Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An artificial metabzyme for tumour-cell-specific metabolic therapy

Abstract

Metabolic dysregulation constitutes a pivotal feature of cancer progression. Enzymes with multiple metal active sites play a major role in this process. Here we report the first metabolic-enzyme-like FeMoO4 nanocatalyst, dubbed ‘artificial metabzyme’. It showcases dual active centres, namely, Fe2+ and tetrahedral Mo4+, that mirror the characteristic architecture of the archetypal metabolic enzyme xanthine oxidoreductase. Employing spatially dynamic metabolomics in conjunction with the assessments of tumour-associated metabolites, we demonstrate that FeMoO4 metabzyme catalyses the metabolic conversion of tumour-abundant xanthine into uric acid. Subsequent metabolic adjustments orchestrate crosstalk with immune cells, suggesting a potential therapeutic pathway for cancer. Our study introduces an innovative paradigm in cancer therapy, where tumour cells are metabolically reprogrammed to autonomously modulate and directly interface with immune cells through the intervention of an artificial metabzyme, for tumour-cell-specific metabolic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of metabolic-enzyme-like FeMoO4 metabzyme for tumour-cell-specific metabolic therapy.
Fig. 2: Designing a multimetal metabzyme with tetrahedral catalytic frameworks.
Fig. 3: Physicochemical characterizations of FeMoO4 metabzyme.
Fig. 4: DFT studies on the XOR-like catalysis mechanism of FeMoO4 metabzyme.
Fig. 5: FeMoO4-metabzyme-mediated metabolic modulation.
Fig. 6: FeMoO4 metabzyme for tumour-cell-specific metabolic therapy.

Similar content being viewed by others

Data availability

The metallic structure models of MoO3, FeMoO4 and Fe3O4 are available at the Materials Project Database (https://materialsproject.org; mp-18856, mp-505526 and mp-19306). The structure model of XOR metabolic enzyme is available at the RCSB Protein Databank (https://rcsb.org; PDB 1FIQ). AFADESI-MSI imaging data have been deposited in the Metaspace database, enabling the visualization of MS imaging results. All the MS imaging data can be directly downloaded from https://metaspace2020.eu/project/metabzyme2024. Source data are provided with this paper.

Code availability

DFT calculations were conducted with Quantum Espresso, which is an open-source package and available at https://www.quantum-espresso.org/.

References

  1. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zaghlool, S. B. et al. Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat. Commun. 13, 7121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. 18, 669–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Goga, A. & Stoffel, M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat. Rev. Drug Discov. 21, 417–439 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tandon, S., Sharma, A., Singh, S., Sharma, S. & Sarma, S. J. Therapeutic enzymes: discoveries, production and applications. J. Drug Deliv. Sci. Technol. 63, 102455 (2021).

    Article  CAS  Google Scholar 

  8. Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  PubMed  Google Scholar 

  9. Huang, C. et al. Hydrogen-bonded organic framework-based bioorthogonal catalysis prevents drug metabolic inactivation. Nat. Catal. 6, 729–739 (2023).

  10. Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, W. et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 14, 160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, R., Fan, K. & Yan, X. Nanozymes: created by learning from nature. Sci. China Life Sci. 63, 1183–1200 (2020).

    Article  PubMed  Google Scholar 

  13. Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article  CAS  Google Scholar 

  14. Yang, W. et al. Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021).

    Article  CAS  Google Scholar 

  15. Lee, B.-H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J. et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 13, 4244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Metz, S. & Thiel, W. Theoretical studies on the reactivity of molybdenum enzymes. Coord. Chem. Rev. 255, 1085–1103 (2011).

    Article  CAS  Google Scholar 

  18. Sun, Q. et al. Loss of xanthine oxidoreductase potentiates propagation of hepatocellular carcinoma stem cells. Hepatology 71, 2033–2049 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Monji, F., Al-Mahmood Siddiquee, A. & Hashemian, F. Can pentoxifylline and similar xanthine derivatives find a niche in COVID-19 therapeutic strategies? A ray of hope in the midst of the pandemic. Eur. J. Pharmacol. 887, 173561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci. Rep. 5, 16427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Man-man, C. & Ling-hua, M. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol. Sin. 43, 1623–1632 (2022).

    Article  Google Scholar 

  22. Veiras, L. C. et al. Tubular IL-1β induces salt sensitivity in diabetes by activating renal macrophages. Circ. Res. 131, 59–73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haryono, A., Nugrahaningsih, D. A. A., Sari, D. C. R., Romi, M. M. & Arfian, N. Reduction of serum uric acid associated with attenuation of renal injury, inflammation and macrophages M1/M2 ratio in hyperuricemic mice model. Kobe J. Med. Sci. 64, e107–e114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Deets, K. A. & Vance, R. E. Inflammasomes and adaptive immune responses. Nat. Immunol. 22, 412–422 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 142, 1636–1644 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Coquet, R. & Willock, D. J. The (010) surface of α-MoO3, a DFT + U study. Phys. Chem. Chem. Phys. 7, 3819–3828 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Qiao, W. et al. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 3, 2315–2322 (2020).

    Article  CAS  Google Scholar 

  31. Dong, C. et al. Singlet oxygen triggered by robust bimetallic MoFe/TiO2 nanospheres of highly efficacy in solar-light-driven peroxymonosulfate activation for organic pollutants removal. Appl. Catal. B 286, 119930 (2021).

    Article  CAS  Google Scholar 

  32. Du, Y. et al. Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J. Organomet. Chem. 864, 58–67 (2018).

    Article  CAS  Google Scholar 

  33. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fan, D. et al. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 8, 293 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, Q. et al. Dynamically switchable magnetic resonance imaging contrast agents. Exploration 1, 20210009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Long, E. R. The purines and purine metabolism of some tumors in domestic animals. J. Exp. Med. 18, 512–526 (1913).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, H. et al. Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis. Free Radic. Bio. Med. 139, 70–79 (2019).

    Article  CAS  Google Scholar 

  38. Finger, E. C. et al. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proc. Natl Acad. Sci. USA 112, 4441–4446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

  40. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi, H., Hsu, J.-M., Yang, W.-H. & Hung, M.-C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Kao, K.-C., Vilbois, S., Tsai, C.-H. & Ho, P.-C. Metabolic communication in the tumour–immune microenvironment. Nat. Cell Biol. 24, 1574–1583 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin. Cancer Biol. 86, 542–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Oaks, Z. et al. Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis. Nat. Metabol. 5, 41–60 (2023).

    Article  CAS  Google Scholar 

  49. Luzzatto, L., Ally, M. & Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 136, 1225–1240 (2020).

    Article  PubMed  Google Scholar 

  50. Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Unen, V. et al. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat. Commun. 8, 1740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Du, J. et al. Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis. Nat. Commun. 14, 3675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (2022YFB3203801 and 2022YFB3203800 to D.L.; 2022YFB3203804 and 2023YFF0724101 to F.L.), National Natural Science Foundation of China (32071374 to F.L.), Leading Talent of ‘Ten Thousand Plan’-National High-Level Talents Special Support Plan (to D.L.), Anzhong Scholars Outstanding Talents Plan (to X.H.), Shanghai Municipal Health Commission Traditional Chinese Medicine Research Project (2024PT009 to D.L.), Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan (21XD1422100 to D.L.), Explorer Program of Science and Technology Commission of Shanghai Municipality (22TS1400700 to D.L.), Zhejiang Provincial Natural Science Foundation of China (LR22C100001 to F.L.) and the innovative research team of high-level local universities in Shanghai (SHSMU-ZDCX20210900 to D.L.). We thank the beamline BL14W1 of the Shanghai Synchrotron Radiation Facility (SSRF, China) for providing the beamtime. We thank Z. Wu from the Center of Electron Microscopy at Zhejiang University for help with TEM and energy-dispersive spectroscopy measurements. We thank Shanghai Luming Biological Technology for the AFADESI spatially resolved metabolomics used in this study.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and F.L. conceived and designed the project. X.H. designed the experiments. X.H., B.Z., M.Z., W.L., B.H., Z.M., J.S., T.L., S.Y., Z.L. and J.Z. performed the experiments and analysed the data. X.H. drafted the manuscript. D.L., F.L. and C.F. provided constructive advice for data analysis and manuscript writing. All authors reviewed and/or revised the paper.

Corresponding authors

Correspondence to Fangyuan Li or Daishun Ling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Thanh Loc Nguyen and Shiren Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FeMoO4 metabzyme promotes the phagocytosis of tumour cells by macrophage.

a, CLSM images of B16 cells after incubation with FITC-FeMoO4 metabzyme. Scale bar, 100 μm. The experiment was repeated three times. b,c, Cell viabilities of B16 cells (b) and RAW264.7 cells (c) after incubation with FeMoO4 metabzyme. All data are presented as means ± s.e.m., n = 3 independent experiments. d, Representative images of RAW264.7 cells after incubation with FeMoO4 metabzyme-treated B16-GFP cells. Scale bar, 10 μm. Green, B16-GFP cells. Red arrow, phagocytosis of B16-GFP cells by macrophage. The experiment was repeated three times.

Source data

Extended Data Fig. 2 FeMoO4 metabzyme-mediated tumour cell-specific metabolism regulation.

a, In vivo T2-weighted MR images of B16 melanoma-bearing mouse. Tumour regions are marked with white dashed lines. The experiment was repeated three times. b, Biodistribution of FeMoO4 metabzyme in B16 melanoma-bearing mouse after i.v. administration. c-e, The UA levels of tumours (c), para-carcinoma muscle tissues (d) and serum (e) after different treatments. f, Schematic illustration of tumour-cell-specific metabolic modulation. Data are presented as means ± s.e.m. in (b-e), n = 3 independent experiments. Statistical analysis was performed by one-way ANOVA for comparison in (b-e).

Extended Data Fig. 3 FeMoO4 metabzyme boosts anti-tumor cellular responses.

a-c, The percentage of CD4+ T cells (a), NK cells (b), MDSCs (c) of tumour tissues after different treatments by mass cytometry. d-f, The relative proportion of DCs (d), CD8+ T cells (e) and CD4+ T cells (f) in the tumour-draining lymph nodes. All data are presented as means ± s.e.m., n = 3 independent experiments. Statistical analysis was performed by unpaired t-test (two tailed) for comparison in (a-f). g, Staining pictures of tumour tissues. Scale bar, 50 μm. h, HE staining images of main organs. Scale bar, 100 μm. The experiment was repeated three times. i, Pattern diagram of FeMoO4 metabzyme-mediated cancer metabolic therapy. Upon reaching tumour cells marked by elevated xanthine substrates, FeMoO4 metabzyme catalyses the metabolic-level conversion of xanthine into UA, as a “attack me” signal, facilitating direct communication with macrophages for proinflammatory M1 phenotype polarization. Meanwhile, UA and proinflammatory cytokines could be generated by macrophages to induce DC maturation, thus eliciting antigen-specific T cell activation to directly recognize and attack tumour cells.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Table 1, discussion and experimental procedures.

Reporting Summary

Supplementary Data 1

Source data for the Supplementary Figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Figs. 1–3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, B., Zhang, M. et al. An artificial metabzyme for tumour-cell-specific metabolic therapy. Nat. Nanotechnol. 19, 1712–1722 (2024). https://doi.org/10.1038/s41565-024-01733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01733-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing