Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Near-term ecological forecasting for climate change action

Abstract

A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Near-term iterative ecological forecasting.
Fig. 2: Ecological predictability.

Similar content being viewed by others

References

  1. Pulgar-Vidal, M. Applying the lessons of climate change to halting biodiversity loss. IUCN https://www.iucn.org/crossroads-blog/202207/applying-lessons-climate-change-halting-biodiversity-loss (2022).

  2. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  3. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO, 2019).

  4. Brondizio, E. S. et al. (eds) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  5. Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article  CAS  Google Scholar 

  6. The Global Risks Report 2023 (World Economic Forum, 2023).

  7. Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Article  CAS  Google Scholar 

  8. Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018). This study proposes a community roadmap for the development of iterative ecological forecasts.

    Article  CAS  Google Scholar 

  9. Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

  10. Tulloch, A. I. T., Hagger, V. & Greenville, A. C. Ecological forecasts to inform near-term management of threats to biodiversity. Glob. Change Biol. 26, 5816–5828 (2020).

    Article  Google Scholar 

  11. Malhi, Y. et al. Climate change and ecosystems: threats, opportunities and solutions. Phil. Trans. R. Soc. B 375, 20190104 (2020).

    Article  CAS  Google Scholar 

  12. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  CAS  Google Scholar 

  13. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016). This paper highlights the challenges in forecasting biodiversity.

    Article  Google Scholar 

  14. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    Article  CAS  Google Scholar 

  15. Bradford, J. B., Betancourt, J. L., Butterfield, B. J., Munson, S. M. & Wood, T. E. Anticipatory natural resource science and management for a changing future. Front. Ecol. Environ. 16, 295–303 (2018).

    Article  Google Scholar 

  16. Bradford, J. B. et al. Ecological Forecasting—21st Century Science for 21st Century Management Open-File Report 2020–1073 (US Geological Survey, 2020); https://doi.org/10.3133/ofr20201073

  17. Hartman, M. D. et al. Seasonal grassland productivity forecast for the U.S. Great Plains using Grass-Cast. Ecosphere 11, e03280 (2020).

    Article  Google Scholar 

  18. Pringle, M. J. et al. Using remote sensing to forecast forage quality for cattle in the dry savannas of northeast Australia. Ecol. Indic. 133, 108426 (2021).

    Article  Google Scholar 

  19. Zhang, B. & Carter, J. FORAGE – an online system for generating and delivering property-scale decision support information for grazing land and environmental management. Comput. Electron. Agric. 150, 302–311 (2018).

    Article  Google Scholar 

  20. Welch, H. et al. Practical considerations for operationalizing dynamic management tools. J. Appl. Ecol. 56, 459–469 (2019).

    Article  Google Scholar 

  21. Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).

    Article  Google Scholar 

  22. Carey, C. C. et al. Advancing lake and reservoir water quality management with near-term, iterative ecological forecasting. Inland Waters 12, 107–120 (2022).

    Article  Google Scholar 

  23. Lofton, M. E., Howard, D. W., Thomas, R. Q. & Carey, C. C. Progress and opportunities in advancing near-term forecasting of freshwater quality. Glob. Change Biol. 29, 1691–1714 (2023).

    Article  CAS  Google Scholar 

  24. Soil Enrichment Protocol Version 1.1: Reducing Emissions and Enhancing Soil Carbon Sequestration on Agricultural Lands (Climate Action Reserve, 2022); https://www.climateactionreserve.org/how/protocols/soil-enrichment/

  25. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article  CAS  Google Scholar 

  26. Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522–527 (2020).

    Article  Google Scholar 

  27. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014); https://www.ipcc.ch/report/ar5/syr

  28. Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).

    Article  Google Scholar 

  29. Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article  Google Scholar 

  30. Raiho, A. et al. Determinants of predictability in multi-decadal forest community and carbon dynamics. Preprint at bioRxiv https://doi.org/10.1101/2020.05.05.079871 (2020).

  31. Egerton, P. et al. Early Warnings for All: The UN Global Early Warning Initiative for the Implementation of Climate Adaptation (World Meteorological Organization, 2022); https://library.wmo.int/idurl/4/58209

  32. Shin, Y.-J. et al. in Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) Ch. 4 (IPBES, 2019); https://doi.org/10.5281/zenodo.5656910

  33. Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).

    Article  Google Scholar 

  34. Briscoe, N. J. et al. Forecasting species range dynamics with process‐explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Article  Google Scholar 

  35. Briscoe, N. J. et al. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. Glob. Change Biol. 28, 1451–1470 (2023).

    Article  Google Scholar 

  36. Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).

    Article  Google Scholar 

  37. Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. 11, 4537–4562 (2018).

    Article  Google Scholar 

  38. Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    Article  CAS  Google Scholar 

  39. Rosa, I. M. D. et al. Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Glob. Ecol. Conserv. 22, e00886 (2020).

    Google Scholar 

  40. Moles, A. T., Gruber, M. A. M. & Bonser, S. P. A new framework for predicting invasive plant species. J. Ecol. 96, 13–17 (2008).

    Article  Google Scholar 

  41. Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).

    Article  Google Scholar 

  42. Ibáñez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37 (2014).

    Article  Google Scholar 

  43. Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. 27, 6005–6024 (2021).

    Article  CAS  Google Scholar 

  44. Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).

    Article  Google Scholar 

  45. Vose, J., Clark, J. S., Luce, C. & Patel-Weynand, T. Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis General Technical Report WO-93b (Forest Service, US Department of Agriculture, 2016).

  46. Jepsen, J. U., Vindstad, O. P. L. & Ims, R. A. Spatiotemporal dynamics of forest geometrid outbreaks. Curr. Opin. Insect Sci. 55, 100990 (2023).

    Article  Google Scholar 

  47. Wheeler, K. I. Cold-Deciduous Broadleaf Phenology: Monitoring Using a Geostationary Satellite and Predicting Using Trigger-Less Dynamic Models (Boston Univ., 2022).

  48. Boult, V. L. Forecast-based action for conservation. Conserv. Biol. https://doi.org/10.1111/cobi.14054 (2023). This paper highlights the potential ecological applications of forecast-based action (the proactive initiation of action plans based on forecast thresholds).

  49. Slingsby, J. A., Wilson, A. M., Maitner, B. & Moncrieff, G. R. Regional ecological forecasting across scales: a manifesto for a biodiversity hotspot. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.14046 (2023).

  50. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

    Article  Google Scholar 

  51. Walters, C. J. Adaptive Management of Renewable Resources (Macmillan, 1986).

  52. Tetlock, P. E. & Gardner, D. Superforecasting: The Art and Science of Prediction (Crown, 2015).

    Google Scholar 

  53. Silver, N. The Signal and the Noise (Penguin, 2012).

  54. Thomas, R. Q. et al. A near-term iterative forecasting system successfully predicts reservoir hydrodynamics and partitions uncertainty in real time. Water Resour. Res. 56, e2019WR026138 (2020).

    Article  Google Scholar 

  55. Thomas, R. Q. et al. Near-term forecasts of NEON lakes reveal gradients of environmental predictability across the U.S. Front. Ecol. Environ. 21, 220–226 (2023).

    Article  Google Scholar 

  56. Dietze, M. C. Prediction in ecology: a first-principles framework. Ecol. Appl. 27, 2048–2060 (2017). This paper derives theoretical expectations for how different uncertainties (model, parameters, initial conditions, inputs) affect ecological predictability, and how this differs from weather forecasting.

  57. Lewis, A. et al. The power of forecasts to advance ecological theory. Methods Ecol. Evol. 14, 746–756 (2022).

    Article  Google Scholar 

  58. Lewis, A. S. L. et al. Increased adoption of best practices in ecological forecasting enables comparisons of forecastability. Ecol. Appl. https://doi.org/10.1002/eap.2500 (2021). A meta-analysis on best practice adoption that also provides some high-level across-forecast syntheses concerning patterns of predictability.

  59. Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015). This study discusses how far into the future useful ecological forecasts can be made and which system properties may affect this.

    Article  Google Scholar 

  60. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  61. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    Article  CAS  Google Scholar 

  62. Lovenduski, N. S., Bonan, G. B., Yeager, S. G., Lindsay, K. & Lombardozzi, D. L. High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environ. Res. Lett. 14, 124074 (2019).

    Article  CAS  Google Scholar 

  63. Lovenduski, N. S. & Bonan, G. B. Reducing uncertainty in projections of terrestrial carbon uptake. Environ. Res. Lett. 12, 044020 (2017).

    Article  Google Scholar 

  64. Bonan, G. B. et al. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob. Biogeochem. Cycles 33, 1310–1326 (2019).

    Article  CAS  Google Scholar 

  65. Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2015).

    Article  Google Scholar 

  66. Shuman, F. G. History of numerical weather prediction at the National Meteorological Center. Weather Forecast. 4, 286–296 (1989).

    Article  Google Scholar 

  67. Droegemeier, K. K. et al. Earth System Predictability Research and Development Strategic Framework and Roadmap (National Science & Technology Council, 2020).

  68. Lewis, M. The Coming Storm (Audible Originals, LLC, 2018).

  69. Hoffman, R. R., LaDue, D. S., Mogil, H. M., Roebber, P. J. & Trafton, J. G. (eds) Minding the Weather: How Expert Forecasters Think (MIT Press, 2017).

  70. Liang, X.-Z. et al. DAWN: Dashboard for Agricultural Water use and Nutrient management—a predictive decision support system to improve crop production in a changing climate. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-22-0221.1 (2024).

  71. Fer, I. et al. Beyond ecosystem modeling: a roadmap to community cyberinfrastructure for ecological data-model integration. Glob. Change Biol. 27, 13–26 (2021).

    Article  Google Scholar 

  72. Thomas, R. Q. et al. The NEON Ecological Forecasting Challenge. Front. Ecol. Environ. 21, 112–113 (2023). A common set of forecasting challenges, as highlighted in this paper, can help build cohesion in the field of ecological forecasting, allowing the development and sharing of best practices and innovation.

    Article  Google Scholar 

  73. White, E. P. et al. Developing an automated iterative near-term forecasting system for an ecological study. Methods Ecol. Evol. 10, 332–344 (2019). This study on ecological forecasting cyberinfrastructure provides an open-source automated workflow and discusses best practices.

    Article  Google Scholar 

  74. Yenni, G. M. et al. Developing a modern data workflow for regularly updated data. PLoS Biol. 17, e3000125 (2019).

    Article  Google Scholar 

  75. McCord, S. E. & Pilliod, D. S. Adaptive monitoring in support of adaptive management in rangelands. Rangelands 44, 1–7 (2022).

    Article  Google Scholar 

  76. Lindenmayer, D. B. & Likens, G. E. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24, 482–486 (2009).

    Article  Google Scholar 

  77. Zeng, X. et al. Use of observing system simulation experiments in the United States. Bull. Am. Meteorol. Soc. 101, E1427–E1438 (2020).

    Article  Google Scholar 

  78. Dietze, M. C. et al. A community convention for ecological forecasting: output files and metadata version 1.0. Ecosphere 14, e4686 (2023).

    Article  Google Scholar 

  79. Luo, Y. & Smith, B. (eds) Land Carbon Cycle Modeling: Matrix Approach, Data Assimilation, & Ecological Forecasting (CRC, 2022).

  80. Zwart, J. A. et al. Near-term forecasts of stream temperature using deep learning and data assimilation in support of management decisions. J. Am. Water Resour. Assoc. 59, 317–337 (2023).

    Article  Google Scholar 

  81. Grover, A., Kapoor, A. & Horvitz, E. A deep hybrid model for weather forecasting. In Proc. 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 379–386 (Association for Computing Machinery, 2015).

  82. Fathi, M., Haghi Kashani, M., Jameii, S. M. & Mahdipour, E. Big data analytics in weather forecasting: a systematic review. Arch. Comput. Methods Eng. 29, 1247–1275 (2022).

    Article  Google Scholar 

  83. Arcomano, T. et al. A machine learning-based global atmospheric forecast model. Geophys. Res. Lett. 47, e2020GL087776 (2020).

    Article  Google Scholar 

  84. Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).

  85. Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article  Google Scholar 

  86. National Research Council NEON: Addressing the Nation’s Environmental Challenges (National Academies, 2004).

    Google Scholar 

  87. Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

    Article  CAS  Google Scholar 

  88. Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Article  Google Scholar 

  89. Knapp, A. K. et al. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Glob. Change Biol. 23, 1774–1782 (2017).

    Article  Google Scholar 

  90. Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).

  91. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  92. Brisimi, T. S. et al. Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 112, 59–67 (2018).

    Article  Google Scholar 

  93. Park, S. et al. FaaSr: cross-platform function-as-a-service serverless scientific workflows in R. In Proc. 20th IEEE International Conference on e-Science 1–10 (IEEE, 2024).

  94. Woelmer, W. M. et al. Ten simple rules for training yourself in an emerging field. PLoS Comput. Biol. 17, e1009440 (2021).

    Article  CAS  Google Scholar 

  95. Farrell, K. J. et al. Training macrosystems scientists requires both interpersonal and technical skills. Front. Ecol. Environ. 19, 39–46 (2021).

    Article  Google Scholar 

  96. Vogler, J. S. et al. The hard work of soft skills: augmenting the project-based learning experience with interdisciplinary teamwork. Instr. Sci. 46, 457–488 (2018).

