Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the radiative decay of the 229Th nuclear clock isomer

Abstract

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1,2,3. This nuclear clock will be a unique tool for precise tests of fundamental physics4,5,6,7,8,9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer’s electron conversion decay11. The isomer’s excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12,13,14,15,16. In spite of recent progress, the isomer’s radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14,15,16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-resolution wavelength spectra of different crystals.
Fig. 2: Time behaviour of the signal.
Fig. 3: Typical high-resolution wavelength spectrum.
Fig. 4: Wavelength of the radiative decay and energy of the isomer.
Fig. 5: Emission channelling patterns of electrons.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Euro. Phys. Lett. 61, 181 (2003).

    Article  ADS  CAS  Google Scholar 

  2. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article  CAS  Google Scholar 

  4. Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Peik, E. et al. Nuclear clocks for testing fundamental physics. Quant. Sci. Technol. 6, 034002 (2021).

    Article  ADS  Google Scholar 

  6. Uzan, J.-P. Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  7. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Physics 10, 933–936 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    Article  ADS  Google Scholar 

  9. Thirolf, P. G., Seiferle, B. & von der Wense, L. Improving our knowledge on the 229mThorium isomer: toward a test bench for time variations of fundamental constants. Ann. Phys. 531, 1800381 (2019).

    Article  Google Scholar 

  10. Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the alpha-decay of 233U. Nucl. Phys. A 259, 29–60 (1976).

    Article  ADS  Google Scholar 

  11. von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article  ADS  PubMed  Google Scholar 

  12. Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Seiferle, B., von der Wense, L. & Thirolf, P. G. Lifetime measurement of the 229mTh nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017).

    Article  ADS  PubMed  Google Scholar 

  14. Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Matinyan, S. Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199–249 (1998).

    Article  ADS  CAS  Google Scholar 

  18. von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

    Article  ADS  Google Scholar 

  19. Tkalya, E. V., Schneider, C., Jeet, J. & Hudson, E. R. Radiative lifetime and energy of the low-energy isomeric level in Th-229. Phys. Rev. C 92, 054324 (2015).

    Article  ADS  Google Scholar 

  20. Minkov, N. & Pálffy, A. Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th. Phys. Rev. Lett. 118, 212501 (2017).

    Article  ADS  PubMed  Google Scholar 

  21. Ruchowska, E. et al. Nuclear structure of 229Th. Phys. Rev. C 73, 044326 (2006).

    Article  ADS  Google Scholar 

  22. Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of for optical excitation of the nuclear 229Th isomer. Phys. Rev. Lett. 106, 223001 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett.104, 200802 (2010).

    Article  ADS  PubMed  Google Scholar 

  24. Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article  ADS  Google Scholar 

  25. Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Pimon, M. et al. DFT calculation of 229thorium-doped magnesium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 32, 255503 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Stellmer, S. et al. Toward an energy measurement of the internal conversion electron in the deexcitation of the 229Th isomer. Phys. Rev. C 98, 014317 (2018).

    Article  ADS  CAS  Google Scholar 

  28. Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Utter, S. B. et al. Reexamination of the optical gamma ray decay in 229Th. Phys. Rev. Lett. 82, 505–508 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Verlinde, M. et al. Alternative approach to populate and study the 229Th nuclear clock isomer. Phys. Rev. C 100, 024315 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Nudat 3 Database (National Nuclear Data Center, 2023); https://www.nndc.bnl.gov/nudat3/.

  33. Stellmer, S., Schreitl, M., Kazakov, G. A., Sterba, J. H. & Schumm, T. Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals. Phys. Rev. C 94, 014302 (2016).

    Article  ADS  Google Scholar 

  34. Hofsäss, H. & Lindner, G. Emission channeling and blocking. Phys. Rep. 201, 121–183 (1991).

    Article  ADS  Google Scholar 

  35. Wahl, U. et al. Position-sensitive si pad detectors for electron emission channeling experiments. Nucl. Instrum. Meth. Phys. Res. A 524, 245–256 (2004).

    Article  ADS  CAS  Google Scholar 

  36. Silva, M. R., Wahl, U., Correia, J. G., Amorim, L. M. & Pereira, L. M. C. A versatile apparatus for on-line emission channeling experiments. Rev. Sci. Instrum. 84, 073506 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Borge, M. J. G. & Jonson, B. ISOLDE past, present and future. J. Phys. G: Nucl. Part. Phys. 44, 044011 (2017).

    Article  ADS  Google Scholar 

  38. Rubloff, G. W. Far-ultraviolet reflectance spectra and the electronic structure of ionic crystals. Phys. Rev. B 5, 662–684 (1972).

    Article  ADS  Google Scholar 

  39. Thomas, J., Stephan, G., Lemonnier, J. C., Nisar, M. & Robin, S. Optical anisotropy of MgF2, in its UV absorption region. Phys. Stat. Sol. (B) 56, 163–170 (1973).

