt -+ 2' = E y' = y' sin6
2 1 $ =- g . * = 17 sec2 0 = I S ~ O O ~ ; ~ O O J ~ 3 , d t - 2f i ; oot he nO
23 V=Tr 2h. dh = -- I dV -- -- in/sec
25 A = i absi n 9 , % = 7 27 1.6 m/sec; 9 m/sec; 12.8 m/sec
9 dt 4r dt
L C O s 2 ~ &. g u =&
29 - g
3 1 d"- a&.&-
dt '
,, y" - &jcos3 O~ i n B( y ' ) ~
dt - 2 dt 1 d t - 10
Section 4.3 Inverse Functions and Their Derivatives
(page 170)
( x unrestricted -,no inverse)
11 y = ,
1
13 2 < f - ' ( x) < 3 15 f goes up and down
f ( x ) g( x )and & 19 m# 0;m20; Iml > 1
2 1 $ = 5x4, 2 = iy-4/5
2
- 1
25 & = -=1_ & -
= 3x2. dz = $ ( I + y) - 2/ 3
' dY
27 y ; i y 2 + C
7 - d x ( 3- 1l 2 d~ -
39 2/& 4 1 l / 6cos 9
f ( g( x ) )= -1/3x3; g- l ( y)
Decreasing; $ = &
g(g-' (x)) : ; =
< 0 45 F; T ; F 47 g ( x )= xm, f ( y ) = yn, x
= x
= (2'1" 1 ' I r n
g ( z ) = ~ ~ , f ( y ) = y + 6 , x = ( z - 6 ) ~ / ~5 1 g ( x ) = 1 0 x , f ( y ) = l o g y , x = l o g ( l ~ Y) = y
y = x3, y'' = 62, d2x/ d$ = -$ yV5I3;m/ sec2,sec / m2 55 p =
fl
- 1;0 < y 5 1
,ax = G = 3
gY
413 GI=
2y
113
59 y2/100
9
Section 4.4 Inverses of Trigonometric Functions
(page 175)
CHAPTER 5 INTEGRALS
Section 5.1 The Idea of the Integral
(page 181)
8 11, 3, 7, 15, 127 3 - 1 - 1 - 1 = 1 - 8 1 5 f j - f O = 2 7 3 ~ f o r x ~ 7 ~ 7 x - 4 f o r x ~ 1
s2m,&,&G g 11 1 1 Lo we r b y 2 13Up, down;rect angl e 15 , / X- &; A~; ~; $
17 6; 18; triangle 19 18 rectangles 21 62 - $x2 - 10;6 -x 23 25 x2;x2; i x 3
Answers to Odd-Numbered Problems A-7
Section 5.2 Antiderivatives (page 186)
i x6+$x6*P ' 3 32f i ; 2 5Qx413(1+21/3);q(i+21/3) 7 - 2 ~ 0 s x - ~ c o s 2 ~ ; ~ - 2 c o s i - ~ c o s 2
9xsi nx+cosx; si n1+cos1- 1 11i s i n2x; i s i n21 1 3 f = C; O 15f ( b) - f ( a) ; f 7- f 2
5 , 36 ,oo
23 f(x) = 2&
25 5, below -1; +, q 1 7 8 + * 19:(1+&);:(3+fi);2 2 l 5 = m *
27 Increase - decrease; increase - decrease - increase
29 Area under B - area under D; time when B = D; time when B - D is largest 33 T; F; F; T; F
Section 5.3 Summation Versus Integration
(page 194)
n n
7 x akxk; x sin - 9 5.18738; 7.48547 11 2(a; + 6;) 13 2" - 1; if - 1 5 F; T
1 7 $ + C; f p - fs - fl + fo
1 9 fl = 1; n2 + (2n + 1) = (n + 1)2
21 a + b + c = 1,2a + 4b + 8c = 5,3a + 9b + 27c = 14; sum of squares 23 S4oO = 80200; E400 = .0025 = i
25 Sloo,l/3 w 350, Eloo,l/3 w .00587; Sloo,3 = 25502500, Eloas = .0201 27 vl and v2 have the same sign
Section 5.4 Indefinite Integrals and Substitutions
(page 200)
1 $ ( 2 + x ) ~ / ~ + C ~ ( x +l ) " +' / ( n +l ) +C( n # - I ) 5 & ( ~ ~ + 1 ) ~ + C 7- +c os 4z +C
9 -!cos42x+C l l s i n - l t + c 1 3 $(1+t2)312-(1+t2)112+C 1 5 2 f i + x + C
17 s e c x + ~ 1 9 - COSX+C 21 ax3 + $x3/2 23 -$(I - 2~)3/ 2 25 y = 6
27 ?x2 29 asinx + bcosx 31 &x' /~ 33 F; F; F; F 35 f ( x - 1);2f(:)
57 x - tan-' x 39 I ?du 41 4.9t2 + Clt + C2
43 f (t + 3); f (t) + 3t; 3 f (t); $f (3t)
Section 5.5 The Definite Integral
(page 205)
1 C = - f (2)
S C = f (3)
5 f (t) is wrong 7 C = 0 9 C = f(-a) - f(-b)
1 5 u = s e c x ; ~ ~ ~ ~ d u = ~ ( s a m e a s 1 3 ) 1 7 u = ) , x = ~ , d x = = $ ; ~ , ' ~ ~ ~
19 s= $(++I)' + + ( I + I ) ~ ; s = ;(o) + +( ++q4
21 s = + i3 + (;)3 + 23]; s = ?[03 + (+)3 + i3 + (;)3]
1 17 4
23 S = z[(E) + (q)4 + (%)( + 2' 1
25 Last rectangle minus first rectangle
27 S = .07 since 7 intervals have points where W = 1. The integral of W (x) exists and equals zero.
29 M is increasing so Problem 25 gives S - s = Ax(1- 0); area from graph up to y = 1 is $ 1 + A ' + . . =
A
4 2
+( I + + & +.-.) = = i; area under graph is i.
31 f (x) = 3 +
v(x)dx; f (x) = I; v(x)dx
33 T;F;T;F;T;F;T
A-8 Answers to Odd-Numbered Problems
Section 5.6 Properties of the Integral and Average Value
(page 212)
1 ~ = ~ ~ ~ ~ x ~ d x = ~ e ~ u a l s c ~ a t c = f ( ~ ) ~ ~ ~ ~ ~ = ~ J ~ c o s ~ x d x = ~ e ~ u a l s c o s ~ c a t c = ~ a n d $
2 d z
6 i r = / 1 2 = ~ e q u a l s $ a t c = f i 7J:v(x)dx gFalse, takev(x)<O
11The; 3 J',v(x)dx + $ .
J: v (x)dx = i J,S v(x)dx
1 3 False; when v(x) = z2 the function x2 - i is even
15 False; take v(x) = 1; faetor ? is missing 1 7
= A Ja v(x)dx
19 0 and ?
b-a
21 v(x) = Cx2; v(x) = C. This is 'constant elasticity" in economics (Section 2.2) 23 V +0; + 1
25 i J i ( a - x) dx= a + 1i f a > 2;;s; la- xldx= ? area = $ - a + 1i f a < 2; distance = absolute value
27 Small interval where y = sin B has probability $;the average y is J :
= 2A
29 Area under cos 0 is 1. Rectangle 0 < 0 5 5 , O 5 y 5 1has area 5. Chance of falling across a crack is $= 1.
%dt = -220- g s i n % = Vave 31 $,&,..., $;10.5 33 5 J, ' ~~ocos
35 Any V(X) = veve,(x) odd(^); (X +
= (3x2 + 1)+ (x3 + 3%);;)i=
- &
31 16 per class; $;E(X) = 64 = 22.9 39 F; F; T; T 8
Section 5.7 The Fundamental Theorem and Its Applications
(page 219)
1cos2 x S O S ( X ~ ) ~ ( ~ X ) = ~ X ~ ~ v ( x + I ) - V ( X ) g e m - 2. J: sin2 t dt
ll/;v(u)du 1 3 0 152si nx2 17u(x)v(x) 19t h-' (si nx)cosx=xcosx
21 F; F; F; T 23 Taking derivatives v(x) = (xcos x)' = cos x -xsin x
25 Taking derivatives -v(-x) (- 1) = v(x) so v is even 27 F; T; T; F
29 Jr v(t)dt = J; v(t)dt - v(t)dt = +- & (in revised printing)
31 V = s3; A = 3s2; half of hollow cube; AV rr 3s2dS; 3s' (which is A)
33 dH/dr = 2?r2r3 35 Wedge has length r rr height of triangle; $r2d0 = $
1 . do . ~ 4 4 do = t a . e + = ~
c o s 8 ~ 2 e o s 2 8 ~ 02cos28 T O 2
39 x = y2;J; y2dy = = t ;vertical strips have length 2 -fi
41 Length &a; Jo
1
ada = 43 The differences of the sums f j = vl +v2+-. *+vj are f j - fj-1 = vj width 3;
Section 5.8 Numerical Integration
(page 226)
1? A X ( U ~ -vn)
3 1,-5625, ,3025; 0, -0625, -2025 5 L8 W .1427, T8 W .2052, S8 U .2OOO
- l a# $ 9 For y=x2, error +(AX)' from i - s, yl ' -2Ax - 7 p = 2 : for y = z 2 , f . ~ ~ + I - ( i ) ~ + f
2
13 8 intervals give %[:& + = < .001 15 fl'(c) is yl(c) 1 7 00;.683, .749, .772 + 2
19 A+ B + C = l , ? B + C = & , ~ B + c = $;Simpson
1
21 y = 1and x on [0,1]: L, = 1 and i - &,R, = 1 and + k,so only ?L, + $R, gives 1and 5
23 Tlo N 500,000,000; Tloow 50,000,000; 25, 000~
25 a = 4, b = 2, c = 1; 1,'(4x2 + 22 + 1)dx = y; Simpson fits parabola 27 c = &
Answers to Odd-Numbered Problems
CHAPTER 6 EXPONENTIALS AND LOGARITHMS
Section 6.1 An Overview
(page 234)
15; -5; -1.1.. 3.2
5 1; -10; 80; 1; 4; -1 7nl ogbx gmaa 3 , 10 13 lo5
5' 2 '
1 5 0 ; I S F = 1 0 7 ~ O~ 8 . 3 + l ~ g l o 41 7 A=7 , b =2 . 5 1 9 A= 4 , k = 1 . 5
21 A; -&;log2
23 y - 1= cx; y - 10 = c(x - 1) 25 (.l-h- l)/(-h) = (loh - l )/ (-h)
27 3/' = c2bX; x0 = -l/c# 29 Logarithm
Section 6.2 The Exponential eZ
(page 241)
149e7" 3 8e8" 5 3% in 3 7 ($)" in $ 9- (i+e:)2 1 1 2 13xex l5(e~+e-z)2 4
1 7 esin x
cos x + ex cos ex 1 9 .1246, .0135, .0014 are close t o ; i ; ~ 21 1.1
e ' e
2 3 Y( h ) = l + &; Y( l ) = ( l + &) ' O= 2 . 5 9 2 5 ( l + ~ ) " < e < e x < e 3 x / 2 < e 2 x < 1 0 x < z x
3s 72 z3 e-z3
2 7 %+ ? 2 9 x + & + & 31 %+2ex 33%- - 2
35 2exl2 + $ 37 e-" drops faster at x = 0 (slope -1); meet at x = 1; e-"'/e-" < e-g/e-3 < &for x > 3
39 y -ea = ea(x -a); need -ea = -aea or a = 1
> 0
d~ 43 $(e-x y) = e-" *-e-"y = 0 so e-x y = Constant or y = Cex
2z ninz
2 A
45 !L]i= I-'
47 &]L1 = g= ,,, , 49 -e-"IF = 1 5 1 el+"]: = e2 -e 53 = 0
= 55 J F d x = -e-u +C; J ( eu) 2edx = +eZU+C 57 yy' = 1gives iy2x +C or y = 4-
59 = (n - X ) X " - ~ / ~ " < 0 for x > n; F(2x) < -+0 6 1 m 117;( : ) 6 m 116; 7 digits
Section 6.3 Growth and Decay in Science and Economics
(page 250)
47 (1.02)(1.03) +5.06%; 5% by Problem 27 49 20,000 e(20-T)(.05) = 34,400 (it grows for 20 -T ears)
- 1)
.005
51 s = -cyoect/(ect - 1)= -(.01) ( 1 0 0 0 ) e . ~ ~ / ( e . ~ ~
53 yo = m(1
- e-.005(48)
1
55 e4c = 1-20 so c =
57 24e36.5 =? 59 TO-00; constant; to + oo
6 1 = 60cY; = 60(-Y +5); still Y, = 5
41 3/ = xx(lnx + 1)= 0 at %,in = :; y" = ! ] + 1)2 + xx[(ln x
A-10 Answers to Odd-Numbered Problems
Section 6.4 Logarithms (page 258)
1 $ 3 - 1 5 l nx 7 ~ 0 8 5 =
x(ln x)a s i n s x 9 11 $ l n t + C I 3 i n$
1 5 i l n 5 17- l n( l n2) 191n( s i nx) +C 21- $l n( cos 3x) +C 2 3 $ ( l n ~ ) ~ + C
27 in y = $ ln(x2 + 1); 2 =
29 * = esin
cos x
dFE dx
3 1 2 = exee' 33 l n y = e x l n x ; ~ = y e x ( l n x + ~ ) 5 5 l n y = - 1 s o y = : , z = O 3 7 0
39 -1 4 1 sec x 4 7 . l ; .095; .095310179 49 -.01; -.01005; -.010050335
5 1 lYHSpital: 1 53 1 5 5 3 - 2 in 2 57 Rectangular area i + . . + < $: $ = I nn
In b
59Ma xi muma t e 6 1 0 6310gl oe or & 6 5 1 - x ; l + x l n 2
( t +2) a -+ y = 1 - 1 never equals 1
67 Raction is y = 1 when l n( T + 2) - In 2 = 1 or T = 2e - 2 69 y' = -2-
t+2
7 1 l np = xl n2; LD 2"l n2; ED p = eZLn2, p' = In2 esln2
75 24 = 42; yl n x = xl n y -+ '"2 = decreases after x = e, and the only integers before e are 1 and 2.
y ' s
Section 6.5 Separable Equations Including the Logistic Equation
(page 266)
I 7et - 5 3 ($x2 + 1)lI3 5 x 7 e l - ~ ~ ~ t 9 ( ?+&) a 11 y, =O; t = 1
YO
1 5 z = l +e - t , y is in 1 3 1 7 ct = l n3, ct = l n9
19 b = c = 13 . y, = 13 . lo6; at y = & (10) gives ln = ct + In c_'::,b so t = 1900 + = 2091
2 1 # dips down and up (avalley) 23 sc = 1 = sbr so s = $, r =
25 Y = l+e-NY(N-l) ; ~=!d!!$l-+o
27 Dividing cy by y + K > 1 slows down y'
29 dR = CK
dy ( y + ~ ) f > 09 * -+
3 1 = 6; multiply e ~ l K = e- ct l Key~l K ( EL ) by K and take the Kt h power t o reach (19)
33 f / = ( 3 - y ) 2 ; & = t + $ ; y = 2 a t t = 2 3
35 A e t + D = A e t + B + ~ t + t - + ~ = - l , B = - l ; y o = A + B g i v e s A = l
37 y + 1 from yo > 0, y -+ -oo from yo < 0; y -+ 1 from yo > 0, y -+ -1 from yo < 0
39 $ Cyiydy =
dt -+ ln(sin y) = t + C = t + In i. Then sin y = i e t stops at 1 when t = In 2
Section 6.6 Powers Instead of Exponentials
(page 276)
a 3 a 3
1 l - x + y - % + . . . 3 l f x + ~ f ~ + - 5 1050.62; 1050.95; 1051.25
7 1+n( $) + w(+)2 + 1- I + 4 9 square of ( I + i)"; set N = 2n
11 Increases; l n ( l + $) - & > 0 1 3 y(3) = 8 1 5 y(t) = 4(3') 1 7 y(t) = t
19 y(t) = $(3t - 1) 2 1 s ( 2 ) if o # 1; st if a = 1 23 yo = 6 25 yo = 3
b
27- 2, - 10, - 26+- 00; - 5- =- ?- +- 12 9 2 , 2 9 P = = 3 1 10.38% 33 100( 1. 1) ~~ = $673
100 000 1 12
35 & = 965 37 Y ( 1 . l z 0 - 1) = 57,275 39 y, = 1500 4 1 2; ( g ) 5 2 = 2 69. ye
43 1.0142'~ = 1.184 -+ Visa charges 18.4%
Section 6.7 Hyperbolic Functions
(page 280)
1 ex, e-x eax-eeax
2 4
= $ sinh 22 7 sinh nx 9 3 sinh(3x + 1) 11 - eoah = - t anhx sech x
1 3 4 cosh x sinh x 1 5 ~ ( s e c h 4 G ) ~ 1 7 6 sinh5 x cosh x
19cosh( l nx) = i(x+;) = l a t x = 1
2 1 139 '3 5 1 -B 5 I -3 12, -5 12
23 O , O Y ~ Y ~ Y ~
25 sinh(2x + 1) 27 $ cosh3 x 29 ln(1 + cosh x) 3 1 ex
A-11 Answers to Odd-Numbered Problems
33 J y d z =J s i n h t(sinh t d t ) ; A = i s i nh t c o s h t - J y d x ; ~ l = ~ ; A = o at t = ~ s o A= i t .
4 1 eY = x + d m ,y = In[x+ d-]
47 4 ln 1% 1
49 sinh-' x (see 41) 5 1 -sech-'z
53$1n3; oo 5 5 y ( x ) = ~ c o s h c x ; $ c o s h c ~ - $
57 5/' = y -3 3 . L(
Y
= 1 -y3 is satisfied b y y = isech2:
9 2 2Y
CHAPTER 7 TECHNIQUES OF INTEGRATION
Section 7.1 Integration by Parts
(page 287)
$ ( x 2 +1 ) t a n - ' x - %+C 21x3s i nx+3x2c os x- 6xs i nx- 6c os x+C
ex(x3-3x2 + 6x -6) + C 25 x t an x + ln(cos x ) + C 27 -1 29 -:e-2 + 3 1 -2
3l n10- 6+2t anV' 3 35 u = x n, v =e x 37 u = x n, v =s i nx 39 u = ( l nx ) " , v =x
u = xs i nx, v = ex +/ e x s i n x d x in 9 and - $xcos xexdx. Then u = - xcosx, v = ex + ~ e x c o s x d x
in 10 and -J x sin x exdx (move t o left side): ( x sin x - xcos x + cos x) . Also t ry u = xex, v = -cos x.
$ $ u s i n u d u = $( s i nu- uc os u) = $( s i nx2- x2cos x2) ; odd
3. step function; 3ex. step function 49 0; x6( x) ] -$6( x) dx = -1; v ( x ) d( z ) ] -I v( x) 6( x) dx
~ ( 4 = Jxl f (+x
u( x ) = 51,"v( x) dx;+(: - $);f for x 5 i,~ ( Z X - x2 - 4 ) for x 2 i;:for X Ii, &for x > i.
u=x 2 , v =- c o s x +- x 2 c o ~ x +( 2 x ) s i nx - J 2 s i nx dx 57Compar e23
1
uw']A-Jo' u'wl -u1w]A+ So u'w' = [uwl- ul w];
No mistake: ex cosh x -ex sin hx = 1 is part of the constant C
Section 7.2 Trigonometric Integrals
(page 293)
1 J ( 1 - ~ o s ~ x ) s i n x d x = - ~ o s x + ~ ~ o s ~ x + C 3 i s i n 2 x + C
5 $ ( 1 - u 2 ) 2 u 2 ( - d t l ) = - $ c 0 s 3 x + ~ c 0 s 5 x - ~ c 0 s 7 x + ~ 7 $ ( s i n ~ ) ~ / ~ + ~
3 2 7) 9 i J s i n 3 2 x d x = &( - c o s 2 x + $ c o s 3 2 x ) + ~ 1 1 3 L( 5 2 +s i n 6 x + C
15 x + C 17 cos5 x sin x + $ cos4 x dx; use equation ( 5 )
19 $:I2 dx =
$:I2 c0sn-2 dx = . . . = &. . .
i$:I2 n n n-2 d~
21 I = -sinn-' x cos x + ( n- 1) J xcos2 x dx = -sinn-' x cos x + ( n- 1)J x dx - ( n- 1) I .
So nI = -sinn-' x cos x + ( n- 1)$ x dx.
230, +, 0, 0, 0, - ~ ~ - $ c o s ~ x , o 27- ; ( & 2 + T ) , O
200
C0s200x 29 + ( s i n2003 + si;2x), 0
31 -+ 33 1: = A sin2 x dx + A $ : = x sin x dx 55 Sum = zero = (l ef t + right) cos x, 0 2
37 p is even 39 p - q iseven 4 1 sec x + C 43 $ tan3 x + C 45 $ sec3 x + C
47 $ t a n 3 x - t a n x +x +C 49 l nI si nxl +C 51 &+c 53 A=&, - f i s i n( x +: )
55 4JZ 57 59 1-cosx si nx
6 1 p and q are 10 and 1
l +c o a x ~ s i n x+ C
A-12 Answers to Odd-Numbered Problems
Section 7.3 Trigonometric Substitutions
(page 299)
7 ~ = i t a n - ' z + ? + + ~ t a n 8 ; $ ~ 0 ~ ~ 8 d f I =
9 X = 5sec8; S5(sec28- l ) d8= d n - 5 s e c - I ; + C
I I X = S ~ C ~ ; J C O S ~ ~ ~ = ~ + C I ~ X = ~ ~ ~ ~ ; $ C O S B ~ O = - + C
-5
15 x = 3 sec 8; $ 'g"'?,dee = & + C = -
dm
9 @z i +c
1 7 x = sec8; Jsec3 8 dB = &sect9 t an8 + i l n( sec8 + t an8) + C = & x d G + ? l n( x+ d m ) + C
1 g X = t a n 8 ; $ c ~ s ~ d ~ = - L + C = -+C
sina 6 sin 0 x
2 1 $
= -8 + C = -cos-' x + C; with C = 5 this is sin-' x
= -ln(cos 8) + C = 1n4- + C which is iln(x2 + 1)+ C 23 $ t a n ~ ~ $ ~ e
25 x = a sin 8; $: L72 a2 cos2 8 d8 = = area of semicircle
27 sin-' x]f5= 5 - 2 = t
"12 cos8d0 = -14 2
29 Like Example 6: x = sin 8 with 8 = 5 when x = oo,8 = 5 when x = 2, Jnl3
,h
"12 3seca de = g "12
dx = $xn-'dx = $
3 1 x = 3 t an 8; $-r12 9seca e 3]-n/2 =
33 $ xnTcln-l
35 x=s e c e ; i ( e f +e- f ) = L( x+J=+ .+;=)= 2 ? ( x + d Z + x - - d G ) = x
37 x = cosh 8; $ dB = cosh-' x + c
39 x = cosh 8; $ sinh2 8 dB = i (si nh 8 cosh 8 -8) + C = $xd= - $ ln(x + d r l )+ C
4 1 x = tanh 8; $ dB = tanh-' x + C 43 (x -2)2 + 4 45 (x -3)2 -9
47 (x +
1 x 2
49u=x- 2, $- &= i t an-' : = i t a n - ( +j - ) +C; u=x- 3, $*= Ll nU- 5= '1 ~ - 6
u -9 6 ~ + 3 n ~ + c ;
u = x + 1 , $ + = L - ' + c x+1 u
dU
5 1 u = x + b; $ u'-ba+c
u ~ e ~ u = a s e c 8 i f b ~ > ~ , ~ = a t a n 8 i f b ~ < c , e ~ u a l s - ~ = ~ i f b ~ = c
53 cos 8 is negative (-d-) from 5 $: then F; to - + 4-dx = 7 = area of unit circle
55 Divide y by 4, multiply dx by 4, same $ y dx
57 No sin-' x for x > 1; the square root is imaginary. All correct with complex numbers.
Section 7.4 Partial Fractions
(page 304)
~ ~ A + + + M . A = - L
4 '
B = L
4 '
C = OD = - L
x+1 x- x'+l ' 2
1 7 Coefficients of y : 0 = -Ab + B; match constants 1= Ac; A = $, B =
1 9 A= l , t h e n B = Z a n d C = 1 ; ~ 5 + $ % =
ln(x - 1)+ ln(x2 + x + 1)= ln(x - l ) ( xZ+ x + 1)= ln(x3 - 1)
2 1 u = e ~ ; $ ~ = $ ~ - $ ~ = l n ( ~ ) + ~ = l n ( ~ ) + ~
~ ~ u = c o s ~ ; $ . & + C. We can reach = - $ J A - I $ k =& l n ( l - - u ) - ~ l n ( l + u ) = $ l n ~
1in ('-CO.B)1 = In 1-cose
~ - C O S ~ O -ln(csc8 - cot e) or a different way +I n =In- ~ + C OS e = -1,- sm e =
-ln(csc 8 + cot 8)
25 u = e x ; d u = e x d x = u d x ; $ ~ d u = $ ~ + $ ~ (1-U)U = - 2 l n ( l - e x ) +l n e x +C= - 2 l n ( l - e x ) + z + C
2
Answers toOdd-NumberedProblems A-13
2 7 x + 1 = u 2 , d x = 2 u d u ; $ ~ =J [ 2 - &] d u =2 ~ - 2 1 n ( l +u ) +C=
2,/2+1-21n(i+,/z+l)+c
. - s +&bydefinitionof derivative. At adoubleroot Q'(a) =0.
29Note Q(o)=0. Then
=
Section7.5 Improper Integrals
(page309)
1 - P
1 5 divergesforeveryp! 1 7 Less than $? 3 =
+$PO ,q=tan-' XI; - -$]I" = +2 19Less than $, ' , &
21Less than$PO e-'dx =$, greater than -+
23Less thani,'e2dx +e$re-('-')'dz =c2+e$ ' e - ~l d u=e2+'- Jsr
3 $ ; + 1 lessthan -
251,' -+
=2 27p! =ptimes (p-I)!; 1=1times01
31$ ;
-2
L d x =i f i
7~
$ ; +
=G : - 33w=3 p l ~--- tmV; a, =
1000e--~~dt-10, 000e-. ~~]r=$10,000 = 29u=x,dv=xe-"'dz :- x<] r
$=Jree--+ln2dx =C! I I 00- 1
- I n210 - m
$ ; 35
37$: I2 (seex-tanx)dx=[ln(secx+tanx)+ln(cosx)]:~' =[l n(l +sinx)];l2 =In2.
Theareasunder secx andtanxseparately areinfinite 39Onlyp=0
CHAPTER8 APPLICATIONS OF THEINTEGRAL
Section8.1 AreasandVolumesby Slices
(page318)
1x2-3=1givesx=f 2 ; ~!~[(1-
32
(x2-3)ldx=7
33 =x=9gives y=f3;$_S3[9-y2]dy=36
5x4-2x2=2x2givesx=f2(orx=0);$!2[2x2 - (x4-2x2)]dx=
7y=x2=-x2 +182gives x=0,9;$:I(-x2 +182)-x2]dx=243
9 y = c o s x = c o s 2 x w h e n c o s x = 1 0 r 0 , x = Oo r ~ o r ~ ~ ~ ~ ~ ~ ~ ( c o s x - c o s ~ x ) d x = 1 - ~
-1
11ex =e2z-1 gives x=1;$:[ex -e2'-']dz =(e- 1)- (y)
4
1 3 Intersections(O,O),(l, 3), (2,2);$,'[3x -xldx+~: [4-x-xldx=2
1 5 Inside,since 1-x2<J D ; $: l [ dn- (1-x2)ldx=5 - $
1 7 V=$: a ay2dx=$faab2(l- $)dx =9;around yaxisV=w; rotating
x=2,y=0 aroundyaxis givesacirclenot in thefirst football
v; $ : = - 2ax(8 $ ; a(8 1; 21
~ ( x ~ ) ~ d x =F; $,'27r(l- x4)xdx=
I9V 2x2sinxdx=27r2 x)dx= (sameconetippedover) -X ) ~ ~ X =
23J,' a.12dx-I,'
-
25r
25 ~ ( 3 ~ ) d x =y; 2rx(3- $)dx=7
271,'~ [ ( x ~ l ~ ) ~ =$;lo'2ax(x213-X ~ / ~ ) ~ X - ( ~ ~ l ~ ) ~ ] d x = (noticexysymmetry)
29x2=R2-y2,V=$R-h T ( R ~-y2)dy=r ( ~ h ~
R
- $)
3 1 j : a ( 2 d m) 2 d x =?a3
33J,'(2d=)'dy =2
371A(x)dxorinthiscase$o(y)dy
39Ellipse; J s t a n 8;$(I-x2)tan8; tan8
41Half of ar2h;rectangles 43 ~ ( 5 ~ -22)dx=42r 45J: a(4' - 12)dx=30a
A-14 Answers to Odd-Numbered Problems
59 2 r
6 1 1,' 2ry(2 - &)dy =
63 3re 65 Height 1; $ : 2 r z dz = ra2; cylinder
67 Length of hole is 2d- = 2, so b2 - a2 = 1 and volume is !f 69 F; T(?); F; T
Section 8.2 Length of a Plane Curve
(page 324)
Graphs are flat toward (1,O) then steep up to (1,l); limiting length is 2
~=\ / 36s i n23t +36c os 23t =6 2 3 J , ' a d y = &
1
J!, J - d y = J!, 3(e'+ e-Y)dy = $(ev - e-')]L1 = e - - e
Using x = cosh y this is dy = 1 cosh y dy = sinh y]kl = 2 sinh 1
Ellipse; two y's for the same z 29 Carpet length 2 # straight distance */Z
( dd2 = ( d ~ ) ~ + ( d ~ ) ~ + ( d ~ ) ~ ; ds = \/(%)l + (%)a + (%)2dt;
ds = \/sin2 t + cos2 t + l dt = h d t ; 2 a 4 ; curve = helix, shadow = circle
L = I,' t/TTZ?dz; Jt d G S d z = 1,' JGG 2du = 2L; stretch xy plane by 2 (y = x2 becomes : =
Section 8.3 Area of a Surface of Revolution
(page 327)
1 J" 2rfiJ-dx = 1: 2rdZ+!dx = 3 2 1,' 2 r ( 7 x ) md x = 14s-
1
5 J', - 2 a d = m d x = I-, 4rdz = 8 r 7 1: 2r x J1+(22)2dx = f (1 + 4x2)312]~ = f [173/2 - 11
9 $: 2rzz\/Zdx = 9 r f i 11 Figure shows radius s times angle I9 = arc 2r R
13 2rrAs = r ( R + Rt)(s - st ) = aRs - uR's' because Rts - Rs' = 0
15 Radius a, center at (0, b); +
= a2, surface area st" 2r(b + asin t )a dt = 47r2ab
17 J: 2rx J - dx = 1:
= r2 + 2 r (write 22 - z2 = 1 - (x - 112 and set x - 1 = sin 19)
19 $t12 2 r x d q d z (can be done)
21 Surface area = JF 2r: J x d x > JT 00 = 2 r l n x J r = a, but volume = JF ~ ( $ ) ~ d x = r
23 J : 2 r sin t d 2 sin2 t + cos2 t dt = J : 2 r sin tt/- dt = 2rt/Z--;du =
rut/= + 2 r sin-' 3 ] L 1 = 2 r + 9
Section 8.4 Probability and Calculus
(page 334)
1 p ( X < 4) = i, P(X = 4) = & , P(X > 4) = $
s ir p(x)dx is not 1; p(x) is negative for large x
5 1; e-'dz = -$;/ll.O1e-'dx (J (.01); 7 p(x) = $; F( z) = : for 0 5 x 5 r (F = 1 for x > A)
$ ;
Answers t o Odd-Numbered Problems
9 p = 1 . 1 + ; . 2 + . . . + 1 . 7 = 4 11$* 2xdx =
Iln(1 +x2)]F =+ m 7 7 o n(l+x3) m
~ x e - ~ " d z = [-xe-""]F + e-axdx = a
2dx
= Z tan-' x. JX e-"dx = 1- e-X. ae-aXdx = 1-e-ax 17 $= Le-x/10dZ = -e-~/10 w
1
J X
0 I"n(l+x3) rr 0 0 10 10 I10 = ;
Exponential better than Poisson: 60 years --+ .01e-.~" dx = 1-e-s6 = .45
y = 7;three areas = $ each because p -o to p is the same as p t o p +o and areas add to 1
-2p J xp(x)dx +p2 J p(x)dx =-2p .p +p2 e = -pa l
p = o . $ + 1 . $ + 2 . + 1 ; 0 2 = ( o - 1 ) 2 . $ + ( 1 - 1 ) 2 . $ + ( 2 - 1 ) 2 . $ = Z 3 '
A l ~ o x n ~ ~ , - p ~ = O . $ + 1 . 1 + 4 . ~ - 1 = Z 3 3
00 ~ e - * / ~ d x
-
-
2; 1-Jo 7 p =Jo -7
4 e-s72dx
= 1+[e-x/2]: =e-2
Standard deviation (yes - no poll) 5 1= = & Poll showed = %peaceful.
2 n
95% confidence interval is from %- & to + &, or 93% to 100% peaceful.
31 95% confidence of unfair if more than $= &=2% away from 50% heads.
2% of 2500 = 50. So unfair if more than 1300 or less than 1200.
33 55 is 1.50 below the mean, and the area up to p - 1.50 is about 8% so 24 students fail.
A grade of 57 is 1.30 below the mean and the area up t o p - 1.30 is about 10%.
35 .999; .999100 = (1- &)loo' = $ because (1- i)"4$.
Section 8.5 Masses and Moments
(page 340)
3 I F = ? s z = r 4 5 ~ = 3 . 5 7 z = + g 9 z = + g I I Z = L $ = ~ IS^=$,$$
15 Z = & = g
21 1 = $ x ~ ~ d x - 2 t $ x ~ d x + t ~ $ ~ d x ; ~ = - 2 ~ x ~ d x + 2 t $ ~ d x = 0 f o r t = ~
23 South Dakota 25 2n2a2b 27 M, =0, M, 75 29 $ 31 Moment
33 I =xmnrz;
Crn,rzwz; o
35 14nt$; 14d$;
37 $; solid ball, solid cylinder, hallow ball, hollow cylinder 39 No
a, 41 T =5.mby Problem 40 so T =a,m,4
Section 8.6 Force, Work, and Energy
(page 346)
12.4 ft lb; 2.424 ... ft lb 3 24000 lb/ft; 835 ft lb 5 lox ft lb; lox ft lb 7 25000 ft lb; 20000 ft lb
9 864,000 Nkm 115.6. lo7 Nkm I3 k = 10 lb/ft; W = 25 ft lb 1 5 $6Owh dh =48000cu, 12000w
17 i wAH2; ~ W A H ~ 19 9600w 21 (1- $- ) - 3/ 2 23 (800) (9800) kg 25 f force
CHAPTER 9 POLAR COORDINATES AND COMPLEX NUMBERS
Section 9.1 Polar Coordinates
(page 350)
I ~ O < Y < O O , - ; < B < ~ ; O < r < m , n < ~ < 2 n ; & < r < J S , 0 < 0 < 2 n ; 0 ~ r < m , - ~ < B <
19y=xt anB, r =xs ecB 2 1 B = ~ , a l l r ; r = s i n e ~ e o s e ; r = ~ ~ s B + ~ i n B
2 3 x 2 + y 2 = y 2 5 ~ = r s i n B c o s 8 , y = r s i n ~ 8 , ~ ~ + ~ ~ = ~
(e)2
1 2
+ ( Y - * ) ~ = 2 9 x = C O ~ @ sine Z' 1 x 2 +y 2 =x +y , ( x - Z)
cos @+sin0 9 Y = cos @+sin8
31 (x2 +y2)3 =24
A-16 Answers to Odd-Numbered Problems
Section 9.2 Polar Equations and Graphs
(page 355)
1Line y = 1 3 Circle x2 + y2 = 25 5 Ellipse 3x2 + 4y2 = 1-22 7 x, y, r symmetries
9 x symmetry only 11No symmetry 13 x, y, r symmetries!
1 5 x2 + y2 = 6y + 82 -t (x -4)2 + (y -3)2 = 52, center (4'3)
17 (2,0), (0,O)
l g r = l - &
2
B=s". 4 , r = I + +, 8 = ".(o,o) 21 r = 2 , ~ f~
12'
f~
12' 4 '
=
1 2 '
5-
12
Section 9.3 Slope, Length, and Area for Polar Curves
(page 359)
1Area 3 Area 9 5 Area 7 Area - a 9 $: I3 7r/3 (2 2 Cos2 6 - =
11Area 87r 13 Only allow r2 > 0, then 4 j;l4 i cos - 28 d6 = 1 1 5 2 + q
17 8=O; left points r = +, 8 = f F , x = -I4 , Y = f 9
19 $]i4= 40,000; $[ r J F T F + c2 ln(r + J 7 7 7 ) 1 : 4 = 40,000.001
21t a n$=t a n8 23x=O, y=1i sonl i maconbut not ci rcl e 25iln(27r+J=)+7rd1+4?rZ
r 27 ?f 29 & (base) (height) FJ i ( r ~ 8 ) 31 ?& 33 2s(2 -&) 35 ! f 39 sec 19
Section 9.4 Complex Numbers
(page 364)
1Sum = 4, product = 5
5 Angles F,?f ,
7 Real axis; imaginary axis; + axis x 2 0; unit circle
g c d =5 +1 0 i ,c = u,, 112 cos 8, l ; -1,l 1 3 sum = O, product = -1
1 5 r4e4"
' r
le-'O Le-4'e
, r 4
1 7 Evenly spaced on circle around origin 19 eit, e-" 21et , e-t , e0 23cos7t,sin7t
2 9 t = - z , y = -ex/+ 3 1 F; T; at most 2; Re c < 0 33 be-", x = $ cos8, y = - $ sin 8; fLe-' e/2
J;
CHAPTER 10 INFINITE SERIES
Section 10.1 The Geometric Series
(page 373)
1Subtraction leaves G -XG= 1or G = &
3 L. 9.W. 3 4
5 2 - l + 3 . 2 x + 4 . 3 x 2 + . . - =
29 5' 11 9 99
7 .I42857 repeats because the next step divides 7 into 1 again
9 If q (prime, not 2 or 5) divides l oN - loM then it divides 10N-M - 1 11This decimal does not repeat
19 '"5
3
87 123
1 5 a 17 6 1-111 x 21 23 tan-'(tan x) = x
25 ( ~ + x + x ~ + x ~ - . . ) ( ~ - -x3. . . ) = 1 + x 2 + x 4 z + x 2
2 1
272(.1234 ...) i s 2- &. *=8; 1- . 0123 . . . i ~ l - - ~ ~ loo (1-&)1 - 81 - - ~ 2 9 5 s =1
3
31- l n( 1- . l ) =- l n. 9 3 3 i l n Y 35((n+1)! 3 7 y = L 1 - b ~
39 All products like a1b2 are missed; (1+ 1)(1+1)# 1+ 1 41 Take x = in (13): In 3 = 1.0986
43 In 3 seconds the ball goes 78 feet 45 tan z = $; (18) is slower with x = $
Answers t o Odd-Numbered Problems
Section 10.2 Convergence Tests: Positive Series
(page 380)
1 ? + f + is smaller than 1 + $ + .
1 2 n 1
8 ~ n = S n - S n - 1 = ~ , S = 1 ; ~ n = 4 , S = ~ ; ~ n = h * - ~ n ~ = ~ n ~ , ~ = h 2 n+l n 1
5 No decision on x b, 7 Diverges: &(I + + . *) 9 x - converges: 5 is larger
11 Converges: 5 is larger 1 5 Diverges: x is smaller 15 Diverges: & is smaller
1 7 Converges: x 8 is larger 19 Converges: C 5 is larger 2 1 L = 0 23 L = 0 25 L = 5
2 7 r o 0 t ( v ) ~ + L = $ 29s=l ( onl ysur vi vor ) 3 l I f y d e c r e a s e s , ~ ~ y ( i ) ~ ~ ~ y ( x ) d z ~ ~ ; - ' y ( i )
1
35 x: e-" imO e-ldx = 1; $ + 7 + + . = 55 Converges faster than fi
zC- I+ 1
37 Diverges because ST = ln(x2 + 1)Ir = oo 39 Diverges because Srxe-"dx = = oo
4 1 Converges (geometric) because i;(f)'dx < oo 43 (b) J' +' $ > (base 1) (height &)
45 After adding we have 1 + 5 + . . + & (close to ln 2n); thus originally close to ln 2n - In n = In % = ln 2
1000 &
47 Jloo 2 = 2 loo - looo - - .009
49 Comparison test: sin an < an; if an = m then sin a, = 0 but C an = oo
51an=n- 6/ 2 5 3 a n = 5 65Ratiasarel,~,l,i,...(nolimitL);(&)'l"= ' ; yes
5 7 Ro o t t e s t &- r L=O 5 9 Ro o t t e s t L=& 6 1 Di v e r g e n c e : Nt e r ms a d d t o ~ ~ + m
65 Diverge (compare i) 65 Root test L = Q 67 Beyond some point $ < 1 or an < b,
Section 10.3 Convergence Tests: All Series
(page 384)
1 Terms don't approach zero 3 Absolutely 5 Conditionally not absolutely 7 No convergence
9 Absolutely 11 No convergence 1 3 By comparison with C la, 1
1 5 Even sums + f + a + . diverge; an's are not decreasing 1 7 (b) If an > 0 then s, is too large so s - s, < 0
19 s = 1 - $; below by less than
2 1 Subtract 2($ + f i + . -) = i(fr + & + . . .) = from positive series to get alternating series
23 Text proves: If C lanl converges so does C a,
25 New series = ( 4) - f + (i) - is.. = i(1 - I +
- ..
2 -) 27 In 2 : add in 2 series to $ (In 2 series)
29 Terms alternate and decrease to zero; partial sums are 1 + 8 + + ;! - In n + 7
31 .5403? 53 Hint + comparison test 55 Partial sums a, - ao; sum -a0 if a, + 0
57 && = 3 but product is not 1 +
+ . - .
39 Write x to base 2, as in 1.0010 which keeps 1 + and deletes i, f , . .
4 1 + & + adds to = 6 and can't cancel +
43 a I-cos 1 = cot ? (trig identity) = tan (g - 1). 2 ' s = C 2 n = - log(1- e') by 10a in Section 10.1;
take imaginary part
Section 10.4 The Taylor Series for eZ, sin x, and cos x
(page 390)
+ . . . ; derivatives 2"; 1 + 2 + $ + . . 3 Derivatives in; 1 + i x + .
1 l + 2 x +
5 Derivatives 2"n!; 1 + 22 + 4x2 + . . 7 Derivatives -(n - l)!; -X - E?, -
-
2 3
g y = 2 - e ~ = l - x - I ) - . . . 11 y = x - $ + ... =sin 13 y=~e'=~+~~+d+.-
21 21
15 l + 2 ~ + ~ ~ ; 4 + 4 ( ~ - 1 ) + ( ~ - l ) ~ 1 7 - ( X- I ) ~ 19 i - ( ~ - i ) + ( ~ - l ) ~ - -
21 ( %- 1)- w+ - ... =l n( l + (x-1)) 25 e-'el-= =e-' (1- (x- 1)+ - a * . )
3
25 x+2z2+2x3 27 A - ~ + . 2 24 720 2 g X- d . + & 18 600 3 1 l + x 2 + $ 35 l + x - $
A-18 Answers t o Odd-Numbered Problems
x5 2~~
35ooslope; l + &( z - l ) 3 7 x - 3 - 4 - 5 3 9 ~ + % + ~ 4 1 l + x + $ 43 14- OX- x2
ei e +e-?O i e - -i B
45 cos 8 = ,sin8 = + 47 99th powers - 1, -i, e3"14, -i
49 e-"I3 and - 1; sum zero, product - 1 53 i;, it + 27ri 55 2ex
Section 10.5 Power Series
(page 395)
1 1 + 4 ~ + ( 4 x ) ~ + - . . ; r = !;x= f 3 e ( l - x + < -. . . ); r = co
5 l n e + l n ( l + i ) = 1+ 5 - i ( 5 ) 2 + - . . ; r = e ; x = -e
7 1 < 1 or ( - 1 , )
9 l x - a1 < 1; -l n(1- ( x- a))
l-(1-Lx?..)
1 1 1 + ~ + $ + . . . ; a d d t o l a t x = 0 13 al , a3, . . . ar eal l zer o 1 5 - + L 2
1 7 f ('1 (c) = cos c < 1; alternating terms might not decrease (as required)
xn+l n+ l
1 9 f = & , l R n l I w ; R n = ~ ; ( 1 - ~ ) 4 = 1 - ;
n+ 1
21 f("+')(x) = *,, lRnI 5 -(A) -' 0 when x = 4 and 1 - c > i
23 R2 = f (x) - f (a) - f t ( a) ( x - a) - i f U( a) ( x -
so Rz = R; = R" 2 - - 0 at x = a, R: ' = f"';
Generalized Mean Value Theorem in 3.8 gives a < c < c2 < cl < x
25 1 + i x 2 + ;(x2)' 27 (-l)n; (-l )n(n + 1)
29 (a) one friend k times, the other n - k times, 0 5 k 5 n; 21 33 (16 - 1)'14 EI 1.968
35 (1 + I ) = ( ) ( ) + ( I ) 1.1105 37 1 + $ + 5ZI-r 24 ' = 5 41 x + x2 + $x3 + $x4
43 x2 - 5x4 + &x6 45 1 + + + 2 47.2727 49 -' 6 - 3 = -' 2 5 1 r = 1, r = 5 - 1
CHAPTER 11 VECTORS AND MATRICES
Section 11.1 Vectors and Dot Products
(page 405)
1(0, 0, 0);(5, 5, 5);3;-3;cose = -1 3 %- j -k; -i -7j +8k; 6; -3; cosB = -I 2
5 (v2, -vi); ( ~ 2 , -vl, 0), (v3,0, -v1) 7 (0,0);(0,0,0)
9 Cosine of 8; projection of w on v
11 F;T;F 13 Zero; sum = 10 o'clock vector; sum = 8 o'clock vector times
15 45' 1 7 Circle xZ + J = 4; (x - 1)2 + # = 4; vertical line x = 2; half-line x 2 0
1 9 ~ = - 3 i + 2 j , w= 2 i - j ; i = 4 v - w 2 1 d = - 6 ; C= i - 2 j + k
23cos8 = -&cos8 = -&;cos8=
2 5 A. ( A+ B) = l + A . B = l + B . A = B - ( A + B ) ; equilateral,600
27 a = A . I, b = A . J 29 (cos t, sin t) and (- sin t, cos t) ; (cos 2t, sin 2t) and (-2 sin 2t, 2 cos 2t)
31C=A+B,D=A-B;C.D=A.A+B.A-A-B-B-B=r2-r2 = O
S S U+ V- W= ( 2 , 5 , 8 ) , U- V+ W = ( 0, - 1, - 2) , - U+V+W= (4, 3, 6)
35 c and JFTF; b/a and J a 2 + b2 + c2
~ ~ M ~ = ~ A + c , M ~ = A + ~ B , M ~ = B + $ c ; M ~ + M ~ + M ~ = ~ ( A + B + c ) = o
39 8 5 3 3; 2 & j 5 x + y 41 Cancel a2c2 and b2d2; then b2c2 + a2d2 2 2abcd because (be - ad)2 2 0
43F; T; T; F 45al l 2fi ; cosB = - +
Section 11.2 Planes and Projections
(page 414)
1( 0, 0, 0) and( 2, - l , O) ; N=( l , 2, 3) 3( 0, 5, 6) and( 0, 6, 7) ; N=( 1, 0, 0)
5 (1,1,1) and (1,2,2); N = (1,1,-1) 7 x + y = 3 9 x + 2y + z = 2
Answers to Odd-Numbered Problems A-19
11 Parallel if N V = 0; perpendicular if V = multiple of N
13 i + j + k (vector be tween ~oi nt s) is not perpendicular to N; V . N is not zero; plane through first three
is x + y + z = 1; x + y - z = 3 succeeds; right side must be zero
1 5 a x + b y + c z = O ; a ( x - x o ) + b ( y - yo) +c( z- zo) =O 17cosB= $,$,*
19 &A has length $ 21 P = $A has length $ 1 ~ 1 23 P = -A has length IAl 25 P = 0
27 Projection on A = (1,2,2) has length g; force down is 4; mass moves in the direction of F
29 IPlmin = & = distance from plane to origin 31 Distances 2 and 2 both reached at ($, $, - $)
6 6
3 3 i + j + k ; t = -$;(!,-5,-;);-&
35 Same N = (2, -2, l); for example Q = (0,0,1); then Q + $N = (2, -$, v) is on second plane; $ 1 ~ 1 =
37 3i + 4j; (3t,4t) is on the line if 3(3t) + 4(4t) = 10 or t = g; P = (g, g), IPI = 2
~ 9 2 x + 2 ( ~ - f x ) ( - f ) = 0 s o x = ~ = ~ ; 3 x + 4 ~ = 1 0 g i v e s y = ~
41 Use equations (8) and (9) with N = (a, b) and Q = (xl , yl ) 43 t = A'B B onto A
45 aVL = ?LI - ?LIII; aVF = $LII + $LrII
4 7 V. LI =2 - l ; V. LI I =- 3- l , V. LI I I = - 3 - 2 ; t h u s ~ . 2 i = 1 , ~ - ( i - &j ) = - 4 , and^= $ i + U e 2 J
Section 11.3 Cross Products and Determinants
(page 423)
10 33i - 2j - 3k 5- 2i +3j - 5k 7 2 7 i +1 2 j - 1 7 k
9 A perpendicular to B; A, B, C mutually perpendicular 11 I A x B I = a, A x B = j - k 1 3 A x B = 0
15 [ A x BIZ = (a: + ag)(b: + bg) - (albl + a2b2)2 = (alb2 - a2b1)2; A x B = (alb2 - a2bl)k
1 7 F ; T; F ; T 19N=( 2, 1, O) or 2i +j 2 1 x - y + z = 2 s o N = i - j + k
23[(1,2,1)-(2,1,1)]x[(1,1,2)-(2,1,1)]=N=i+j+k;x+y+z=4
25 (1,1,1) x (a, b, c) = N = (c - b)i + (a - c) j + (b - a)k; points on a line if a = b = c (many planes)
27 N = i + j, plane x + y = constant 29 N = k, plane z = constant
31 1 1 0 = x - y + z = O
I : : I
33 i - 3j; -i + 3j; -3i - j 35 -1,4, -9
39 +c1
b2 b3
- c2
b l b2
41 area2 = ( i ~ b ) ~ + ( ? u c ) ~ + ( $ 6 ~ ) ~ = (21A 1 x B1)2 when A = ai - bj , B = ai -ck
43 A = $(2 1 - (-1)l) = i; fourth corner can be (3,3)
45 ali + a j and bli + b j ; lad2 - a2b1 I; A x B =
+ (alb2 - azbl)k
47 A x B; from Eq. (6), (A x B) x i = -(asbl - alb3)k + (a1b2 - a2bl)j; (A . i )B - ( B . i)A =
al(bli + b j + b3k) - bl(ali + a j + a&)
4 9 N= ( Q- P ) x ( R- P ) = i + j + k ; a r e a $ & ; X + ~ + Z = ~
Section 11.4 Matrices and Linear Equations
(page 433)
A-20 Answers to Odd-Numbered Problems
15 ad - bc = -2 so A-l =
[ :;-:; ]
17 Are parallel; multiple; the same; infinite
19 Multiples of each other; in the same direction as the columns; infinite
21 dl = .34, d2 = 4.91 23 .96x + .02y = .58, .O4x + .98y = 4.92; D = .94,x = .5, y = 5
25 a = 1gives any x = -y; a = -1 gives any x = y
-:] ; D 27 D= - 2 , ~ - l = -1 - = -8, (2A)-' = +A-'; D=
-2 '
(Aw1)-' = original A;
L .I
D = -2 (not +2), (-A)-' = -A-'; D = 1,I-' = I
39 Line 4 + t, errors -1,2, -1 41 dl -2d2 + ds = 0 43 A-' can't multiply 0 and produce u
Section 11.5 Linear Algebra
0 -1
5 det A = 0, add 3 equations -,0 = 1 7 5 a + l b + O c = d , A V 1 =
9 b x c; a . b x c = 0; determinant is zero 11 6, 2, 0; product of diagonal entries
-2 4 0 2 -1
15 Zero; same plane; Dis zero
17 d = (1,-1.0); u = ( 10, 0) or (7,3,I) 19 AB = 4: 2: , det A S = 12 = (det A) times (det B) ] [
18 12 0
2 3 -3
I 1 A + C = [ 1 4 z ] , de t ( A+C) is not det A + det C
0 -1
2 s P = l
2)(3)-(0)(6)
6 6 = 1 , q = -(4)(3)+(0)(0)= -2 25 ( ~ - l ) - lis always A
33 New second equation 32 = 0 doesn't contain y; exchange with third equation; there is a solution
35 Pivots 1,2,4, D = 8; pivots 1,- l , 2, D= -2 37 al;! = 1,a21 = 0,
aijbjk = row 2, column k in AB
CHAPTER 12 MOTION ALONG A CURVE
Section 12.1 The Position Vector
(page 452)
= 1~ ( 1 )i + 3j; speed m;
3 2 =
= %;tangent t o circle is perpendicular t o " =
Y
5 v = e t i - e - t j = i - j ; y - 1 = - ( x - l ) ; x y = 1
Answers to Odd-Numbered Problems
7 R = (1,2,4) + (4,3,O)t;R = (1,2,4) + (8,6,O)t;R = (5,5,4) + (8,6,O)t
9 R = ( 2+t , 3, 4- t ) ; R= ( 2+ $, 3, 4- $);the same line
Line; y = 2+2t , z = 2+3t ; y= 2+4t , z = 2+6t
Li n e ; t / m= 7 ; ( 6 , 3 , 2 ) ; l i n e s e g me n t 15$; l ; $ I I x = t , y = mt + b
v = i - &j,IvI = ~W, T = v/lvl;v = (cost -tsint)i + (sint +tcost)j; Ivl = d m ;
R = -sint i + cost j + any &;same R plus any wt
v = (1-sin t)i + (1-cos t)j; Ivl= 4 3 -2 sin t -2 cos t, Ivlmin = d r f i ,IVI~.. = d c f i ;
a = -cost i +si nt j , l al = 1; center is on x = t, y = t
Leaves at (9, $);v = (-&,&);a = (9, $) + v(t - P)
R = cos l i + sin i j + l k
fi fi \/z
v = sec2t i +sect t ant j ; Ivl = s e c 2 t m ; a = 2sec2t t ant i + (sec3t+secttan2t) j;
curve is y2 -x2 = 1; hyperbola has asymptote y = x
If T = v then lvl = 1; line R = ti or helix in Problem 27
- (240)
0 5 t 5 3 (3 -2t, 1) 15 t 5 q
(x(t)3
- (1,2t - 1) 3 5 t 5 1 (0,4 -2t) q 5 t 5 2
~ ( t ) = 4 c o s i , ~ ( t ) = 4 s i n i 3 7 F ; F ; T; T; F 3 9 f = t a n e b u t t # t a n t
v and w; v and w and u; v and w, v and w and u; not zero
u = (8,3,2); projection perpendicular to v = (1,2,2) is (6, -1, -2) which has length
x = G(t), y = F(t); y = x2I3;t = 1and t = -1 give the same x so they would give the same y; y = G(F-I(%))
Section 12.2 Plane Motion: Projectiles and Cycloids
(page 457)
1(a) T = 16/gsec, R = 128&lg ft, Y = 32/g ft
(b) ; , (c) 0
3 z= 1.2 or 33.5
5 y = x - i x 2 = ~ a t ~ = 2 ; ~ = z t a n x - ~ 2(v, cosa)2= 0 at x = R 7 x = v o e
9 vo M 11.2, tan a M 4.32 11vo = a= am/sec; larger 1 3 +j/2t~ = 40 meters
15 Multiply R and H by 4; dR = 2vi cos 2ada/g, dH = v; sin a cos a da/g
19 T= ~l-cOse)i+sinei
17 t = set; y = 12 - %r, -2.1 m; + 2,lm
,/-
21 Top of circle 25 ca(1- cos 8), casin 8; 8 = r,$ 27 After 8 = r :x = r a + vot and y = 2a - i gt 2 29 2; 3
31 v ; 5 9 a 3 33 x=cos8+8si n8, y=si n8- 8cos8 35 ( a =4) 6 r
57 y = 2sin 8 -sin 28 = 2 sin 8(1 -cos 8); x2 + y2 = 4(1- cos 8)2; r = 2(1- cos 8)
Section 12.3 Curvature and Normal Vector
(page 463)
1-&-5 0 (line)
7 &$&
3 $
9 (- sin t2, cos t2); (- cos t2, -sin t2)
11(cost,sint);(-sint,-cost) 1 3 ( - ~ s i n t , ~ c o s t , ~ ) ; ~ v ~ = 5 , n = &; ~ l o n g e r ; t anB=$
1
16,N = i 1 9 (0,O); (-3,0) with $ = 4; (-1,2) with != 2 f i
l52\/za,/l-cos8
1 7 n = 9
2 l R a d i u s ~ , c e n t e r ( 1 , f ~ ~ f o r n ~ 1 2 3 U- V' 2 5 l ( s i n t i - c o s t j + k ) 2 7 ;
29 N in the plane, B = k, r = 0 33 a = 0 T + 5w2N 55 a = -&T + &N 31 e5
\/z
3 7 a =* ~ +- Ja 39 IF2+ 2(F1)' -FF"I/(F2+ F " ) ~ / ~
\l&N
A-22 Answers t o Odd-Numbered Problems
Section 12.4 Polar Coordinates and Planetary Motion
(page 468)
9r $$+22g=O=Ld( r 2$) 1 1 ~ = . 0 0 0 4 r a d i a n s / s e c ; h = r 2 ~ = 4 0 , 0 0 0 r dt
47r2 150 1017
kg 1 3 mR x a;torque 15T ~ / ~ ( G M / ~ ~ ) ' / ~ 1 7 4n2a3/T2G 19 ( 3 6 5 ~ ) 2 ~ 2 4 ) 1 ( ( 3 ~ 0 ~ 2 ( 6 6 6 7 ~ 1 0 0 1 1
23Us ePr obl eml 5 2 5 a + c = &, a - c = - ,&, solve for C, D
27 Kepler measures area from focus (sun) 29 Line; x = 1
10
33 r = 20 -2t, 0 = z,v= -2ur + (20 -2 t ) g u s ; a = (2t -20) ( %) ~u,-4(%)us; So lvldt
CHAPTER 13 PARTIAL DERIVATIVES
Section 13.1 Surfaces and Level Curves
(page 475)
3 x derivatives ca,-1, -2, -4e-4 (flattest) 5 Straight lines 7 Logarithm curves
9 Parabolas 11No: f = (x + y)" or (ax + by)" or any function of ax + by 1 3 f (x, y) = 1 - x2 - y2
1 5 Saddle 1 7 Ellipses 4x2 + y2 = c2 19Ellipses 5x2 + y2 = c2 + 4cx + x2
2 1 Straight lines not reaching (1,2) 23 Center ( 1, l ) ; f = x2 + y2 - 1 25 Four, three, planes, spheres
27 Less than 1, equal t o 1, greater than 1 29 Parallel lines, hyperbolas, parabolas
3 1 $ : 482 - 3x2 = 0, x = 16 hours 33 Plane; planes; 4 left and 3 right (3 pairs)
Section 13.2 Partial Derivatives
(page 479)
7 -22 . -2
1 3+ 2xy2; -1 + 2yz2 3 3x2y2 -2x;2x3y - eY
5 a;(z%)2 (z2+Y2); (z2+$)2
z&2 i 7% l1Z+ z2:y2 132, 3, 4 156( x+i y) , 6z( x+i y) , - 6( x+zy)
2z2- 2 . 2 2-z2
17( f =! ) f zZ= , s Y , f z y = y ; f y y = yr s
19-a2 cos ax cos by, ab sin ax sin by, -b2 cos ax cos by
2 1 Omit line x = y; all positive numbers; fz = -2(x - Y ) - ~ , fy = 2(x -y)-3
23 Omit s = t; all numbers; 2,A,H,&$
2 5 x > O, t > Oa n d x = O, t > 1 andx=-1,-2,...,t=e,e2,...;fz = ( l nt ) ~' " ~- ' , ft = ( ~ n x ) t ~ ~ ~ - '
27 y, x; f = G(x) + H( y) 29 = Y v ( x y ) = yv(zy)
3 1 fzzz = 6 9 , fyyy = ex3, fzzy = f zyz = fuzz = 18x9, fyyz = fyzy = fxyy = 18x2y
3 3 g(y) =
35 g(y) = ~ e ' y / ~ + ~ e - ' y / ~
37 ft = -2 f , fzz = fyy = -e-2t sin x sin y; e-13' sin 2x sin 3y
39 sin(x + t ) moves left 4 1 sin(x - ct), cos(x + ct), ez-"
43 (B- A) hy (C*) = ( B - A) [fy (b, C*) - fy (a, C*) ] = ( B - A) ( b -a) fyz (c*, C*); continuous fxy and fyx
45 y converges t o b; inside and stay inside; d, = J(x, -a) 2 + (y, - b) 2 -+ zero; d, < E for n > N
47 E, less than 6
49 f (a, b);
1
51 f (0,O) = 1; f (0,O) = 1; not defined for x < 0
or ( x- l ) ( y- 2)
Answers to Odd-Numbered Problems
Section 13.3 Tangent Planes and Linear Approximations
(page 488)
9 Tangent plane 2 4 2 -a)-2xo(x -xo) -2yo(y -yo) = 0; (0,0,O) satisfies this equation because
zi -xg -yi = 0 on the surface; cos 9 = ,m= dL,
N-k
= (surface is the 45' cone)
zg+Y: +r,l
11dz = 3dx -2dy for both; dz = 0 for both; Az = 0 for 3% -2y, Az = .00029 for x ~ / ~ ' ; tangent plane
13 z = z o + Fzt; planeB(x-4) + 12( y- 2) +8( ~- 3) =O; normalline x = 4 +6 t , y = 2+12t , z = 3+8t
15 Tangent plane 4(x -2) + 2(y -1) + 4(z -2) = 0; normal line x = 2 + 4t, y = 1+ 2t, z = 2 + 4t; (0,0,0)
at t = - 1
2
1 7 dw = yodx + xody; product rule; Aw -dw = (x -xo)(y-yo)
19 d I = 4000dR + .08dP; d P = $100;I = (.78)(4100)= $319.80
21 Increase = - = &,decrease = - = &;dA = Adz - Sdy; 3 23 A@ M - Y ~ ~ + ~ ~ Y
Y ,/z'+y'
25 Q increases; Q8 = - y , Q t = +,pa = -.2Q8 = El3' Pt = -.2Qt = $; Q=50- Z$l(s- .4) - $( t - 10)
P8 = -Qu =
2 7 s =l , t =l Og i v e s Q=4 0 :
s Qa +Q=Q8+40 ;Q8=-2O, Qt=-;, p8 =20, Pt = $
Pt = -Qt = sQt + 1= Qt + 1
2 9 s - 2 = x- 2+2( y- 1) and z - 3 = 4 ( ~ - 2 ) - 2 ( ~ - 1 ) ; ~ = 1, y= ; , Z = O
2 , ~ 1 1 31 AX = -$, Ay = A - = 5,yl = -$; line X + ~ = O
33 3 a 2 ~ x -Ay = -a -a3 gives Ay = -Ax = f&&;lemon starts at (I/&, -I/&)
-Ax + 3a2Ay = a + a3
35 If x3 = y then y3 = x9. Then x9 = x only if x = 0 or 1or -1 (or complex number)
37 AX = -xo + 1,Ay = -yo + 2, ( XI , yl) = (1,2) = solution
x1
39 G = H = 2xn: 1
4 l J = [: : Y ] , AX= - l +e- xn, Ay= -1- (..-l + e - ~ n ) e - ~ n
43 ( ~ 1 , = ~ 1 ) (0, :), (-:, :)I (;to)
Section 13.4 Directional Derivatives and Gradients
(page 495)
1grad f = 2xi -2yj, Du f = f i x -y, Du f (P) = fi
3 grad f = ex cos y i -ex sin y j, Du f = -ex sin y, Duf ( P) = -1
t i f = ~ ~ ~ + ( ~ - 3 ) ~ , g r a d f = j i + y j , & f = r , & f ( P ) = L fi 7gr adf = *i +, &j
9 grad f = 6xi + 4yj = 6i + 8j = steepest direction at P; level direction -8i + 6j is perpendicular; 10, 0
l l T; F( gradf i savect or) ; F; T
1 3 ~ = ( * \/W a2+b' ' b - ) , ~ u f = d =
(&,s), f 15 grad f = (ex-Y, -ex-Y) = (e-', -e-') at P ; u = = h e - '
17gradf=Oatmaximum;levelcurveisonepoint I gN=( - I l l , - l ) , U=( - 1, 1, 2) , L=( l , l , O)
21 Direction -U = (-2,0, -4)
23 -U = ( d m ,
- xP- Yl
l - z l - ~ l )
25 f = (x + 2y) and (x + 2y)2; i + 2j;straight lines x + 2y = constant (perpendicular to i + 2j)
27 grad f = f(A,3); grad g = f(2& &), f = f(3- %) + C,g = f( 2 h x + &) + C
. .
29 9 = constant along ray in direction u = 7;grad 9 = wi = *;u-grad t9 = 0
x +Y
31 U = (fx, fy, fi+ f i ) = (-1, -2,s); -U = (-1, -2,5); tangent at the point (2,1,6)
33 grad f toward 21 +j at P,j at Q, -2i +j at R; (2, ?) and (21,2); largest upper left, smallest lower right;
z,,, > 9; z goes from 2 to 8 and back to 6
A-24 Answers to Odd-Numbered Problems
35 f = iJ(x - 112 + (y - 112; ( 3 ,
= (3
~ J Z ) 2J i '
37 Figure C now shows level curves; lgrad f 1 is varying; f could be xy
39 x2 + xy; ex-'; no function has 3= y and % = -x because then f,, # f,,
4 1 v = (1,2t); T = v / &S F ; % = v . (2t, 2t2) = 2t + 4t3; $ = (2t + 4t3)/J-
43 v = (2,3); T = -&; 3 = v . (2xo + 4t, -2yo -6t) = 4xo -Byo - lot; $ =
45 v = (et,2e2',-e-');T = G;grad f = (; , $, $) = ( ~- ' , e- ~' , e' ) , % = 1+2 -
0
1, = -2-
Ivl
47 v = (-2 sin 2t, 2 cos 2t), T = (- sin 2t, cos 2t); grad f = (y, x), 2 = -2 sin2 2t + 2cos2 2t, % = i s ;
zero slope because f = 1on this path
4 9 2 - 1 = 2 ( x - 4 ) + 3 ( y - 5 ) ; f = l +2 ( x - 4 ) +3 ( y - 5 ) 51 grad f . T = O ; T
Section 13.5 The Chain Rule
(page 503)
1f, = cfx = c COS(X + ey) 3 f, = 7fx = 7ex+7'
5 3g2*& ax dt + 3 2 % 2
7 Moves left at speed 2
9 2= 1 (wave moves at speed 1)
11sf(x + iy) = f t t ( x+ i y), -@-f(x+iy) = i 2f t t ( x+i y)
so f i x + f,, = 0; (x + ~ y ) ~ = (x2 - #) + i(2xy)
1 3 % = 2 ~ ( 1 ) + 2 ~ ( 2 t ) = 2 t + 4 t ~ 1 5 $ = y $ + x $ = - 1 1 7 * = l d . + 1 * = 1 dt x+ydt s+ydt
19 V = STr2h dV
27rrh dr
7rr2 dh = 3GT
dt=--3 d t + ~ d t
90
90a+90a 903+90
= Ji m ~ h ; dD
2 1 % = d z ( 6 0 ) + d7(45)
7 T = d- 60
(60) + J-
45 (45) cl 74 mph
23 $ = U I % + U ~ % + U ~ % 25 g = l wi t h x a n d y f i x e d ; % = 6
27 ft = fxt + f , W ft t = fxtt + fx + 2fytt + 2f, = (fxxt+ fYX(2t ))t + fx + 2(fx,t + f,,(2t))t + 2f,
29
= gg + gg = ~ C O S B + U s i n B , ~is fixed
x3
= h..
a?
3 , a(:)-- r - .,-2& ax = L - 2 - 3,2 2 +~ 1 ) 3 ax r ~ 3 - $
1
2 )(2), = I; first answer is also J&= eosr
35 f r = f ~cosB+f , si nB, fro = -fxsin~+f,cosB+fx,(-rsinBcos~)+fx,(-rsin2~+rcos28)+f,,(~~~~~~i~~)
-
37 yes (with y constant): 2 = yex', 2 = 2 - &
39 ft = fxxt + f,yt; ftt = fxxx; + 2fX,xtyt + fyyy?
9 ( 2 ) y = a; (E).= gg = 4 1 ( % ) , = % + % 2 = a - 3 b . $6
4 3 1 4 5 f = y 2 s o f x = ~ , f , = 2 y = 2 r s i n ~ ; f = r 2 s o f r = 2 r = 2 J ~ , ~ f e = ~
47 gu = fxxu + f,yu = f x + f,;gu = fxxu + f,yu = fx - f,; guu = f,& + fx,y, + f,,x, + f,,yu
-
- f i x + 2 f ~ y+ fyy; ~ U U= ~ X X X ~ + fXyyu - fyXxu-fyyyu= fix - 2fxy + fyy Add gUu+ guu
49 False
Section 13.6 Maxima, Minima, and Saddle Points
(page 512)
1(0,O) is a minimum 3 (3,O) is a saddle point 5 No stationary points 7 (0,0) is a maximum
9 (0,0,2) is a minimum 11All points on the line x = y are minima 13 (0,0) is a saddle point
1 5 (0,O) is a saddle point; (2,O) is a minimum; (0, -2) is a maximum; (2, -2) is a saddle point
1 7 Maximum of area (12 - 3y)y is 12
2(x + y) + 2(x + 2y -5) + 2(x + 3y -4) = 0 x = 2;
19
gives
y = - 1
min because ExxEyy= (6)(28) > E: , = 1z2
2(x + y) + 4(x + 2y - 5) + 6(x + 3y - 4) = 0
2 1 Minimum at (0, i ) ; ( 0, l ) ; ( 0, l )
Answers to Odd-Numbered Problems
23 %=0whent ant =&; f m, =2at ( i , $) , f mi n=- 2at (-+,-'$)
1
25 (ax + by),, = W; (x2 + y2)min =
2 7 0 < c < f
29 The vectors head-to-tail form a 60-6@6O triangle. The outer angle is 120' 31 2 + &; 1 + fi; 1 +
35 Steiner point where the arcs meet 39 Best point for p = oo is equidistant from corners
41 grad f = (& ?+ y+ y,\/Z ?+
+ 7); angles are 90-135-135
43 Third derivatives all 6; f = 5x3 + *x2 + $29 + 5 y3
1 2 3 3
45 (&)n(s)m ln(1- ~ y ) ] ~ , ~ = n!(n - I)! for rn = n > 0, other derivatives zero; f = -xy -
2
- 3 - . .
47 All derivatives are e2 at (1,l); f N e2[l + (x - 1) + (y - 1) + i ( x - 1)2 + (x - l)(y - 1) + ?(y - I ) ~ ]
4 9 x = l , y = - 1 : f, = 2, f, = -2, f,, = 2, fx, = 0, f, = 2; series must recover x2 + y2
51 Line x - 2y = constant; x + y = constant
5 3 ~ f . , + z y f x , + f f , , ] ~ , ~ ; f x , > Oa n d f x z f u v > f ~ a t ( ~ , ~ ) ; f x = f v = O 5 5 Ax =- l , Ay =- 1
57 f = x2(12 - 42) has fmax = 16 at (2,4); line has slope -4, y = 5 has slope = -4
59 If the fence were not perpendicular, a point to the left or right would be closer
Section 13.7 Constraints and Lagrange Multipliers
(page 519)
2k kkl
3 A = -4, Xmin = 2, Ymin = 2
1 f = x2+ (k- 2 ~ ) ~ ;
= 22- 4(k- 22) = 0; (-g-, g) , -g
5 X = : (x, y) = ( ~k2' / ~, 0) or (0,f21/6), fmin = 2lI3; X = ' 3 (x, Y) = (*I, f 1 ) s f m a ~ = 2
7 X = i, (x, y) = (2, -3); tangent line is 22 - 3y = 13
9 (1 - c ) ~ + (-a- c)'+ (2 - a - b - c)'+ (2- b - c ) ~ is minimized at a = - $, b = t , c = Q
1
11 (1, -1) and (-1,l); X = -5
13 f is not a minimum when C crosses to lower level curve; stationary point when C is tangent to level curve
15 Substituting = = = 0 and L = fmin leaves = X
1 7 x2 is never negative; (0,O); 1 = A(-3y2) but y = 0; g = 0 has a cusp at (0,0)
19 2x=X1+X2,4y=X1,2s=X1 - X2 , x +y +z =0 , x - z = 1 gives X1 =0,X2 = 1, fmin= ? at (;,o,-?)
21(1, 0, 0);(0, 1, 0);(Xl , X2, 0);x=y=O 2 3 %a n d d ; X= O
25 (1,0,0), (0,1,0), (0,0,1); at these points f = 4 and -2 (min) and 5(max)
27 By increasing k, more points are available so fmax goes up. Then X =
2 0
29 (0,O); X = 0; fmin stays at 0
31 5 = X1 + X2, 6 = X1 + As, X2 2 0, As 5 0; subtraction 5 - 6 = X2 - X3 or -1 2 0 (impossible);
x = 2004, y = -2000 gives 52 + 6y = - 1980
33 22 = 4X1 + X2, 2y = 4X1 + As, X2 2 0, X3 2 0,4x + 4y = 40; max area 100 at (10,0)(0,10); min 25 at (5,5)
CHAPTER 14 MULTIPLE INTEGRALS
Section 14.1 Double Integrals
(page 526)
A-26 Answers to Odd-Numbered Problems
& L .-L
37 + q L ! = , C L f (n,
~ ) i s e x a c t f o r f = 1 , x , y , x y 39Vol ume8. 5 41Vol umesl n2, 2l n( l +&)
n
&dy $: = xydx dy J: $: 4 3
45 Wi t h long rectangles
1 1
Ins = l n2;J0 loxydy dx = $' o " - l dx = In2
yi AA = A A = 1 but $$ y d A =
Section 14.2 Change to Better Coordinates
(page 534)
Wdu dv
1 $:;i4 $:
1 dl-"'
5 R is symmetric across the y axis; So So u du dv = 5 divided by area gives (a,U) = ( 4/ 3r , 4 / 3 4
'+-dy dx; xy region R* becomes R in the x*y* plane; dx dy = dx'dy* when region moves
7 2So
I *
Sl+x
g J =
COSO* -r*sinO*
= r*;$:7i4so1r*dr*dO*
11 I y = $$Rx2dx dy = $:Y/~$: r2cos2O r dr do = 5 - i;Is = 5 + i;I. =
13 (0, 0), (1, 2), (1, 3), ( 0, l ) ; area of parallelogram is 1
15 x = u, y = u + 3v + uv; then ( u, v ) = ( 1, 0) , ( 1, I ) , ( 0 , l ) give corners ( x , y) = ( 1,O) , ( 1, 5) , ( 0, 3)
3
17 Corners ( 0, 0) , (2, 1), (3, 3), (1, 2); sides y = i x , y = 22 - 3, y = i x + 5 , y = 22
I 9 Corners ( 1, I ) , (e2, e) , (e3, e3) , (e, e2) ; sides x = y2, = x2/ e3, x = y2/e3, y = x2
1
r dr dB = 2
3 S = quarter-circle with u > O and v 2 0;So So
2 1 Corners (0,0
/
, (1, 0), (1, 2), ( 0, l ) ; sides y = 0, x = 1, y = 1 + x2, x = 0
1 1
3e3u+3"dU dy $: $ :
e 2 ~ + ~ ze2u+v
1 3 J = = 3, area soZdu dv = 3; J = eu+2v 2eu+2v -
3e3u+3v, - =
1 0
1 25 corners ( x , y) = ( 0, 0) , ( 1, 0) , ( 1, / ( 1 ) ) , ( 0, f ( 0 ) ) ; ( $ 9 1) gives x = $ 9 Y = f ( $ ) i J = v u f(,)
27 ~2 = 2 $:I4 $:Isine e-r' r dr do = - 1
" 8 2n 1
29f = // r2dr dB/ // r dr dB = So ,a
3
cos3 B dd/xa2 = 97r
3 1 /, sor2r dr dB = 5
33 Along the right side; along the bottom; at the bottom right corner
1 1
35 $$ xy dx dy = So So (ucos a - v si na) ( usi n a + v cos a) du dv = f (cos2 a -sin2 a )
37 $:" $ ' r2r2r dr do = Y(S6-46)
39 x = cos a -sin a , y = sin a + cos a goes t o u = 1, v = 1
Section 14.3 Triple Integrals
(page 540)
21 Corner of cube at
1 1
( &,z, sides 5;
3&
z); area
4
23 Horizontal slices are circles of area r r 2 = a( 4 -z ) ; volume = lor ( 4 -z ) dz = 8r ; centroid
4
has z = 0 , g = 0 , z = sozl r(4--z)dz/ 8r= 5
AnswerstoOdd-NumberedProblems
f dxdz,&
$ givesaeros;
= dydz, f $ : = I: --I,"f
25I =
J : ~ ( ~ ~ + z2)dxdydz= y;J/Ix2dv= t ;3$JJ(x $! , $: , 27 - T ) 2 d ~ =
29 J: dxdydz= 6 $1Tkape~oidalruleissecond-order; correctfor 1,x,y,z,xy,xz,yz,xyz
Section 14.4 Cylindrical and Spherical Coordinates
(page 547)
1(r,8,2) = (D,0,0);(P,498) = (Dl:, 0) 3(r,#,a)= (0,anyangle,Dl;(P,4,8)= (D,0, anyangle)
5(x,y,z)=(2,-2,2fi);(r,8,~)=(2@,-f,2@) 7(x, y, z)=(O, O, -l);(r, d, z)=(O, anyangle, -1)
94 = tan-'(:) 1145' coneinunitsphere: y(1-A) 1 3conewithout top: 2
15 hemisphere: 1 7 $ 19Hemisphereof radiusr ::r4 21r ( R2-z2);4 r t - d n
23$a3t ana(see8.1.39)
27 = p-DcOsC - nearlide
-
Q hypotenuse = COs
31Wedges arenot exactlysimilar;theerror ishigherorder + proof iscorrect
33Proportionalto1+ i(\/02 + (D-h)2-@TP)
a cos8 -rsin# 0
35J= b = abc;straight edgesatright angles 37 sin8 rcos8 0 = r
C 0 0 1
3g e.n
3 '3
41p3; pa;force= 0 insidehollowsphere
CHAPTER 15 VECTOR CALCULUS
Section 15.1 Vector Fields
(page 554)
l f ( z , y ) = x + 2 y 3f ( x, y) =si n( x+y) 5f ( x, y) =l n( x2+#) =21nr
7 F= xyi+ Gj, f(x,Y) = 9
9 = O sof cannot depend onx;streamlines arevertical (y= constant)
1 1 F = 3 i + j I S F = i + 2 y j 1 5 F = 2 x i - 2 y j 17F=ex- vi - ex- Yj
Y ' l g z = - l ; y = - x + C 2 1 $ =- E- x 2 +y 2 =C 233 x2+ y2 = C 25parallel = *-= 7;
2 7 ~ = Fi+yj
2 9 F = -:fG(xi+yj)- ((x-1)2+Ya)3/2 ~ M G ((x- 1) i+ Yj)
t l ~ = $ ~ i - q ~ j J J ~ z = = = - ~ . ~ K = 2 9 d ~ * = 2
35
= gE= g:; 5 = g f ; f(r)= C givescircles
37T;F(noequipotentials); T;F(notmultipleof xi+ yj+ zk)
39FandF+ i and 2Fhave thesamestreamlines(differentvelocities) andequipotentials(differentpotentials).
But if f isgiven,Fmust be grad f.
Section 15.2 Line Integrals
(page 562)
l $ ; d Wd t = &; j , ' 2 d t = 2 3c t 2\ / Zdt +~: 1. ( 2- t ) dt = $+;
5JtU(-3 sint)dt= 0(gradientfield);J: " -9 sin2t dt= -97r = - area
7No, xyjisnot a gradient field;takelinex= t,y= t from (0,O) to(1'1) and $ t2dt# ?
g No , f o r a ~ Lc l e ( 2 7 r r ) ~ # 0 ~ + 0 ~l l f = x + ~ # ; f ( O, l ) - f ( 1 , 0 ) = - i
13f = +xay2;f(0, l )-f( 1, O) = 0 15 f = r = dm; f(0, l )- f( l , ~ ) = 0
17Gradient forn = 2; after calculation - = ~3
ax rn
19x=acos t , z= asint, ds=adt , M=$, ( a+asi nt ) adt = 2ra2
A-28 Answers to Odd-Numbered Problems
2 1 x = a cos t ,y = a sin t , ds = a dt , M = a3 cos2 t dt = nu3, (3,$) = ( 0, 0) by symmet ry
2i+2tj
4+4t +;F = 3 x i + 4 j = 6 t i + 4 j , d s = 2 d m d t , ~ . ~ d s =
23T=\r, =d-
( 6t i +4j ) - ( - $=$) 2~mdt =
2Ot dt ; F .d R = (6t i + 4). ( 2 dti + 2t dt j ) = 20t dt ; work = J1
2
20t dt = 30
25 ~f
= t hen M = cay + 6 , N = ax + c , constants a, b, c
27 F = 4xj (work = 4 f rom (1,O) u p t o ( 1, l ) )
29 f = [ X -2ylIt:ij = -1 3 1 f = [ x y 2 ] ~ ~ : ~ ~ = 1
-' - ( t i $: 3 3 Not conservative;
1
t j ) . ( dt i + dt j ) = $ 0 dt = 0; (t 2i -t j ) ( dt i + 2t dt j ) = so-t2dt =
3
35 = ax, = 22 + 6 , so a = 2,b is arbitrary 37 = 2yebx = w-f = -y2e-"
BY ay ax 9
a M = ~ = ~ . f = r = J ~ = 1 x i + y j 1
3 9 ~ ax , f-
Section 15.3 Green's Theorem
(page 571)
1 $:"(a cos t ) a cos t dt = r a2; Nz - My = 1, $$ dx dy = area r a2
0
3 J, ' xdx+J1 x ~ x = O , N ~ - M ~ = O , J $ O ~ X ~ ~ = O
27r
= 4 ' 5 $ x 2 y d x = $: 7r( a~ost ) 2( asi nt ) ( - asi ntdt ) = -$so ( ~ i n 2 t ) ~ d t-d.
27r a
N, - M y = - x 2, $$( - x 2) dx dy = SO So - r2cos2@ r dr d0 = -$-
7 J x dy - y dx = $' ( c os 2 t + sin2 t ) dt = r;$ / ( I + 1) dx dy = 2 (area) = s;$ x2dy - x y dx = $ + 1;
Jl
( 22+ x) dx dy = $
9 4 $i n( 3 cos4 t sin2 t + 3 sin4 t cos2 t ) dt = i stff 3 cos2 t sin2 t dt = $2 (see Answer 5 )
11 $ F d R = 0 around any loop; F = :i + Fj and $ F d R = $:"[- sin t cos t + sin t cos t ] dt = 0;
= z gives $$o dx dy
ay
2n
1 3 x = cos 2t , y = sin 2t , t f rom 0 t o 2 r ; So -2 sin2 2t dt = - 2s = -2 (area);
$:7r -2dt = -47r = -2 times Example 7
1 5 J ~ d y - ~ d x = ~ ~ " 2 s i n t c o s t d t = 0 ; ~ $ ( ~ , + ~ ~ ) d x d ~ = $ $ 0 d x d ~ = 0
2lr
1 7 M = ~ , N = ~ , $ ~ d y - ~ d x = $ , ( c o s 2 t + s i n 2 t ) d t = 2 r ; $ $ ( ~ x + ~ y ) d x d y = $ $ ( ~ - $ . + ~ - $ ) d x d y =
$$ k d x dy = $$ dr dB = 2 s
19 $ ~ d -yNd x = / - x2y dx = - x2( 1 1: - x) dx = A;$' o o $ I - Y x2dx dy = &
2 1 J$( M, + Ny ) d x dy = $$ di v F dx d y = 0 between t he circles
23 Work: $ a dx + b dy = $$(%- E ) d x dy; Flux: same integral
25 g = tan-' (:) = 0 is undefined at (0, 0) 27 Test My = N, : x2dx + y2dy is exact = d( 5x3+ 5y3)
2 9 d i v F =2 y - 2 y =O; g =x y 2 3 1 d i v F = 2 x + 2 y ; n o g 3 3 d i v F =O; g =e x s i n y
35 div F = 0; g = $
37 N, - My = -22, -6xy, 0, 2x - 2y, 0 , -2ex+Y; i n 3 1 and 3 3 f = 5( x3 + y3) and f= ex cos y
39 F = ( 3x2 -3y2)i -6 x y j ; d i v F = 0 4 1 f = x4 -6x2y2+ y4; g = 4x3y -4xy3
4 3 F = ez cos y i - e x s i ny j ; g = e x s i ny
f 45 N = f ( x ) ,$ Md x + Nd y = I,' +
f ( 0) dy= f (1) - f (0); $$( N, - My ) d x dy =
$$ g d x dy = I,' g d x (Fundamental Theorem of Calculus)
Answers to Odd-Numbered Problems
Sect ion 15.4 Surface Integrals
(page 581)
2rr 2
1 N = -2xi - 2yj + k; dS = dl + 4x2 + 4 9 dx dy; lo /, d w r dr dB = :(17~/' - 1)
3 ~ = - i + j + k ; d ~ = f i d x d y ; area fir
.
-21-
+k ; d S= d2d
2~ 1 / f i rdrd8
5 N= d & 0 0 J--+fi)
7 N = -7j + k; dS = 5 f i dx dy; area 5 4 ~
9 N= ( y 2 - x 2 ) i - 2 x y j + k ; d S = ~ l + ( y 2 - + 4x2y2dx dy = dl + (y2 + ~ 2 ) ~ d x dy;
JtCJ,' d m r dr d0 =
N = 2i + 2j + k; dS = 3dx dy; 3(area of triangle with 2% + 2y 5 1) =
A = -sinu(cosv i +s i nvj ) +cos uk; B = - ( 3+cosu) si nvi + (3+cosu)cosv j;
N = -(3 + cosu)(cosucosv i +cosusinv j + sinu k); dS = (3 + cosu)du dv
$ J ( - M~ - N% + P)dx dy = JJ(-2x2 - 2 3 + z)dx dy = -r2(r dr d0) = -87r
F . N= - z +y+z =Oonpl a ne
N = - i - j + k , F = ( v + u ) i - u j , J ~ F . N d S = I I - v d u d v = ~
2rr 2rr
JJ dS = so Jo (3 + cos u)du dv = 127r2
31 Yes 33 No
A = i + f'cos0 j + f' sin0 k ; B = -f sin8 j + f cos8 k ; N = ff' i - f cos8 j - f sin0 k; dS = INldz dB =
f ( x ) d m dx dB
l d i v F = l , J J J d ~ = Y 3 d i v F = 2 ~ + 2 y + 2 z , ~ / $ d i v ~ d V = 0 5 d i v F = 3 , ~ ~ 3 d ~ = ~ = ~
2~ ~ / 2
7 F N = pa, JJp=a p2dS = 47ra4
9 div F = 22, lo I.
J: 2pcos 4(p2 sin 4 dp d# dB) = i r u 4
11 J: J : J:(2x + 1)dz dy dz = a' + a3; -2a2 + 2u2 + 0 + a' + 0 + a3
I ~ ~ ~ v F = $ , J I J $ ~ v = o ; F . ~ = x , J J x ~ s = o 1 5 d i v F = l ; J I I i d V = ~ ; ~ $ J 1 d ~ = ~
R div R
1 7 div (7) = 7 + R grad$ = 3 - $R gradp
19 Two spheres, n radial out, n radial in, n = k on top, n = -k on bottom, n = on side;
@T7
n = -i, -j, -k, i + 2j + 3k on 4 faces; n = k on top, n = l ( ' i + fj -
fi
k) on cone
21 V = cylinder, / div F dV = /I(% + +)dx dy (a integral = 1); IJ F - ndS =
Mdy - Ndx, z integral = 1 on side, F - n = 0 top and bottom; Green's flux theorem.
23 div F = -:yM = -47rG; at the center; F = 2R inside, F = 2(:)3R outside
25di vu, = : , q= y , / J E - n d ~ = $ I l d ~ = 4 a 2 7 F ( di vF=O) ; F; T( F. n< 1); F
29 Plane circle; top half of sphere; div F = 0
Section 15.6 Stokes' Theorem and the Curl of F
(page 595)
l c u r l F = i + j + k Sc u r l F=O 5 c u r l F = O 7 f = + ( x + y + ~ ) ~
9 curl xmi = 0; xnj has zero curl if n = 0 11 curl F = 2yi; n = j on circle so $$ F - ndS = 0
1 3 c u r l ~ = 2 i + 2 j , n = i , ~ ~ c u r l ~ ~ n d ~ = ~ ~ 2 d ~ = 2 7 r
A-30 Answers to Odd-Numbered Problems
15 Both integrals equal F dR; Divergence Theorem, V = region between S and T, always div curl F = 0
17 Always div curl F = 0 19 f = xz + y 21 f = e2-' 23 F = yk
25 curl F = ( a s k - a2bs)i + (alb3 - a3bl)j + (a2bl - alba)k 27 curl F = 2wk; curl F .
= 2 w / 4
29 F = x(a3z + a2y)i + y(alx + a3z)j + z(al x + a2y)k
2% r / 2
31 curl F = -2k, JJ -2k . RdS = Jo Jo
-2 cos 4(sin 4 d4 dB) = -2r; J y dx - x dy =
J:"(- sin2 t - cos2 t)dt = - 2r
2% %/2
33 curl F = 2a, 2 / / (al x + a2y + a3z)dS = 0 + 0 + 2a3 Jo Jo
cos 4 sin 4 d4 dB =
35 curl F = -i,n = *,JIB' . n d S = - ~ r r ~
h A
3 7 p = d - I ' = stream function; zero divergence
39 div F = div ( V + W) = div V so y = div V so V = $j (has zero curl). Then W = F -V = xyi - $j
41 curl (curl F) = curl (-2yk) = -21; grad (div F) = grad 22 = 2i; Fx2 + F,, + Fzz = 4i
aB
43 curl E = -= = a s i nt so E = ?(a x R) si nt
CHAPTER 16 MATHEMATICS AFTER CALCULUS
Section 16.1 Linear Algebra
(page 602)
1 All vectors c 3 Only x = 0 5 Plane of vectors with xl + x2 + x3 = 0
7 + = [ ~ ] , A ( X ~ + ~ O ) = [ : I + [:]
9 A(xp + xo) = b + 0 = b; another solution
1 0 1
13 C C ~ = [ 0 1 2 ] ; CTC = [ : : ] ; (2 by 3) (2 by 3) is impossible
1 2 5
15 Any two are independent 17 C and F have independent columns
23 det ( F - XI) = det [ 2 ; X 2!X] = ( 2 - X ) 2 - 1 = 3 - 4 X + X 2 = ~ i f X = l o r X = 3 ;
l - X 1
1 - X 1 = (1 - - 3(1- A) + 2 = X3 - 3X2 = 0 if X = 3 or X = 0 (repeated)
1 l - X ' I
Answers to Odd-Numbered Problems
3 1 H
33 Fif b 2 0; T;T; F(eAtis not a vector); T
= [ -2
2
-:]
Section 16.2 Differential Equations
(page 610)
13Best -Best = 8est gives B = 4 :y = 4est 3 y = 3 - 2 t + t 2 5 Ae t + 4 e s t = 7 a t t = Oi f A= 3
7 Add y = Ae-' because y' + y = 0; choose A = -1 so -e-' + 3 -2t + t2 = 2 at t = 0
e" - 1 tekt
g y = *;,= t; by19~bpi t al lim- = lim- = t
k+O k k+O 1
11Substitute y = Aet + Btet + C cost + D sin t in equation: B = 1,C = i,D = -i,any A
13Particular solution y = Atet + Bet; y' = Atet + (A + B)et = c(Atet + Bet) + tet
-1
g i v e s A=c A+l , A+B=c B, A= &, B==
15X2eXt+ 6XeXt+ 5eXt= 0 gives X2 + 6X + 5 = 0, (A + 5)(X + 1)= 0, X = -1 or -5
(both negative so decay); y = Ae-' + Be-5t
1 7 (A2 + 2X + 3)eXt= 0, X = -1 f\/=Z has imaginary part and negative real part;
+ ~~( - 1 - f i ~i ) t ; y = ~ ~ ( - l + f i i P y = Ce-' cos f i t + De-' sin f i t
19d = 0 no damping; d = 1underdamping; d = 2 critical damping; d = 3 overdamping
21 X = -:z t is repeated when b2 = 4c and X = -i;(tX2 + 2X)ext + b(tX + 1)e" + ctext = 0
when X2 + bX + c = 0 and 2X + b = 0
23 - most -bsint -asi nt + bcost + acost + bsint = cost if a = 0, b = 1,y = sint
25 y = Acos3t + Bcos5t;y" + 9y = -25Bcos5t + 9Bcos5t = cos5t gives B = G;
yo = 0 gives A =
1
27 y = A(cos wt -cos wet), y" = -Aw2 cos wt + Aw: cos wot, y" + wiy = cos wt gives A(-w2 + wg) = 1;
breaks down when w2 = w i
2 9 y = BeSt ; 25B+3B=1, B= $ 3 1 y = ~ + ~ t = $ + i t
ss y"-25y = e5t;y" + y = sin t; y" = 1+ t; right side solves homogeneous equation so particular
solution needs extra factor t
35 et ,e-" ee", e-it 37 y = e-2t + 2te-"; y(27r) = (1+ 4 ~ ) e - ~ " r~ 0
39 y = (4e-" -r2e-4tlr)/(4 -r2) -+ 1as r -+ 0 43 h 5 2; h 5 2.8
Section 16.3 Discrete Mathematics
(page 615)
1Two then two then last one; go around hexagon 3 Six (each deletes one edge)
5 Connected: there is a path between any two nodes; connecting each new node requires an edge
1 3 Edge lengths 1,2,4
15No;1,3,4onleftconnectonlyto2,3onright;1,3onrightconnectonlyto2onleft 1 7 4
19Yes 2l F( mayl oop) ; T 2516
MIT OpenCourseWare
http://ocw.mit.edu
Resource: Calculus Online Textbook
Gilbert Strang
The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

You might also like