    Article  Google Scholar 

  97. National Research Council Enhancing the Effectiveness of Team Science (National Academies, 2015).

  98. Next Generation Earth Systems Science at the National Science Foundation (National Academies, 2021).

  99. Kenney, M. A., Gerst, M. D. & Read, E. The usability gap in water resources open data and actionable science initiatives. J. Am. Water Resour. Assoc. 60, 1–8 (2024). This decision support paper describes a generalized approach to user testing and presents an expansion of FAIR standards to include human access and usability of decision support tools.

    Article  Google Scholar 

  100. Willson, A. M. et al. Assessing opportunities and inequities in undergraduate ecological forecasting education. Ecol. Evol. 13, e10001 (2023).

    Article  Google Scholar 

  101. Geller, G. et al. NASA Biological Diversity and Ecological Forecasting: Current State of Knowledge and Considerations for the Next Decade (NASA, 2022).

  102. Williams, C. et al. 2021 NACP Science Implementation Plan Report of the North American Carbon Program (US Carbon Cycle Science Program, 2021); https://doi.org/10.5065/kwe1-w815

  103. Wheeler, K. I. et al. Predicting spring phenology in deciduous broadleaf forests: NEON phenology forecasting community challenge. Agric. For. Meteorol. 345, 109810 (2024).

    Article  Google Scholar 

  104. Olsson, F. et al. What can we learn from 100,000 freshwater forecasts? A synthesis from the NEON Ecological Forecasting Challenge. ESS Open Archive https://doi.org/10.22541/essoar.171458144.44104603/v1 (2024).

  105. Thomas, R. Q. et al. Ecological forecasting initiative: NEON Ecological Forecasting Challenge documentation V1.0. Zenodo https://doi.org/10.5281/zenodo.4780155 (2021).

  106. Boettiger, C., Thomas, Q., Laney, C. & Lunch, C. neonstore: NEON Data Store. R package version 0.5.1 https://CRAN.R-project.org/package=neonstore (2024).

  107. Meadow, A. M. et al. Moving toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc. 7, 179–191 (2015).

    Article  Google Scholar 

  108. Lemos, M. C. & Morehouse, B. J. The co-production of science and policy in integrated climate assessments. Glob. Environ. Change 15, 57–68 (2005).

    Article  Google Scholar 

  109. Bremer, S. & Meisch, S. Co-production in climate change research: reviewing different perspectives. WIREs Clim. Change 8, e482 (2017).

    Article  Google Scholar 

  110. Kirchhoff, C. J., Carmen Lemos, M. & Dessai, S. Actionable knowledge for environmental decision making: broadening the usability of climate science. Annu. Rev. Environ. Resour. 38, 393–414 (2013).

    Article  Google Scholar 

  111. Chen, C. Y. et al. Systemic racial disparities in funding rates at the National Science Foundation. eLife 11, e83071 (2022).

    Article  Google Scholar 

  112. Bernard, R. E. & Cooperdock, E. H. G. No progress on diversity in 40 years. Nat. Geosci. 11, 292–295 (2018). This paper highlights the persistent under-representation of racial and minority ethnic groups in US geosciences and recommends actions to spur systemic change.

    Article  CAS  Google Scholar 

  113. Howell, J. & Elliott, J. R. Damages done: the longitudinal impacts of natural hazards on wealth inequality in the United States. Soc. Probl. 66, 448–467 (2019).

    Article  Google Scholar 

  114. Capacity Development Programme (World Meteorological Organization, 2023); https://wmo.int/capacity-development-programme

  115. Emery, N. C. et al. Data science in undergraduate life science education: a need for instructor skills training. BioScience https://doi.org/10.1093/biosci/biab107 (2021).

  116. Allum, N., Besley, J., Gomez, L. & Brunton-Smith, I. Disparities in science literacy. Science 360, 861–862 (2018).

    Article  CAS  Google Scholar 

  117. Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019). Forecasting ecological dynamics has societal impacts that need to be considered at all stages of forecast development and dissemination.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Research Coordination Network under grant number 1926388 and an Alfred P. Sloan Foundation grant. We thank K. Davis at Notre Dame for her work on figure development. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

M.C.D. organized and led the writing of the Perspective. All authors contributed to writing the original draft, reviewing and editing.

Corresponding author

Correspondence to Michael Dietze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Vicky Boult, Matteo Convertino, David Garcia-Callejas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietze, M., White, E.P., Abeyta, A. et al. Near-term ecological forecasting for climate change action. Nat. Clim. Chang. 14, 1236–1244 (2024). https://doi.org/10.1038/s41558-024-02182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02182-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing