Gantry Crane
Gantry Crane
Gantry Crane
Checked By 0
6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span a) INPUT DATA :(Refer Appendix-E, for EOT drawing) Crane Capacity Weight of Crab Weight of Crane Bridge Self weight of the Rail Width of Walk way Dead Load of the Walkway Live Load of the Walkway Height of the Crane Rail Span of the Crane Girder, Lg Centre to centre distance of , Lc Rail (i.e. Span of Crane Bridge) Mini. approach of crane hook to the gantry No. of Wheels Wheel Spacing1 Wheel Spacing2 C.G of loading from left load Impact Factor : Vertical Horizontal (Transverse to rail) Vertical Horizontal Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf = = = = = = = = = = = = 1050 kN 320 kN 780 kN 2 kN/m 0.6 m 1.5 kN/m 5 kN/m 65 mm 11 m 32 m
= = = = = = = = = = = =
1.40 4.70
1.40
Deflection Factor
Table:5
Load Factor :
Table:6
2.60 m
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
= =
780 kN
0.60 m 2.60 m
Kicker RL
32.00m
RR
RL =
b) LOAD CALCULATIONS: b.1) Vertical Loads b.1.a) Conc. Loads Max. static Wheel Load Load due to Impact Total load Factored Load
say
Wm
= = = =
= 0.30 x 421
W mf = 1.60 x 547.30
1.40 4.70
1.40
b.1.b) Uniform Dirstributed Load Self weight of rail Walkway Dead Load Walkway Live Load Self weight of girder Factored load b.2) Horizontal Loads W df = 1.40 x 8.61
= = = =
Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1 W H = 0.10(421*4) Max. Lateral load = 168.4 kN 4 wheels are resisting the total lateral load Factored lateral load W df = 1.60 x 168.40 / 4 67.36 kN/wheel
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
c) MAXIMUM BENDING MOMENT AND SHEAR FORCE: c.1) For vertical loads c.1.a) Bending Moment :The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span.
CG. OF LOADS
875.68kN
875.68kN
C RA 11.00m Reactions :Ra = 4x875.68x(11 - 11*0.5 - 0.25*4.7)/11 + 12.06 x 11 /2 = 4x875.68+12.06x11- 1,443.525 = = 1443.525 kN
Mid Span of Crane Girder
RB
Rb
2191.834 kN
= (1443.53 x 4.33) -875.68 x 1.4 - (12.06 x 4.33/2) = 4904.517 kN.m c.1.b) Shear Force:875.68kN 875.68kN 12.06kN/m
RA
11.00m
CG. OF GANTRY
Reactions: RA RB = 4 x 875.7 x [11.0-3.8] /11+ (12.1 x 11.0/2) = (4 x 875.7) + (12.1 x 11.0) - 2374.93 = 2374.930 kN 1260.428 kN 2374.930 kN
Max. Reaction
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
67.36kN
c.2.a) Local Bending Moment at C, Crane Girder is laterally bending between Node points of surge Girder Muy = 67.360 x 2.6 /4 43.784 kN.m c.2.b) Axial Force: Because of Lateral force, the Crane Girder is subjected to axial force. Max lateral bending Moment 4904.5 x 67.36 / 875.68 F=Axial force in the surge girder 377.27 / 0.6 c.2.c) Shear force :67.36kN 67.36kN
RA Reactions :RA RB
3.75m
11.00m
RB
= = =
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
Depth Width t T = =
1250 mm 450 mm 20 mm 40 mm
40 20
1250
450
Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx Second moment of inertia, Iyy rmin Section modulus, Zxx Section modulus, Zyy Plastic modulus, Sxx Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py)
= = = = = = = = = = = = = = = = = =
1250 450 20 40 1170 1.59E+10 6.08E+08 101.19 2.54E+07 2.70E+06 2.96E+07 4.28E+06 1 31.25 59400 18000 215 1.02 =
mm mm mm mm mm mm4 mm4 mm mm3 mm3 mm3 mm3 conservatively as per Cl.4.3.7.5 mm2 mm2 mm
Outstand element of compression flange, b/T Web slenderness, d/t d.1) Shear Capacity Web slenderness, d/t Shear area parallel to the web, Avx=t*d Critical Shear strength, qcr for t/d =58.50 Shear Capacity, Vcr=qcr*Avx
5.38 = 58.50
Plastic Plastic
= = = =
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
d.2.a) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.00 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE Slenderness, l = LE/rmin Equivalent slenderness, lLT Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n lLT pb Buckling resistance, Mb = = = = = = = = = = = = = nunl 1.0 1.0 1.000 0.822 0.50 1.00 25.69 265.00 N/mm2 pb*Sxx 7843.23 kN.m >4904.52 kN.m > m*Mux1 2.60 m 25.69 Cl.4.3.7.5 conservatively conservatively Table:9
Table:14
Table:12
Satisfactory Cl.4.3.7.2
e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) e.1) Compressive strength pc :Slenderness, l = LE/rmin Reduced design strength, py pc = = = 25.69 245.00 N/mm2 240.00 N/mm2
Cl.4.7.5 Table:27c
e.2) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) F/Ag*pc + mMux1/Mb + mMuy/py*Zyy = < 0.832 1.000 Satisfactory
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
65 mm 175.14 kN
Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2 = 175136 x (65 + 625.0) 120.84 kN.m
CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb = 0.681 Satisfactory
g) CHECK FOR DEFLECTION: Allowable deflection for vertical loads d lim, v = Span / 600 =11,000.0 / 600.0 = Allowable deflection for horizontal loads d lim, h = Span / 500 = 11,000.0 /500 = Vertical Deflection:3.15 1.75 547.3kN
= =
18.33 mm
22.00 mm
CG OF LOADS
547.3kN
8.61kN/m
RA
RB
dv
5 384
WL EI
PL
48EI
3a1 L
- 4
3 3 3 a1 PL 3a2 a2 + 4 L L 48EI L
#VALUE! {( 2 x 547300 x 11000)/( 48 x 205000 x 1.59E+10)} x {[3 x 1.75/11 - 4 x (1.75/11)] + [3 x 3.15/11 - 4 x (3.15/11)]} 11.960 mm 11.960 < 18.3 HENCE SAFE
h) Crane Girder Welding Calculation Top Flange & Web is welded by full Penetration Butt weld.
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
Bottom Flange Weld. Horizontal Shear = FAy/ Ixx A- Area of the Bottom Flange y - C.G of flange Plate from C.G of section Ixx of the section Maximum vertical shear = = = =
2 18000 mm
605 mm
4 1.59E+10 mm
2374.930 kN
Horizontal Shear 2,374.9 x 1000 x 18000x605 / 15851055000 1631.626 N/mm Size of the weld on each side 1,631.6/ ( 2 x 215x 0.707) Provide weld as i) DESIGN OF BEARING STIFFENER Bearing check: Minimum area of stiffener in contact with the flange = Fx = pys = Minimum Area of stiffener required Conside Thk. Of Stiffener , ts Width of the stiffener, bs Area of the stiffener Check for outstands Outstand from the face of the web = = bs/2-web thickness 215.00 mm = = = = 0.8*Fx/pys Cl.4.5.4.2 External reaction Design strength of stiffener 7169.60 mm2 25.00 mm 450.00 mm 11250.00 mm2 Satisfactory = 5.421 mm 12 mm
Outstand of web stiffeners, as per Cl.4.5.1.2 of BS5950: Limits: 19tse 13tse = = 483.88 331.08 mm mm Satisfactory
2 211.10 N/mm
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
< 265 Buckling resistance of the stiffner (as per Cl.4.5.1.5 of BS5950,part-1) Design strength of the stiffner in buckling = = py-20 245.0
N/mm2
Satisfactory
Cl.4.5.1.5 N/mm2
Buckling resistance check as a column: Area of combined section 450 x25 + 20 x 20 x 20 Ixx Rmin = I / A l = l / Rmin =1250x 1000 / 99.4 Compressive strength, pc Buckling resistance of the stiffener = = = = =
2 19250.00 mm 4 1.90E+08 mm 99.38 mm
Satistactory
Weld between Stiffener & web Vetical Height avilable for Welding = 1170.00 mm 6.74 mm 12.00 mm
j) Shear buckling of Web under Wheel load Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 210 mm Bearing Capacity = lw*py*t = 1113 kN > 875.68 kN
Satisfactory
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
b1
= =
n1
= = = = =
Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 1250 mm Depth of the web 1170 mm = 2.5*depth of the web/thickness of the web = 146.25 = = = 70 N/mm2 (b1+n1)*t*pc 1932.00 kN > 875.68 kN Cl.4.5.2.1
Web slenderness, l
Table 27c
Satisfactory
k) Connection for Longitudinal Force Longitudinal Force Dia of bolt provided No. of bolts provided Stress in Bolts l) Design of Surge Girder Design of bracing members Maximum Horizontal force Max Force in diagonal Angles provided Area of the Section Rmin of the section Length of diagonal Inclination of diagonal w.r.t Horizontal Stress in member = = = = = = = = 177.585 kN 335.1 kN 100X100X8 15.60 3.07 1.50 32.00 RSC cm2 cm m = = = = 175.14 kN 24.00 mm 4.00
2 96.78 N/mm < 160 N/mm2
2 214.82 N/mm
gvrs/ST
SUMITOMO CORPORATION
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO :
Checked By 0
Compressive stress, pc
Design of bottom chord member (as surge may come on either direction, bottom chord members are designed for compression) Member size provided Area of the Section Rmin of the section Unsupported length Maximum axial force, F Stress in member Allowable Stress in member l=2.6 *100 / 3.29 = 79.03 Compressive stress, pc = = = = = = 300X150X32 40.80 3.29 2.60 MS profile cm2 cm m
j) Design of Crane Girder Bracket Depth of the bracket, Db Width of the flange plate, Wb Thickness of the flange plate, Tb Thickness of the web plate, tb Eccetricity of Crane girder from grid Maximum Vertical force Design for Moment Moment due to eccentricity, Me Axial Force in Top flange, Ab=Me/Db Stress in top flange=Ab/Wb*Tb Design for shear Web slenderness Shear area parallel to the web Critical Shear strength Shear Capacity, = = = = = = 1200 600.00 32.00 25.00 1.00 2374.93 mm mm mm mm m kN
= = = < = = = =
2374.93 kN.m 1979.11 kN 10.3078569 N/mm2 265.0 N/mm2 45.44 < 63*1.02 28400 mm2 159 N/mm2 4515.6 kN >2,374.93 kN
Satisfactory
gvrs/ST
5/21/2013 9:48 PM
Name ISMC 75 ISMC 100 ISMC 125 ISMC 150 ISMC 175 ISMC 200 ISMC 225 ISMC 250 ISMC 300 ISMC 350 ISMC 400
Depth Breadth wt/m mm mm kN/m 75 40 0.0681 100 50 0.0918 125 65 0.1271 150 75 0.1639 175 75 0.1914 200 75 0.2214 225 80 0.2591 250 80 0.3036 300 90 0.3583 350 100 0.4212 400 100 0.4940
Tf mm 7.30 7.50 8.10 9.00 10.20 11.40 12.40 14.10 13.00 13.50 15.30
Tw mm 4.40 4.70 5.00 5.40 5.70 6.10 6.40 7.10 7.60 8.10 8.60
Cyy mm 13.10 15.30 19.40 22.20 22.00 21.70 23.00 23.00 23.60 24.40 24.20
G Ixx 4 mm mm 21 760000 28 1867000 35 4164000 40 7794000 40 12233000 40 18193000 45 26946000 45 38168000 50 63626000 60 100080000 60 150828000
Iyy mm4 126000 259000 599000 1023000 1210000 1404000 1872000 2191000 3108000 4306000 5048000
Rxx mm 29.60 40.00 50.70 61.10 70.80 80.30 90.30 99.40 118.10 136.60 154.80
Ryy mm 12.10 14.90 19.20 22.10 22.30 22.30 23.80 23.80 26.10 28.30 28.30
Zxx Zyy mm3 mm3 20300 4700 37300 7500 66600 13100 103900 19400 139800 22800 181900 26300 239500 32800 305300 38400 424200 46800 571900 57000 754100 66600
Area mm2 867 1170 1619 2088 2438 2821 3301 3867 4564 5366 6293
146905687.xls.ms_office
Page 12 of 29
ISMC
5/21/2013 9:48 PM
Section ISMB100 ISMB125 ISMB150 ISMB175 ISMB200 ISMB225 ISMB250 ISMB300 ISMB350 ISMB400 ISMB450 ISMB500 ISMB600
H mm 100 125 150 175 200 225 250 300 350 400 450 500 600
B wt/m mm kN/m 75 0.115 75 0.130 80 0.149 90 0.193 100 0.254 110 0.312 125 0.373 140 0.442 140 0.524 140 0.616 150 0.724 180 0.869 210 1.226
A mm2 1460 1660 1900 2462 3233 3972 4755 5626 6671 7846 9227 11074 15621
Tf mm 7.2 7.6 7.6 8.6 10.8 11.8 12.5 12.4 14.2 16.0 17.4 17.2 20.8
Tw mm 4.0 4.4 4.8 5.5 5.7 6.5 6.9 7.5 8.1 8.9 9.4 10.2 12.0
R1 R2 mm mm 9.0 4.5 9.0 4.5 9.0 4.5 10.0 5.0 11.0 5.5 12.0 6.0 13.0 6.5 14.0 7.0 14.0 7.0 14.0 7.0 15.0 7.5 17.0 8.5 20.0 10.0
H1 mm 65.0 89.2 113.9 134.5 152.7 173.3 194.1 241.6 288.0 334.4 379.2 424.1 509.7
H2 mm 17.50 17.90 18.05 20.25 23.65 25.85 27.95 29.25 31.00 32.80 35.40 37.95 45.15
G mm 35 35 40 50 55 60 65 80 80 80 90 100 140
Ixx mm4 2575000 4490000 7264000 12720000 22354000 34418000 51314000 86034000 136303000 204584000 303908000 452183000 918130000
Iyy mm4 408000 437000 526000 850000 1500000 2183000 3345000 4539000 5377000 6221000 8340000 13698000 26510000
Rxx mm 42.0 52.0 61.8 71.9 83.2 93.1 103.9 123.7 142.9 161.5 181.5 202.1 242.4
Ryy mm 16.7 16.2 16.6 18.6 21.5 23.4 26.5 28.4 28.4 28.2 30.1 35.2 41.2
Zxx mm3 51500 71840 96853 145371 223540 305938 410512 573560 778874 1022920 1350702 1808732 3060433
Zyy mm3 10880 11653 13150 18889 30000 39691 53520 64843 76814 88871 111200 152200 252476
146905687.xls.ms_office
Page 13 of 29
ISMB
1) INPUT DATA (Refer Appendix-A, for EOT drawing) Crane Capacity Weight of Crab Weight of Crane Bridge Self weight of the Rail Height of the Crane Rail Span of the Crane Girder, Lg Mini. approach of crane hook to the gantry No. of Wheels Wheel Spacing1 C.G of loading from left load Impact Factor : Vertical Horizontal (Transverse to rail) On Stopper Deflection Factor Vertical Horizontal Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf = = = = = = = = = = = = = = = = = = = = = 100 kN 0 kN 0 kN 1 kN/m 70 mm 8.7 m 1.000 m 2 0.60 m 0.30 m 30 % 10 % 16 kN 1000 1000 1.6 1.6 1.4
2 275 N/mm
Table:5
Load Factor :
Table:6
8.70 m 8.70 m
2) LOAD CALCULATIONS Wheel load calculation Wheel Load by Vendor 2.a) Vertical Loads i) Conc. Loads Average static Wheel Load Load due to Impact Total load Factored Load = 50.00 kN/wheel
say
Wm
= = = =
= 0.30 x 50
W mf = 1.60 x 65.00
0.60
####
0.60
ii) Uniform Dirstributed Load Self weight of rail Self weight of girder Factored load W df = 1.40 x 2.49
= = =
2.b) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1
from Fig-1
W H = 0.10(50*2)
10.0 kN
BS:2573,part-1
2 wheels are resisting the total lateral load Factored lateral load 2.c) Stopper Loads Factored lateral load Wsp = 1.60 x 16.00 = 25.6 kN/stopper W df = 1.60 x 10.00 / 2 = 8.00 kN/wheel
3) MAXIMUM BENDING MOMENT AND SHEAR FORCE 3.a) For vertical loads i) Bending Moment The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. ( refer diagram at deflection check) Reactions :Ra Rb = =
104x(1 + 0.60/2/8.7) +3.49x8.70/2 2x104+3.49x8.7- 122.759
= =
122.76 kN 115.59 kN
Maximum Bending Moment Mux1 ii) Shear Force:Reactions: RA RB = 2 x 104.0 x [8.7-0.3] /8.7+ (3.5 x 8.7/2) = (2 x 104.0) + (3.5 x 8.7) - 216.00 = = = 216.00 kN 22.35 kN 216.00 kN = (122.76 x 4.35) -104 x 0.45 - (3.49 x 4.35/2) = 355.20 kN.m
Max. Reaction
3.b) For Horizontal loads i) Local Bending Moment at C, Crane Girder is laterally bending between points of restrained at support Muy = 8.000 x 8.7 /4 = 17.40 kN.m ii) Shear force Reactions :RA RB = 2x 8.0[8.7 - 0.3]8.70 = 2 x 8.000 - 15.448 = = = 15.448 kN 0.552 kN 15.448 kN
4) DESIGN OF GANTRY BEAM Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx Second moment of inertia, Iyy rmin Section modulus, Zxx
mm mm mm mm mm mm4
UB610X305X149kg/m