    Article  ADS  CAS  Google Scholar 

  40. Ziegler, J. F., Ziegler, M. & Biersack, J. Srim - the stopping and range of ions in matter (2010). Nucl. Instrum. Meth. Phys. Res. B 268, 1818–1823 (2010). 19th International Conference on Ion Beam Analysis.

    Article  ADS  CAS  Google Scholar 

  41. Beeks, K. The Nuclear Excitation of Thorium-229 in the CaF2 Environment. PhD thesis, TU Wien (2022).

  42. Evaluated Nuclear Structure Data File (National Nuclear Data Center, 2023); https://www.nndc.bnl.gov/ensdf/.

  43. David-Bosne, E. et al. A generalized fitting tool for analysis of two-dimensional channeling patterns. Nucl. Instrum. Meth. Phys. Res. B 462, 102–113 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Pereira, L., Vantomme, A. & Wahl, U. in Characterisation and Control of Defects in Semiconductors: Characterizing Defects with Ion Beam Analysis and Channeling Techniques (ed. Tuomisto, F.) Ch. 11 (The Institution of Engineering and Technology, 2019).

  45. Kikunaga, H. et al. Half-life estimation of the first excited state of Th-229 by using alpha-particle spectrometry. Phys. Rev. C 80, 034315 (2009).

    Article  ADS  Google Scholar 

  46. Tkalya, E. V., Zherikhin, A. N. & Zhudov, V. I. Decay of the low-energy nuclear isomer 229Thm(3/2+, 3.5 ± 1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research. Phys. Rev. C 61, 064308 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the ISOLDE collaboration and technical group at CERN for their extensive support and assistance. This work has received funding from Research Foundation Flanders (FWO, Belgium), from grant no. GOA/2015/010 (BOF KU Leuven) and from FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme (grant no. 40007501), the Portuguese Foundation for Science and Technology (FCT, project no. CERN/FIS-TEC/0003/2019), the Austrian Science Fund (FWF) project no. I5971 (REThorIC), the European Union’s Horizon 2020 research and innovation programme under the ENSAR2 grant agreement no. 654002, under the Marie Skłodowska-Curie grant agreement no. 101026762 and the European Research Council (ERC) under the Thorium Nuclear Clock agreement no. 856415 and under the LRC agreement no. 819957.

Author information

Authors and Affiliations

Authors

Contributions

P.V.D., M.H., L.M.C.P., Y.K., S.R., M.V., S.K., J.M. and A.V. conceived and planned the experiments. S.K. developed the VUV setup with help from H.D.W. and P.V.D.B. S.K. and P.C. prepared the VUV-spectroscopy experiments. J.M., U.W. and L.M.C.P. prepared the emission channelling experiments. C.M. grew the CaF2 thin films. S.K., J.M., M.A.-K., S.B., K.B., P.C., K.C., A.C., T.E.C., J.M.C., R.F., S.G., R.H., N.H., M.L., R.L., G.M., S.R., S.S., P.G.T., P.V.D., S.M.T., U.K., R.V. and U.W. performed the measurements. S.K., S.B., P.C. and S.S. analysed the VUV-spectroscopy data. J.M. analysed the emission channelling data. S.K., J.M., L.M.C.P., S.S. and P.V.D. prepared the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript. This article results from the PhD thesis work of S.K. and J.M.

Corresponding author

Correspondence to Sandro Kraemer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Iain Moore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 High-purity germanium detector spectra.

Single γ spectra recorded with the HPGe detector for a typical implantation at A = 229 (a) and A = 230 (b). The main peaks in the spectrum are marked with the β-decaying isotope and the energy. In this study, new γ lines in the decay of 229Ra were identified, these tentative assignments are indicated with an asterisk. The inset shows the high-energy part of the spectrum with smaller peaks.

Source data

Extended Data Fig. 2 Characteristics of the CaF2 thin-film crystal surface.

An atomic force microscopy (AFM) image of the surface of the CaF2 thin film (a) and a reflection high-energy electron diffraction (RHEED) pattern along [11-2] azimuthal direction (b) are shown.

Extended Data Fig. 3 Vacuum-ultraviolet spectroscopy setup.

The implantation beam (1), target wheel with large-bandgap crystals (2), entrance slit (3), parabolic collimation mirror (4), diffraction grating (5), parabolic camera mirror (6), detector slit (7) photomultiplier detector (8) and plasma VUV-photon source used for calibration (9) are shown. The setup includes additionally γ-radiation detectors placed close to the implantation position of the crystal.

Extended Data Table 1 Characteristics of the isobaric β-decay chains
Extended Data Table 2 List of large-bandgap crystals

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraemer, S., Moens, J., Athanasakis-Kaklamanakis, M. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023). https://doi.org/10.1038/s41586-023-05894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05894-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing