Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = neutrino detectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5685 KiB  
Article
Improvement and Characterisation of the ArCLight Large-Area Dielectric Light Detector for Liquid-Argon Time Projection Chambers
by Jonas Bürgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa and Michele Weber
Instruments 2024, 8(4), 48; https://doi.org/10.3390/instruments8040048 - 4 Nov 2024
Viewed by 499
Abstract
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for [...] Read more.
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for modular detectors that wish to maximize their active volume. The ArgonCube light readout system detectors (ArCLights) are large-area thin-wavelength-shifting (WLS) panels that can operate in highly proximate modular detectors and within the electric field. The WLS plastic forming the bulk structure of the ArCLight has Tetraphenyl Butadiene (TPB) and sheets of dichroic mirror layered across its surface. It is coupled to a set of six silicon photomultipliers (SiPMs). This publication compares TPB coating techniques for large surface areas and describes quality control methods for large-scale production. Full article
Show Figures

Figure 1

Figure 1
<p>Diagram of an ArCLight with an example of a VUV photon travelling through the TPB and shifting to blue (peak at 430 <math display="inline"><semantics> <mi mathvariant="normal">n</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>) to then pass into the dichroic mirror. The photon shifts to green (peak at 490 <math display="inline"><semantics> <mi mathvariant="normal">n</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>) inside the WLS plastic. The green photons travelling in the plastic are eventually detected by the SiPM.</p>
Full article ">Figure 2
<p>Microscopic images of the TPB layer achieved with airbrush (<b>left</b>) and evaporation deposition (<b>right</b>). Both images are magnified by a factor of 500.</p>
Full article ">Figure 3
<p>Image of the ArCLight TPB coating chamber. In the vacuum chamber, the TPB support plate is attached to the heating table. The aluminium plate holder, on which the cooling plate rests, hangs above it.</p>
Full article ">Figure 4
<p>A TPB evaporation cycle overview, illustrating the chamber pressure (blue), the temperatures of the dichroic mirror (green) and the turning on and off of the heating table (red). The first blue peak represents the moment the chamber is opened to place the dichroic mirror inside. The pumping process lowers the pressure before the heating table is activated. Once the heater is turned on, water and TPB evaporate, leading to increased pressure within the chamber. The temperature of the foil increases as the heating table operates.</p>
Full article ">Figure 5
<p>A bare WLS plate EJ280 with prepared threads for SiPM mounting (<b>left</b>). ArCLight after attachment of the TPB-coated foil and edge mirrors (<b>right</b>).</p>
Full article ">Figure 6
<p>Example of the two different crystals observed on the coated ArCLight. The magnification of both images is the same.</p>
Full article ">Figure 7
<p>The black box used to scan ArCLights. The movable LED that produces light during scanning is shown on the top.</p>
Full article ">Figure 8
<p>Conceptual sketch of the scanning procedure of an ArCLight.</p>
Full article ">Figure 9
<p>The detected number of p.e.s in a high-resolution scan by each of the six SiPM channels for the LED at a distance of 20 <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>, with the SiPMs positioned on the x-axis. The colour scale represents the detected number of photoelectrons (p.e.s). The absolute signal strength is arbitrary and depends on the LED light emission power, which is kept constant for the different scans.</p>
Full article ">Figure 10
<p>Example scan of an ArCLight with corrected light yields using monitoring SiPMs. The scan measures the total photoelectrons of 27 × 29 positions.</p>
Full article ">Figure 11
<p>For each ArCLight, the means of the collected p.e.s for every position are added up to a total amount of p.e.s collected per scan. The different performances of the ArCLight are shown based on the total p.e.s measured per scan. The error bars are estimated based on the largest difference observed between scans of the same ArCLight.</p>
Full article ">
65 pages, 38582 KiB  
Review
Transition Edge Sensors: Physics and Applications
by Mario De Lucia, Paolo Dal Bo, Eugenia Di Giorgi, Tommaso Lari, Claudio Puglia and Federico Paolucci
Instruments 2024, 8(4), 47; https://doi.org/10.3390/instruments8040047 - 31 Oct 2024
Viewed by 592
Abstract
Transition Edge Sensors (TESs) are amongst the most sensitive cryogenic detectors and can be easily optimized for the detection of massive particles or photons ranging from X-rays all the way down to millimetre radiation. Furthermore, TESs exhibit unmatched energy resolution while being easily [...] Read more.
Transition Edge Sensors (TESs) are amongst the most sensitive cryogenic detectors and can be easily optimized for the detection of massive particles or photons ranging from X-rays all the way down to millimetre radiation. Furthermore, TESs exhibit unmatched energy resolution while being easily frequency domain multiplexed in arrays of several hundred pixels. Such great performance, along with rather simple and sturdy readout and amplification chains make TESs extremely compelling for applications in many fields of scientific endeavour. While the first part of this article is an in-depth discussion on the working principles of Transition Edge Sensors, the remainder of this review article focuses on the applications of Transition Edge Sensors in advanced scientific instrumentation serving as an accessible and thorough list of possible starting points for more comprehensive literature research. Full article
Show Figures

Figure 1

Figure 1
<p><b>Proximity effect and critical temperature engineering.</b> (<b>a</b>) Schematic representation of the <span class="html-italic">z</span>-dependence of the parameter <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics></math> describing superconductivity in an <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> </semantics></math> bilayer (with <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mi>S</mi> <mo>,</mo> <mi>N</mi> </mrow> </semantics></math>). (<b>b</b>) Schematics of the Cooper limit for an <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> </semantics></math> bilayer, where <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math> is the thickness of the <span class="html-italic">i</span> element and <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>i</mi> </msub> </semantics></math> is its coherence length (with <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mi>S</mi> <mo>,</mo> <mi>N</mi> <mo>,</mo> <mi>S</mi> <mi>N</mi> </mrow> </semantics></math>). (<b>c</b>) Critical temperature of an <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> </semantics></math> bilayer versus <math display="inline"><semantics> <msub> <mi>t</mi> <mi>N</mi> </msub> </semantics></math> for different values of <math display="inline"><semantics> <msub> <mi>t</mi> <mi>S</mi> </msub> </semantics></math> with <span class="html-italic">S</span> aluminium and <span class="html-italic">N</span> copper. The parameters used for Equation (<a href="#FD10-instruments-08-00047" class="html-disp-formula">10</a>) are as follows: <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>C</mi> <mo>,</mo> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math> K, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>D</mi> <mo>,</mo> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mn>7.98</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>13</mn> </msup> </mrow> </semantics></math> rad/s the Debye frequency of copper, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">N</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>2.15</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>47</mn> </msup> </mrow> </semantics></math> <math display="inline"><semantics> <msup> <mi mathvariant="normal">J</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math><math display="inline"><semantics> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> the density of state at the Fermi level of aluminium, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">N</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>1.56</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>47</mn> </msup> </mrow> </semantics></math> <math display="inline"><semantics> <msup> <mi mathvariant="normal">J</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math><math display="inline"><semantics> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> the density of state at the Fermi level of copper and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">T</mi> <mrow> <mi>S</mi> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> the transmission probability of the <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> </semantics></math> interface.</p>