Section modulus, Zyy Plastic modulus, Sxx Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py) Outstand element of compression flange, b/T Web slenderness, d/t 4.a) Shear Capacity Web slenderness, d/t Shear area parallel to the web, Avx=t*d Critical Shear strength, qcr for d/t =45.14 Shear Capacity, Vcr=qcr*Avx
= 6.10E+05 mm3 = 4.57E+06 mm3 = 9.37E+05 mm3 = 0.886 = 32.5 = 19000 mm2 = 6005 mm2 = 146.45 mm = 1.00 = = 7.43 Plastic 45.14 Plastic Cl.3.5.2 and Table:7
= = = =
45.14 < 63*1.00 6392.68 mm2 165 N/mm2 1054.79 kN > 216 kN
4.b) Moment capacity, Mb i) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.20 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE Slenderness, l = LE/rmin Equivalent slenderness, lLT Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n lLT pb Buckling resistance, Mb = = = = = = = = = = = = = 10.44 m 149.36 nunl 1.0 1.0 0.886 4.596 0.50 0.82 108.51 109.00 N/mm2 pb*Sxx 498.13 kN.m >355.20 kN.m > m*Mux1 Cl.4.3.7.5 conservatively conservatively Table:9
Table:14
Table:11
Satisfactory Cl.4.3.7.2
5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) 5.a) Compressive strength pc Slenderness, l = LE/rmin pc = = 149.36 81 N/mm2 Table 27c
5.b) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) mMux1/Mb + mMuy/py*Zyy = < 0.817 1.000 Satisfactory
10.40 kN
Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2 = 10400 x (70 + 305.0) = 3.90 kN.m
CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb = 0.742 Satisfactory
7) CHECK FOR DEFLECTION Allowable deflection for vertical loads d lim, v = Span / 1000 =8,700.0 / 1,000.0 = Allowable deflection for horizontal loads d lim, h = Span / 1000 = 8,700.0 /1,000 = Vertical Deflection:4.5 3.90 65kN
=
=
8.70 mm
8.70 mm
4.2
CG OF LOADS
65kN
2.49kN/m
RA
c 8.70
CG. OF GANTRY
RB
dv
5 384
WL EI
PL
48EI
3a1 L
- 4
3 3 3 a1 PL 3a2 a2 - 4 + L L 48EI L
dv
#VALUE! {( 65000 x 8700)/( 48 x 205000 x 1.25E+09)} x {[3 x 3.90/9 - 4 x (3.90/9)] + [3 x 4.20/9 - 4 x (4.20/9)]} 7.625 mm 7.625 < 8.7 HENCE SAFE
8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD 8.a) Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 179.4 mm Bearing Capacity = lw*py*t = 587.0865 kN > 104.00 kN
Satisfactory
8.b) Web buckling under wheel load (as per Cl.4.5.2.1, BS 5950,part-1) b1 = Stiff bearing length = = 2(Height of the crane rail) 140.00 mm
n1
= = = =
Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 609.9 mm Depth of the web = = = 570.5 mm Cl.4.5.2.1
Web slenderness, l
Compressive resistance, pc
Table 27c
Buckling resistance, Pw = (b1+n1)*t*pc= = 9) CONNECTION FOR LONGITUDINAL LOAD Longitudinal Force Dia of bolt provided No. of bolts provided Stress in Bolts = = = =
Satisfactory
10) DESIGN OF STOPPER BRACKET Depth of the bracket, Dsp Width of the bracket, Wsp Thickness of the bracket plate, Tsp Thickness of stiffener plate, Ts No of stiffener plate, Ns Distance between Stopper and flange of Crane girder Maximum Stopper force Maximum ultimate Stopper force, S 10.a) Design for Moment Moment due to eccentricity, Mc Combined plate C.G., x Combined plate Ixx Distance of compression edge Combined plate Zxx Moment capacity, Mc = PypZxx = = = = = = = = 250 102 6 6 1 0.20 16.0 25.6 mm mm mm mm nos m kN kN
= = = = = = >
158.8 mm
3 88189 mm
Cl.4.13.2.4 Satisfactory
10.b) Weld between Bracket and flange of Crane Girder Design strength of fillet weld, pw Weld thickness Effective length of flange weld Max.bending tension in bracket, T = M/x Capacity of bracket weld under tension = = = = = >
2 215 N/mm
Tb.36, BS5950
Satisfactory
O.K.