Full article ">Figure 2
<p><b>Working principle of a Transition Edge Sensor.</b> An event (e.g., photon/phonon absorption) heats the superconductor, moving its temperature from the ideal working point (center of the normal to superconducting transition).</p>
Full article ">Figure 3
<p><b>Working principle of a TES not in electro-thermal feedback.</b> (<b>a</b>) The thermal scheme of a TES with temperature and heat capacity <span class="html-italic">C</span>, the weak thermal link to the reservoir through a thermal conductance <span class="html-italic">G</span> and the external power <math display="inline"><semantics> <msub> <mi mathvariant="normal">P</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> </semantics></math> and power exchanged to the reservoir <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>R</mi> <mo>,</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Solution to Equation (<a href="#FD17-instruments-08-00047" class="html-disp-formula">17</a>) of the TES as a function of time in the two aforementioned cases.</p>
Full article ">Figure 4
<p><b>The schematic of a TES biased in negative electro-thermal feedback</b>. (<b>a</b>) Electric scheme of a TES and (<b>b</b>) thermal scheme of a TES. Both schemes contribute to the coupled differential equations in Equation (<a href="#FD18-instruments-08-00047" class="html-disp-formula">18</a>).</p>
Full article ">Figure 5
<p><b>Measured I–V curves of a TES</b>. The I–V characteristic of a TES can be derived as the steady-state solution of Equation (<a href="#FD18-instruments-08-00047" class="html-disp-formula">18</a>). The top most blue curve represents the case in which no optical load heats up the TES, whereas all the other curves represent increasing values of <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> </semantics></math> as described in the legend.</p>
Full article ">Figure 6
<p><b>Operation of a TES in a bolometric regime.</b> (<b>a</b>) Two I–V curves relative to <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (black) and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (blue). At time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, the external power is turned on and the TES, biased with a voltage <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>i</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, rapidly transitions from one I–V curve to the other, resulting in a different current flowing through the superconductor. (<b>b</b>) Response of the TES to the scenario described in (<b>a</b>) but represented as a function of time.</p>
Full article ">Figure 7
<p><b>Operation of a TES in a calorimetric regime.</b> (<b>a</b>) At time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, the external power is turned on and the TES for an infinitely small amount of time; the TES biased with voltage <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>i</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> </semantics></math> rapidly transitions from one I–V curve to another and back to the original curve as described by the green arrows. This results in a time-varying current flowing through the superconductor. (<b>b</b>) Response of the TES to the scenario described in (<b>a</b>) but represented as a function of time.</p>
Full article ">Figure 8
<p><b>A spiderweb TES</b> developed during the R&amp;D phase of the LSPE/SWIPE experiment. The red inset shows a close-up on the TES thermistor.</p>
Full article ">Figure 9
<p><b>An antenna-coupled TES</b> fabricated by NIST which will find application on the MHFT instrument of the LiteBIRD spacecraft. The red inset shows a close up on the TES thermistor.</p>
Full article ">Figure 10
<p><b>Scheme of a SQUID amplifier.</b> (<b>a</b>) Electrical scheme of a SQUID amplifier. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>V</mi> <mi>ϕ</mi> </msub> </semantics></math> characteristics of a SQUID amplifier and the response of the system related to the shape of the characteristic.</p>
Full article ">Figure 11
<p><b>Circuital schematic implementation of a two-TES TDM.</b> Each channel is colour coded: cyan for CH#1 and red for CH#2. The switching occurs by turning on and off the different bias lines of the SQUID amplifiers.</p>
Full article ">Figure 12
<p><b>Time Division Multiplexing scheme</b>. The signal produced by the four different TESs is shown in red, black, yellow and violet. The green (red) fields in the picture show, per each frame the time each channel is switched on (off). The TOD read out by the electronics contains the data points of the TES signals at (convolved with) their respective own on time intervals. This picture represents an extreme case where the sampling interval is comparable with the characteristic time figures of the TES and shows how such a scheme may lead to data loss because of the difficulty in reconstructing the data curves (see TES#2 in black). Ideally, the sampling time and frequency is much faster than the rise and fall time of the TESs so that a proper sampling can be achieved without data loss. If, on the other hand, the sampling interval is significantly larger than the rise and fall time of the TESs, the pulses are properly reconstructed, but the dead time of the detectors is significantly increased.</p>
Full article ">Figure 13
<p><b>Frequency Division Multiplexing</b>. In a simple 2-TES scheme, each detector is connected to a band-pass LC resonator filter. The comb of carriers is generated and sent to the multiplexing circuit through only one wire. Each channel is color coded, cyan for CH#1 and red for CH#2. The nulling occurs at the input coil of the SQUID amplifier.</p>
Full article ">Figure 14
<p><b>Frequency Division Multiplexing scheme</b>. In a simple 2-TES scheme, each detector is continuously monitored. By de-convolving the TOD at the frequencies of each individual channel, it is possible to obtain information on the amplitude of the oscillations at each frequency. By then plotting the amplitude of the pulse which is the envelope function that is convoluted with the sine wave at each specific frequency, it is possible to obtain a pulse-like shape typical of a TES detector. The shaded area represents the response of the TESs in their idle state.</p>
Full article ">Figure 15
<p><b>Code Division Multiplexing scheme</b>. The top of the figure shows the TOD of four different pulses as produced by four TESs (TES#1, TES#2, TES#3, TES#4). Such signals are equally distributed across the four channels (CH#1, CH#2, CH#3, CH#4) with a polarity that is unique to each TES-Channel pair. The polarity is shown as different background color: green for positive and red for negative. The de-multiplexing is achieved by looking at the polarity combination of each pulse on the different feedlines and comparing it with a look-up table.</p>
Full article ">Figure 16
<p><b>Code Division Multiplexing</b>. In a simple 2-TES flux-summation scheme, the two SQUIDs are fed with the signal produced by the two TESs with alternate polarities. The two SQUIDs are alternatively read out on the ‘Data Out’ line.</p>
Full article ">Figure 17
<p><b>Electronic schematic for the implementation of a 2-TES μMUX.</b> The section in the violet box represents the two TESs and their bias circuit. They are individually coupled to a microwave resonator through an RF-SQUID (blue box for #1 and red box for #2). The section in the violet box represents the saw-tooth wave used as a signal frequency up-converted.</p>
Full article ">Figure 18
<p><b>Cross-talk scheme in FDM.</b> (<b>a</b>) Schematic of <span class="html-italic">N</span> frequency division multiplexed TESs with the different cross-talk components: (i) the mutual inductance between different channels, (ii) the coupled oscillators, (iii) the voltage drop due to the shared input impedance. (<b>b</b>) The cross-talk term due to to the overlap of the Lorentzian—shown as Gaussians for simplicity. The area shaded in orange represents the cross-talk.</p>
Full article ">
12 pages, 357 KiB  
Article
Cross-Sections of Neutral-Current Neutrino Scattering on 94,96Mo Isotopes
by T. S. Kosmas, R. Sahu and V. K. B. Kota
Particles 2024, 7(4), 887-898; https://doi.org/10.3390/particles7040053 - 4 Oct 2024
Viewed by 597
Abstract
In our recent publications, we presented neutral-current ν–nucleus cross-sections for the coherent and incoherent channels for some stable Mo isotopes, assuming a Mo detector medium, within the context of the deformed shell model. In these predictions, however, we have not included the [...] Read more.
In our recent publications, we presented neutral-current ν–nucleus cross-sections for the coherent and incoherent channels for some stable Mo isotopes, assuming a Mo detector medium, within the context of the deformed shell model. In these predictions, however, we have not included the contributions in the cross-sections stemming from the stable 94,96Mo isotopes (abundance of 94Mo 9.12% and of 96Mo 16.50%). The purpose of the present work is to perform detailed calculations of ν94,96Mo scattering cross-sections, for a given energy Eν of the incoming neutrino, for coherent and incoherent processes. In many situations, the Eν values range from 15 to 30 MeV, and in the present work, we used Eν = 15 MeV. Mo as a detector material has been employed by the MOON neutrino and double-beta decay experiments and also from the NEMO neutrinoless double-beta decay experiment. For our cross-section calculations, we utilize the Donnelly–Walecka multipole decomposition method in which the ν–nucleus cross-sections are given as a function of the excitation energy of the target nucleus. Because only the coherent cross-section is measured by current experiments, it is worth estimating what portion of the total cross-section represents the measured coherent rate. This requires the knowledge of the incoherent cross-section, which is also calculated in the present work. Full article
Show Figures

Figure 1

Figure 1
<p>HF single-particle spectra for <sup>94</sup>Mo corresponding to lowest energy prolate and oblate configurations. In the figure, circles represent protons and crosses represent neutrons. The HF energy E in MeV, mass quadrupole moment Q in units of the square of the oscillator length parameter and the total azimuthal quantum number K are given in the figure.</p>
Full article ">Figure 2
<p>The ground band and a few other low-lying levels observed in <sup>94</sup>Mo are compared with the DSM predictions. The experimental data are taken from [<a href="#B42-particles-07-00053" class="html-bibr">42</a>].</p>
Full article ">Figure 3
<p>HF single-particle spectra for <sup>96</sup>Mo corresponding to lowest energy prolate and oblate configurations. In the figure, circles represent protons and crosses represent neutrons. The HF energy E in MeV, mass quadrupole moment Q in units of the square of the oscillator length parameter and the total azimuthal quantum number K are given in the figure.</p>
Full article ">Figure 4
<p>The ground band and a few other low-lying levels observed in <sup>96</sup>Mo are compared with the DSM predictions. The experimental data are taken from [<a href="#B42-particles-07-00053" class="html-bibr">42</a>].</p>
Full article ">Figure 5
<p>The differential cross-section as a function of the excitation energy <math display="inline"><semantics> <mi>ω</mi> </semantics></math> for <sup>94</sup>Mo at incoming neutrino energy <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>ν</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> MeV for different excited states. The contribution of the excitation to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>+</mo> </msup> </mrow> </semantics></math> state is represented by red, to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>+</mo> </msup> </mrow> </semantics></math> by blue, to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>−</mo> </msup> </mrow> </semantics></math> by black, and to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>−</mo> </msup> </mrow> </semantics></math> by cyan.</p>
Full article ">Figure 6
<p>The differential cross-section as a function of the excitation energy <math display="inline"><semantics> <mi>ω</mi> </semantics></math> for <sup>96</sup>Mo at incoming neutrino energy <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>ν</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> MeV for different excited states. Figure is generated with the data taken from ref. [<a href="#B18-particles-07-00053" class="html-bibr">18</a>]. The contribution of the excitation to the <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>+</mo> </msup> </mrow> </semantics></math> state is represented by blue, to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>+</mo> </msup> </mrow> </semantics></math> by red, to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>−</mo> </msup> </mrow> </semantics></math> by cyan, and to <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>−</mo> </msup> </mrow> </semantics></math> by black.</p>
Full article ">
45 pages, 30346 KiB  
Article
Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber
by A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, B. Aimard, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, D. A. Andrade, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, G. Barenboim, P. B̃arham Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, J. Bracinik, D. Braga, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, J. Calcutt, M. Calin, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani’, C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M. Gago, F. Galizzi, H. Gallagher, A. Gallas, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmueller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. A. Hernandez Morquecho, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, M. Hostert, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, D. José Fernández, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, J. Kumar, P. Kumar, S. Kumaran, P. Kunze, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, A. Lawrence, P. Laycock, I. Lazanu, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, C. Lee, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J.-Y. Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X.-G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, J. Maalmi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, D. Marsden, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, J. Metcalf, W. Metcalf, M. Mewes, H. Meyer, T. Miao, A. Miccoli, G. Michna, V. Mikola, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, M. Mote, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, J. Pinchault, K. Pitts, K. Plows, R. Plunkett, C. Pollack, T. Pollman, D. Polo-Toledo, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, D. Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. R. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, A. Thiebault, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y.-T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. Vizcaya-Hernandez, T. Vrba, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, H. Wenzel, S. Westerdale, M. Wetstein, K. Whalen, J. Whilhelmi, A. White, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska and on behalf of the DUNE Collaborationadd Show full author list remove Hide full author list
Instruments 2024, 8(3), 41; https://doi.org/10.3390/instruments8030041 - 11 Sep 2024
Viewed by 1608
Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection [...] Read more.
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations. Full article
Show Figures

Figure 1

Figure 1
<p>Gallery of four representative cosmic ray-induced events collected with Module-0, as recorded in the raw event data, with the collected charge converted to units of thousands of electrons. In all cases, the central plane in grey denotes the cathode, and the color scale denotes the collected charge. Here, (<b>a</b>) shows a stopping muon and the subsequent Michel electron decay, (<b>b</b>) denotes an electromagnetic (EM) shower, (<b>c</b>) is a multi-prong shower, and (<b>d</b>) is “neutrino-like” in that the vertex of this interaction appears to be inside the active volume.</p>
Full article ">Figure 2
<p>Schematic of the <math display="inline"><semantics> <mrow> <mn>0.7</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> <mo>×</mo> <mn>0.7</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> <mo>×</mo> <mn>1.4</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> Module-0 detector with annotations of the key components.</p>
Full article ">Figure 3
<p>Photograph of the Module-0 detector interior as seen from the bottom with annotations of the key components.</p>
Full article ">Figure 4
<p>Front (<b>left</b>) and back (<b>right</b>) of a TPC anode tile. The front contains 4900 charge-sensitive pixels with 4.43 mm pitch that face the cathode, and the back contains a <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> <mn>10</mn> </mrow> </semantics></math> array of LArPix ASICs. The dimensions are <math display="inline"><semantics> <mrow> <mn>31</mn> <mspace width="0.166667em"/> <mi>cm</mi> <mo>×</mo> <mn>32</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math>, with the extra centimeter providing space for the light system attachment points.</p>
Full article ">Figure 5
<p>The Pixel Array Controller and Network card (PACMAN), which controls the data acquisition and power for the charge readout system.</p>
Full article ">Figure 6
<p>Run event rate and cumulative events as a function of time with respect to charge readout operating condition.</p>
Full article ">Figure 7
<p>Detection principle of the two types of modules comprising the LRS: a segment of an ArCLight tile (<b>top</b>) and a single LCM optical fiber (<b>bottom</b>). The wave-like lines indicate example photon trajectories, with the white points indicating interactions. Drawings are not to scale.</p>
Full article ">Figure 8
<p>An ArCLight tile (<b>left</b>) and three LCM tiles (<b>right</b>), as assembled within the Module-0 structure.</p>
Full article ">Figure 9
<p>LRS data acquisition components: JINR ADC board (<b>left</b>) and synchronization and trigger scheme (<b>right</b>).</p>
Full article ">Figure 10
<p>Self-triggered active pixel channels (in blue) and inactive channels (in black). In these coordinates, <span class="html-italic">x</span> is horizontal and <span class="html-italic">y</span> is vertical, both parallel to the anode plane, and <span class="html-italic">z</span> is the drift direction, perpendicular to the anode plane, completing a right-handed system. The origin is the center of the module.</p>
Full article ">Figure 11
<p>Most probable value (black circles) and full width at half maximum (white circles) of the <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> distribution for each data run. The system shows a good charge readout stability during data taking periods, both for high threshold (yellow bands) and low threshold (purple bands) runs.</p>
Full article ">Figure 12
<p>LArPix channel noise in units of electron charge signal as observed using periodic forced triggers. The total system noise is ∼<math display="inline"><semantics> <mrow> <mn>950</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">e</mi> <mo>−</mo> </msup> </mrow> </semantics></math>, compared to a signal amplitude of ∼<math display="inline"><semantics> <mrow> <mn>1800</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">e</mi> <mo>−</mo> </msup> </mrow> </semantics></math> for a 4 GeV MIP track in ND-LAr’s 3.7 mm pixel pitch.</p>
Full article ">Figure 13
<p>Self-triggered charge distribution for MIP tracks measured in thousands of electrons (ke<sup>−</sup>); 50% of the rising edge is shown using vertical lines as indicators of the charge readout self-trigger thresholds. The low- and high-threshold curves were obtained from runs with the same 20 min exposure. Each entry is normalized by hit charge over fitted track length. The MC simulation shown in comparison is described in <a href="#sec5-instruments-08-00041" class="html-sec">Section 5</a>.</p>
Full article ">Figure 14
<p>Total event charge per channel for MIP tracks measured in thousands of electrons (ke<sup>−</sup>). The MC simulation shown in comparison is described in <a href="#sec5-instruments-08-00041" class="html-sec">Section 5</a>.</p>
Full article ">Figure 15
<p>Comparisons of response variation in the radial distance from the pixel center to the point of closest approach of the track projected onto the anode plane (<span class="html-italic">r</span>, <b>top</b>), the track inclination relative to the anode plane (polar angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, <b>middle</b>), and the orientation angle of the track projected onto the anode plane (azimuthal angle <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, <b>bottom</b>). The MC shown in comparison is described in <a href="#sec5-instruments-08-00041" class="html-sec">Section 5</a>.</p>
Full article ">Figure 16
<p>Relative rate of pixel response as a function of the distance between Hough line segments and segment containing pixel’s center for pixels on gaps, i.e., no charge response (<b>left</b>), and on tracks, i.e., with charge response (<b>right</b>) to the total.</p>
Full article ">Figure 17
<p>Self-trigger charge distribution for MIP tracks with different track orientations with respect to the pixel, normalized to the number of triggered channels per reconstructed track length. Low-threshold data are used. The MC simulation shown in comparison in the second column is described in <a href="#sec5-instruments-08-00041" class="html-sec">Section 5</a>.</p>
Full article ">Figure 18
<p>Same as <a href="#instruments-08-00041-f017" class="html-fig">Figure 17</a> but for high-threshold data.</p>
Full article ">Figure 19
<p>MIP response maps for anode plane 1 (<b>left</b>) and anode plane 2 (<b>right</b>) showing the fraction of triggered hits on each pixel relative to the expected number based on reconstructed track trajectories.</p>
Full article ">Figure 20
<p>Per-pixel ADC value distribution for cosmic ray events between 2 and 10 GeV. All signals are well within the ADC dynamic range of 0–256 counts.</p>
Full article ">Figure 21
<p><math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> measured for segments of different lengths as a function of the orientation relative to the anode planes. A value of <math display="inline"><semantics> <mrow> <mo form="prefix">cos</mo> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> corresponds to segments parallel to the anode plane. The distributions in each bin have been fitted with a Gaussian-convolved Moyal function. The red points correspond to the most probable value of the fitted distribution, and the dashed rectangles correspond to the full width at half maximum. The dashed black line represents the average MPV.</p>
Full article ">Figure 22
<p><math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> measured for segments of different lengths as a function of the azimuthal angle <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mi>atan</mi> <mn>2</mn> <mo>(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math>, where <span class="html-italic">y</span> and <span class="html-italic">x</span> are the components of the segment along the anode plane axes. The distributions in each bin are fitted with a Gaussian-convolved Moyal function. The red points correspond to the most probable value of the fitted distribution and the dashed rectangles correspond to the FWHM. The dashed black line represents the average MPV.</p>
Full article ">Figure 23
<p>Typical charge spectrum obtained during SiPM gain calibration (<b>left</b>); SiPM gain distribution (<b>right</b>).</p>
Full article ">Figure 24
<p>Oversampled signal using Fourier transformation. Red lines show the linear approximations of the rising edge and the baseline (<b>left</b>). The time resolution between two LCMs (LCM-011, LCM-017) as a function of the signal response (<b>right</b>).</p>
Full article ">Figure 25
<p>Two examples showing signals of the stopping muon and delayed Michel electron detected by the LCM. The waveforms were digitized at 10 ns intervals.</p>
Full article ">Figure 26
<p>Detection efficiency (as defined in the text) for each ArCLight (<b>left</b>) and LCM (<b>right</b>) tile (arbitrary numbering). ArCLight tile 7 was disabled during Module-0 data taking. The LCM tiles are placed in sets of three to cover the same area as one ArCLight tile.</p>
Full article ">Figure 27
<p>Measured <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> versus drift time for ionization associated with anode-cathode-crossing muon tracks (<b>left</b>); mean <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> versus drift time, along with exponential fit, for the same track sample (<b>right</b>).</p>
Full article ">Figure 28
<p>Extracted electron lifetime as a function of time during Module-0 Run 1 (<b>top</b>) and Run 2 (<b>bottom</b>), with the average uniformly exceeding 2 ms in both cases.</p>
Full article ">Figure 29
<p>Average spatial offsets (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>Y</mi> </mrow> </semantics></math>) measured at the top (<b>left</b>) and bottom (<b>right</b>) of the Module-0 detector. These offsets in cm indicated by the color scale are measured with respect to the location of the pixel channels at the edge of the detector.</p>
Full article ">Figure 30
<p>Average spatial offsets (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>X</mi> </mrow> </semantics></math>) measured at the front (<b>left</b>) and back (<b>right</b>) of the Module-0 detector. These offsets in cm indicated by the color scale are measured with respect to the location of the pixel channels at the edge of the detector.</p>
Full article ">Figure 31
<p>Time dependence of spatial offsets in the <math display="inline"><semantics> <mrow> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> (<b>top</b>) and <math display="inline"><semantics> <mrow> <mo>+</mo> <mi>z</mi> </mrow> </semantics></math> (<b>bottom</b>) drift volumes. These offsets are measured with respect to the location of the pixel channels at the edge of the detector.</p>
Full article ">Figure 32
<p>Charge–light matching efficiency in linear scale (<b>left</b>) and inefficiency in logarithmic scale (<b>right</b>) for light detector triggers matched to charge readout triggers for anode–cathode-crossing tracks. The time window corresponds to the time difference between the external trigger on the charge readout (<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>) and the light detector trigger time.</p>
Full article ">Figure 33
<p>Distribution of time differences between the external trigger on the charge readout (<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>) and the time of the light detector event for anode–cathode-crossing tracks.</p>
Full article ">Figure 34
<p>Charge–light matched event display of a cosmic muon track. The left two panels show the TPC charge readout in a <span class="html-italic">z</span>–<span class="html-italic">y</span> projection (<b>left</b>) and <span class="html-italic">x</span>–<span class="html-italic">y</span> projection (<b>center left</b>). The right two panels show the light detector responses for the arrays at <math display="inline"><semantics> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </semantics></math> (<b>center right</b>) and <math display="inline"><semantics> <mrow> <mo>+</mo> <mi>x</mi> </mrow> </semantics></math> (<b>right</b>), with each bin along the vertical axis representing the strength of signal read by individual SiPMs.</p>
Full article ">Figure 35
<p>Charge yield as a function of the electric field strength fitted with the Box and Birks models and compared to ICARUS results (<b>left</b>). Light yield as a function of the electric field strength fitted separately with the Birks model (<b>right</b>).</p>
Full article ">Figure 36
<p>Light yield (blue) and charge yield (red) extracted from a simultaneous fit calculated with the Birks model.</p>
Full article ">Figure 37
<p>Event display of a Michel electron candidate shown in a 3D view (<b>left</b>) and with associated waveforms from photon detectors (<b>right</b>). In the right panel, orange and blue indicate the two optically isolated semi-TPCs. The red circles highlight an example in which the two pulses on the photon detectors correspond to the entering muon and the electron resulting from its decay.</p>
Full article ">Figure 38
<p>Charge-based energy spectrum of Michel electron candidates from a sample of reconstructed muon decays using the full data set and automated event reconstruction.</p>
Full article ">Figure 39
<p>Start and end coordinates of stitched tracks in data (high- and low-threshold runs) and simulation.</p>
Full article ">Figure 40
<p><math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> measured for segments of different lengths in low-threshold runs (black dots), high-threshold runs (white dots), and a sample of simulated cosmic rays (red line). The distributions have been fitted with a Gaussian-convolved Moyal function (dashed lines).</p>
Full article ">Figure 41
<p><b>Top</b>: Event display of the anode plane for a selected stopping muon (blue) and subsequent Michel electron (orange). <b>Bottom</b>: <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> for the reconstructed muon track as a function of the residual range <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>Q</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> and the theoretical curve for muons stopping in liquid argon (red line).</p>
Full article ">
24 pages, 2750 KiB  
Article
Exploring New Physics with Deep Underground Neutrino Experiment High-Energy Flux: The Case of Lorentz Invariance Violation, Large Extra Dimensions and Long-Range Forces
by Alessio Giarnetti, Simone Marciano and Davide Meloni
Universe 2024, 10(9), 357; https://doi.org/10.3390/universe10090357 - 5 Sep 2024
Cited by 2 | Viewed by 733
Abstract
DUNE is a next-generation long-baseline neutrino oscillation experiment. It is expected to measure, with unprecedented precision, the atmospheric oscillation parameters, including the CP-violating phase δCP. Moreover, several studies have suggested that its unique features should allow DUNE to probe several [...] Read more.
DUNE is a next-generation long-baseline neutrino oscillation experiment. It is expected to measure, with unprecedented precision, the atmospheric oscillation parameters, including the CP-violating phase δCP. Moreover, several studies have suggested that its unique features should allow DUNE to probe several new physics scenarios. In this work, we explore the performances of the DUNE far detector in constraining new physics if a high-energy neutrino flux is employed (HE-DUNE). We take into account three different scenarios: Lorentz Invariance Violation (LIV), Long-Range Forces (LRFs) and Large Extra Dimensions (LEDs). Our results show that HE-DUNE should be able to set bounds competitive to the current ones and, in particular, it can outperform the standard DUNE capabilities in constraining CPT-even LIV parameters and the compactification radius RED of the LED model. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

Figure 1
<p><math display="inline"><semantics> <msub> <mi>ν</mi> <mi>e</mi> </msub> </semantics></math> appearance (left panels) and <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> disappearance (right panels) probabilities in the presence of off-diagonal CPT violating and conserving LIV parameters. In particular, the top, middle and bottom panels show the effect of <math display="inline"><semantics> <msub> <mi>a</mi> <mrow> <mi>e</mi> <mi>μ</mi> </mrow> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mi>e</mi> <mi>μ</mi> </mrow> </msub> </semantics></math>), <math display="inline"><semantics> <msub> <mi>a</mi> <mrow> <mi>e</mi> <mi>τ</mi> </mrow> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mi>e</mi> <mi>τ</mi> </mrow> </msub> </semantics></math>) and <math display="inline"><semantics> <msub> <mi>a</mi> <mrow> <mi>μ</mi> <mi>τ</mi> </mrow> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mi>μ</mi> <mi>τ</mi> </mrow> </msub> </semantics></math>), respectively. Black lines correspond to the standard oscillation case and red (orange) lines to the probabilities obtained for <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>23</mn> </mrow> </msup> </mrow> </semantics></math> GeV (<math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> <mo>=</mo> <mn>1.0</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>24</mn> </mrow> </msup> </mrow> </semantics></math>). Solid and dashed curves depict the effects of LIV phases (generically indicated <math display="inline"><semantics> <mo>Φ</mo> </semantics></math>) when <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>=</mo> <mn>90</mn> <mo>°</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>, respectively. The grey and green shadowed regions illustrate the standard and the high-energy DUNE flux.</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> (dotted), <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics></math> (solid) and <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> (dashed) allowed contours in the <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>a</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> <mrow> <mo>|</mo> <mo>−</mo> </mrow> <msub> <mo>Φ</mo> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> </mrow> </semantics></math> (left panels) and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>c</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> <mrow> <mo>|</mo> <mo>−</mo> </mrow> <msub> <mo>Φ</mo> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> </mrow> </semantics></math> planes (right panels) for HE-DUNE. The red curves in the bottom panels depict the effect of the addition of the <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>τ</mi> </msub> </semantics></math> appearance channel in the analysis.</p>
Full article ">Figure 3
<p>Same as <a href="#universe-10-00357-f001" class="html-fig">Figure 1</a>, but for the Long-Range Force case. Left (right) plot shows the <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>e</mi> </msub> </semantics></math> appearance (<math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> disappearance) probability. The red, magenta and orange curves refer to the <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>τ</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>μ</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>τ</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>μ</mi> </msub> </mrow> </semantics></math> cases, respectively. The potentials <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> </semantics></math> have been fixed to <math display="inline"><semantics> <mrow> <mn>1.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> </mrow> </semantics></math> eV.</p>
Full article ">Figure 4
<p>HE-DUNE sensitivity to the LRF potentials. Red, magenta and orange lines correspond to the <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>τ</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>μ</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>τ</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>e</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>μ</mi> </msub> </mrow> </semantics></math> cases, respectively.</p>
Full article ">Figure 5
<p>The 95% CL excluded regions in the <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <msup> <mi>Z</mi> <mo>′</mo> </msup> </msub> <mo>−</mo> <msub> <mi>G</mi> <mrow> <mi>α</mi> <mi>β</mi> </mrow> </msub> </mrow> </semantics></math> plane, fixing the LRF potentials to the 95% CL HE-DUNE limits showed in <a href="#universe-10-00357-t003" class="html-table">Table 3</a>. See text for details.</p>
Full article ">Figure 6
<p>Same as <a href="#universe-10-00357-f001" class="html-fig">Figure 1</a> but in the Large Extra Dimension case. Red (orange) curves have been obtained fixing <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>E</mi> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> eV (<math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> eV).</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> (dotted) <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics></math> (solid) and <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> (dashed) allowed regions in the <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>E</mi> <mi>D</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </semantics></math> plane for HE-DUNE.</p>
Full article ">
11 pages, 750 KiB  
Article
New Physics Opportunities at the DUNE Near Detector
by Pantelis Melas, Dimitrios K. Papoulias and Niki Saoulidou
Particles 2024, 7(3), 623-633; https://doi.org/10.3390/particles7030035 - 15 Jul 2024
Viewed by 594
Abstract
Focusing on elastic neutrino–electron scattering events, we explore the prospect of constraining new physics beyond the Standard Model at the DUNE Near Detector (ND). Specifically, we extract the attainable sensitivities for motivated scenarios such as neutrino generalized interactions (NGIs), the sterile neutrino dipole [...] Read more.
Focusing on elastic neutrino–electron scattering events, we explore the prospect of constraining new physics beyond the Standard Model at the DUNE Near Detector (ND). Specifically, we extract the attainable sensitivities for motivated scenarios such as neutrino generalized interactions (NGIs), the sterile neutrino dipole portal and unitarity violation. We furthermore examine the impact of the τ-optimized flux at the DUNE-ND and compare our results with those obtained using the standard CP-optimized flux. We find that our present analysis is probing a previously unexplored region of the parameter space, complementing existing results from cosmological observations and terrestrial experiments. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>Left</b>): Standard Model E<math display="inline"><semantics> <mi>ν</mi> </semantics></math>ES events as a function of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>e</mi> </msub> <msubsup> <mi>θ</mi> <mi>e</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> at DUNE-ND. The results are shown for both CP- and <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-optimized flux configurations and neutrino/antineutrino modes (for details see the main text). (<b>Right</b>): same as the left panel with the event rates being normalized to unity.</p>
Full article ">Figure 2
<p>Typical NGI spectra expected at DUNE-ND for vector (<b>upper left</b>), axial-vector (<b>upper right</b>), scalar/pseudoscalar (<b>lower left</b>) and tensor (<b>lower right</b>) interactions. In the depicted spectra the SM contribution has been included and a comparison between CP- vs. <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-optimized flux driven results is given. Thick (thin) lines correspond to a mediator mass of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mi>X</mi> </msub> <mo>=</mo> <mn>150</mn> <mspace width="3.33333pt"/> <mi>keV</mi> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>430</mn> <mspace width="3.33333pt"/> <mi>MeV</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, and a fixed coupling of <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>X</mi> </msub> <mo>=</mo> <mn>3.5</mn> <mo>·</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Exclusion regions at 90% C.L. for the different <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>,</mo> <mi>P</mi> <mo>,</mo> <mi>V</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mi>T</mi> </mrow> </semantics></math> NGIs extracted from the analysis of DUNE-ND. A comparison between CP- vs. <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-optimized flux driven results is also given.</p>
Full article ">Figure 4
<p>(<b>Left</b>): Expected event rates at DUNE-ND in the presence of active-sterile neutrino transition neutrino magnetic moments. The results are shown for a sterile neutrino mass of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>10</mn> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>50</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> MeV and a fixed magnetic moment of <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mspace width="3.33333pt"/> <msub> <mi>μ</mi> <mi>B</mi> </msub> </mrow> </semantics></math>. A comparison of the expected spectra assuming the CP- and the <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-optimized flux is given. (<b>Right</b>): 90% C.L. DUNE-ND sensitivity on the sterile dipole portal scenario. Thick (thin) exclusion curves correspond to the analysis of upscattering (decay) events.</p>
Full article ">Figure 5
<p>DUNE-ND sensitivity at 90% C.L. on the NU scenario. The results are shown for both CP- and <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-optimized flux configurations, while a comparison with result coming from the analysis of neutrino oscillation data is also given. The (<b>left</b>,<b>right</b>) panels present the results from the E<math display="inline"><semantics> <mi>ν</mi> </semantics></math>ES only (combined E<math display="inline"><semantics> <mi>ν</mi> </semantics></math>ES plus <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>μ</mi> </msub> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msub> <mi>ν</mi> <mi>j</mi> </msub> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math>) analysis.</p>
Full article ">
13 pages, 7107 KiB  
Article
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
by D. Abbaneo, S. Ahmad, R. Albanese, A. Alexandrov, F. Alicante, K. Androsov, A. Anokhina, T. Asada, C. Asawatangtrakuldee, M. A. Ayala Torres, C. Battilana, A. Bay, A. Bertocco, C. Betancourt, D. Bick, R. Biswas, A. Blanco Castro, V. Boccia, M. Bogomilov, D. Bonacorsi, W. M. Bonivento, P. Bordalo, A. Boyarsky, S. Buontempo, M. Campanelli, T. Camporesi, V. Canale, A. Castro, D. Centanni, F. Cerutti, M. Chernyavskiy, K.-Y. Choi, S. Cholak, F. Cindolo, M. Climescu, A. P. Conaboy, G. M. Dallavalle, D. Davino, P. T. de Bryas, G. De Lellis, M. De Magistris, A. De Roeck, A. De Rújula, M. De Serio, D. De Simone, A. Di Crescenzo, D. Di Ferdinando, R. Donà, O. Durhan, F. Fabbri, F. Fedotovs, M. Ferrillo, M. Ferro-Luzzi, R. A. Fini, A. Fiorillo, R. Fresa, W. Funk, F. M. Garay Walls, A. Golovatiuk, A. Golutvin, E. Graverini, A. M. Guler, V. Guliaeva, G. J. Haefeli, C. Hagner, J. C. Helo Herrera, E. van Herwijnen, P. Iengo, S. Ilieva, A. Infantino, A. Iuliano, R. Jacobsson, C. Kamiscioglu, A. M. Kauniskangas, E. Khalikov, S. H. Kim, Y. G. Kim, G. Klioutchnikov, M. Komatsu, N. Konovalova, S. Kuleshov, L. Krzempek, H. M. Lacker, O. Lantwin, F. Lasagni Manghi, A. Lauria, K. Y. Lee, K. S. Lee, S. Lo Meo, V. P. Loschiavo, S. Marcellini, A. Margiotta, A. Mascellani, F. Mei, A. Miano, A. Mikulenko, M. C. Montesi, F. L. Navarria, W. Nuntiyakul, S. Ogawa, N. Okateva, M. Ovchynnikov, G. Paggi, B. D. Park, A. Pastore, A. Perrotta, D. Podgrudkov, N. Polukhina, A. Prota, A. Quercia, S. Ramos, A. Reghunath, T. Roganova, F. Ronchetti, T. Rovelli, O. Ruchayskiy, T. Ruf, M. Sabate Gilarte, Z. Sadykov, M. Samoilov, V. Scalera, W. Schmidt-Parzefall, O. Schneider, G. Sekhniaidze, N. Serra, M. Shaposhnikov, V. Shevchenko, T. Shchedrina, L. Shchutska, H. Shibuya, S. Simone, G. P. Siroli, G. Sirri, G. Soares, J. Y. Sohn, O. J. Soto Sandoval, M. Spurio, N. Starkov, J. Steggemann, I. Timiryasov, V. Tioukov, F. Tramontano, C. Trippl, E. Ursov, A. Ustyuzhanin, G. Vankova-Kirilova, G. Vasquez, V. Verguilov, N. Viegas Guerreiro Leonardo, C. Vilela, C. Visone, R. Wanke, E. Yaman, Z. Yang, C. Yazici, C. S. Yoon, E. Zaffaroni, J. Zamora Saa and the SND@LHC Collaborationadd Show full author list remove Hide full author list
Symmetry 2024, 16(6), 702; https://doi.org/10.3390/sym16060702 - 6 Jun 2024
Viewed by 1483
Abstract
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux [...] Read more.
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux entering the acceptance was also measured. To improve the rejection power of the detector and to increase the fiducial volume, a third Veto plane was recently installed. The energy resolution of the calorimeter system was measured in a test beam. This will help with the identification of νe interactions that can be used to probe charm production in the pseudo-rapidity range of SND@LHC (7.2 < η < 8.4). Events with three outgoing muons have been observed and are being studied. With no vertex in the target, these events are very likely from muon trident production in the rock before the detector. Events with a vertex in the detector could be from trident production, photon conversion, or positron annihilation. To enhance SND@LHC’s physics case, an upgrade is planned for HL-LHC that will increase the statistics and reduce the systematics. The installation of a magnet will allow the separation of νμ from ν¯μ Full article
Show Figures

Figure 1

Figure 1
<p>Schematic layout of the SND@LHC detector. The pseudo-rapidity <math display="inline"><semantics> <mi>η</mi> </semantics></math> values are the limits for particles hitting the lower left and the upper right corner of the ECC. The side view includes an illustration of a simulated <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> CC interaction.</p>
Full article ">Figure 2
<p>Display of a <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> CC candidate event. Hits in the SciFi (grey), and hadronic calorimeter and muon system (green) are shown as blue markers and black bars, respectively, and the line represents the reconstructed muon track. The dotted line in red shows the collision axis. The Veto (red) appears in front of the SciFi.</p>
Full article ">Figure 3
<p>Distribution of SciFi tracks at the most upstream detector plane (<b>left</b>). Distribution of DS tracks at the most upstream detector plane (<b>right</b>). The distributions are normalized to unit integral. Horizontal stripes of lower counts in the central part of the detector are caused by scintillator bar inefficiencies. The red border delimits the region considered for the DS muon flux measurement.</p>
Full article ">Figure 4
<p>The extrapolated position of the reconstructed Scifi track at Veto plane 0 (<b>left</b>) and Veto plane 1 (<b>right</b>) for events with less than 13 fired Veto channels. The red square encloses the fiducial area used for the observation of neutrino interactions.</p>
Full article ">Figure 5
<p>Current Veto system layout with two planes with horizontal bars (<b>left</b>). The upgraded Veto system with a third plane with vertical bars (<b>right</b>).</p>
Full article ">Figure 6
<p>The detector used for the energy calibration.</p>
Full article ">Figure 7
<p>The SciFi response for particles of various energy. The different colors denote the starting point of the shower (blue indicates wall 1, red 2, and pink 3) (<b>left</b>). The energy response of the SciFi vs. the US for 180 <math display="inline"><semantics> <mrow> <mi>Ge</mi> <mspace width="-1.00006pt"/> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> pions (<b>right</b>).</p>
Full article ">Figure 8
<p>Preliminary results for the reconstructed energy from the 2023 test beam.</p>
Full article ">Figure 9
<p>Muon trident–ike events detected at SND@LHC. The event on the left belongs to category (<b>A</b>) (three almost parallel tracks entering the detector). The event on the right belongs to category (<b>B</b>) (an incoming track, a vertex in the target with three outgoing tracks).</p>
Full article ">Figure 10
<p>The proposed AdvSND detectors.</p>
Full article ">Figure 11
<p>The AdvSND-Far detector (<b>left</b>) and its position in TI18 (<b>right</b>).</p>
Full article ">Figure 12
<p><math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> flux in the acceptance of the AdvSND-Far target.</p>
Full article ">Figure 13
<p>The AdvSND-Near detector (<b>left</b>) and a possible location in the UJ57 cavern (<b>right</b>).</p>
Full article ">
10 pages, 679 KiB  
Review
Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors
by Saori Umehara and Hiroyasu Ejiri
Universe 2024, 10(6), 247; https://doi.org/10.3390/universe10060247 - 3 Jun 2024
Viewed by 737
Abstract
Detecting neutrino-less double beta (0νββ) decay with high-sensitivity 0νββ detectors is of current interest for studying the Majorana neutrino’s nature, the neutrino mass (ν-mass), right-handed weak currents (RHCs), and others beyond the Standard [...] Read more.
Detecting neutrino-less double beta (0νββ) decay with high-sensitivity 0νββ detectors is of current interest for studying the Majorana neutrino’s nature, the neutrino mass (ν-mass), right-handed weak currents (RHCs), and others beyond the Standard Model. Many experimental groups have studied 0νββ decay with ν-mass sensitivities on the order of 100 meV and RHC sensitivities on the order of 10 9–10 6, but no clear 0νββ signals have been observed so far in these ν-mass and RHC regions. Thus, several experimental groups are developing higher-sensitivity detectors to explore a smaller ν-mass region around 15–50 meV, which corresponds to the inverted hierarchy ν-mass, and smaller RHC regions on the order of 10 10–10 7 in the near future. Nuclear matrix elements (NMEs) for ν-mass and RHC processes are crucial for extracting the ν-mass and RHCs of particle physics interest from 0νββ experiments. This report briefly reviews detector sensitivities and upper limits on the ν-mass and right-handed currents for several current 0νββ detectors and the ν-mass and RHC sensitivities expected for some near-future ones. Full article
Show Figures

Figure 1

Figure 1
<p>Sensitivities for current experiments and proposed projects. Black dots are for current experiments and red dots are for proposed projects. The plotted points show the sensitivity <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>M</mi> <mi>m</mi> <mrow> <mn>0</mn> <mi>ν</mi> </mrow> </msubsup> <mrow> <mo>|</mo> </mrow> <msup> <mrow> <mo>〈</mo> <msub> <mi>m</mi> <mrow> <mn>0</mn> <mi>ν</mi> </mrow> </msub> <mo>〉</mo> </mrow> <mi>s</mi> </msup> </mrow> </semantics></math> in units of meV.</p>
Full article ">Figure 2
<p>Sensitivities for current experiments and proposed projects. See the <a href="#universe-10-00247-f001" class="html-fig">Figure 1</a> caption. The plots are shown for the sensitivity <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>M</mi> <mi>λ</mi> <mrow> <mn>0</mn> <mi>ν</mi> </mrow> </msubsup> <msup> <mrow> <mo>|</mo> <mrow> <mo>〈</mo> <mi>λ</mi> <mo>〉</mo> </mrow> </mrow> <mi>s</mi> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Sensitivities for current experiments and proposed projects. See the <a href="#universe-10-00247-f001" class="html-fig">Figure 1</a> caption. The plots are shown for the sensitivity <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>M</mi> <mi>η</mi> <mrow> <mn>0</mn> <mi>ν</mi> </mrow> </msubsup> <msup> <mrow> <mo>|</mo> <mrow> <mo>〈</mo> <mi>η</mi> <mo>〉</mo> </mrow> </mrow> <mi>s</mi> </msup> </mrow> </semantics></math>.</p>
Full article ">
17 pages, 5240 KiB  
Article
The Power Board of the KM3NeT Digital Optical Module: Design, Upgrade, and Production
by Sebastiano Aiello, Arnauld Albert, Sergio Alves Garre, Zineb Aly, Antonio Ambrosone, Fabrizio Ameli, Michel Andre, Eleni Androutsou, Mancia Anguita, Laurent Aphecetche, Miguel Ardid, Salva Ardid, Hicham Atmani, Julien Aublin, Francesca Badaracco, Louis Bailly-Salins, Zuzana Bardacova, Bruny Baret, Adriana Bariego, Suzan Basegmez Du Pree, Yvonne Becherini, Meriem Bendahman, Francesco Benfenati, Marouane Benhassi, David M. Benoit, Edward Berbee, Vincent Bertin, Simone Biagi, Markus Boettcher, Danilo Bonanno, Jihad Boumaaza, Mohammed Bouta, Mieke Bouwhuis, Cristiano Bozza, Riccardo Maria Bozza, Horea Branzas, Felix Bretaudeau, Ronald Bruijn, Jurgen Brunner, Riccardo Bruno, Ernst Jan Buis, Raffaele Buompane, Jose Busto, Barbara Caiffi, David Calvo, Stefano Campion, Antonio Capone, Francesco Carenini, Víctor Carretero, Théophile Cartraud, Paolo Castaldi, Vincent Cecchini, Silvia Celli, Luc Cerisy, Mohamed Chabab, Michael Chadolias, Cèdric Champion, Andrew Chen, Silvio Cherubini, Tommaso Chiarusi, Marco Circella, Rosanna Cocimano, João Coelho, Alexis Coleiro, Stephane Colonges, Rosa Coniglione, Paschal Coyle, Alexandre Creusot, Giacomo Cuttone, Richard Dallier, Yara Darras, Antonio De Benedittis, Maarten de Jong, Paul de Jong, Bianca De Martino, Els de Wolf, Valentin Decoene, Riccardo Del Burgo, Ilaria Del Rosso, Umberto Maria Di Cerbo, Letizia Stella Di Mauro, Irene Di Palma, Antonio Diaz, Cristian Díaz Martín, Dídac Diego-Tortosa, Carla Distefano, Alba Domi, Corinne Donzaud, Damien Dornic, Manuel Dörr, Evangelia Drakopoulou, Doriane Drouhin, Rastislav Dvornický, Thomas Eberl, Eliska Eckerova, Ahmed Eddymaoui, Maximilian Eff, Imad El Bojaddaini, Sonia El Hedri, Alexander Enzenhöfer, Giovanna Ferrara, Miroslav Filipovic, Francesco Filippini, Dino Franciotti, Luigi Antonio Fusco, Omar Gabella, Jean-Louis Gabriel, Silvia Gagliardini, Tamas Gal, Juan García Méndez, Alfonso Andres Garcia Soto, Clara Gatius Oliver, Nicole Geißelbrecht, Houria Ghaddari, Lucio Gialanella, Brad K. Gibson, Emidio Giorgio, Isabel Goos, Pranjupriya Goswami, Damien Goupilliere, Sara Rebecca Gozzini, Rodrigo Gracia, Kay Graf, Carlo Guidi, Benoît Guillon, Miguel Gutiérrez, Aart Heijboer, Amar Hekalo, Lukas Hennig, Juan-Jose Hernandez-Rey, Walid Idrissi Ibnsalih, Giulia Illuminati, Peter Jansweijer, Bouke Jisse Jung, Piotr Kalaczyński, Oleg Kalekin, Uli Katz, Amina Khatun, Giorgi Kistauri, Claudio Kopper, Antoine Kouchner, Vincent Kueviakoe, Vladimir Kulikovskiy, Ramaz Kvatadze, Marc Labalme, Robert Lahmann, Giuseppina Larosa, Chiara Lastoria, Alfonso Lazo, Sebastien Le Stum, Grégory Lehaut, Emanuele Leonora, Nadja Lessing, Giuseppe Levi, Miles Lindsey Clark, Pietro Litrico, Fabio Longhitano, Jerzy Mańczak, Jhilik Majumdar, Leonardo Malerba, Fadahat Mamedov, Alberto Manfreda, Martina Marconi, Annarita Margiotta, Antonio Marinelli, Christos Markou, Lilian Martin, Juan Antonio Martínez-Mora, Fabio Marzaioli, Massimo Mastrodicasa, Stefano Mastroianni, Sandra Miccichè, Gennaro Miele, Pasquale Migliozzi, Emilio Migneco, Saverio Minutoli, Maria Lucia Mitsou, Carlos Maximiliano Mollo, Lizeth Morales Gallegos, Michele Morga, Abdelilah Moussa, Ivan Mozun Mateo, Rasa Muller, Paolo Musico, Maria Rosaria Musone, Mario Musumeci, Sergio Navas, Amid Nayerhoda, Carlo Alessandro Nicolau, Bhuti Nkosi, Brían Ó Fearraigh, Veronica Oliviero, Angelo Orlando, Enzo Oukacha, Daniele Paesani, Juan Palacios González, Gogita Papalashvili, Vittorio Parisi, Emilio Pastor, Alice Paun, Gabriela Emilia Pavalas, Giuliano Pellegrini, Santiago Pena Martinez, Mathieu Perrin-Terrin, Jerome Perronnel, Valentin Pestel, Rebekah Pestes, Paolo Piattelli, Chiara Poirè, Vlad Popa, Thierry Pradier, Jorge Prado, Sara Pulvirenti, Gilles Quemener, Carlos Quiroz, Ushak Rahaman, Nunzio Randazzo, Richard Randriatoamanana, Soebur Razzaque, Immacolata Carmen Rea, Diego Real, Giorgio Riccobene, Joshua Robinson, Andrey Romanov, Adrian Saina, Francisco Salesa Greus, Dorothea Franziska Elisabeth Samtleben, Agustín Sánchez Losa, Simone Sanfilippo, Matteo Sanguineti, Claudio Santonastaso, Domenico Santonocito, Piera Sapienza, Jan-Willem Schmelling, Jutta Schnabel, Johannes Schumann, Hester Schutte, Jordan Seneca, Nour-Eddine Sennan, Bastian Setter, Irene Sgura, Rezo Shanidze, Ankur Sharma, Yury Shitov, Fedor Šimkovic, Andreino Simonelli, Anna Sinopoulou, Mikhail Smirnov, Bernardino Spisso, Maurizio Spurio, Dimitris Stavropoulos, Ivan Štekl, Mauro Taiuti, Yahya Tayalati, Hannes Thiersen, Iara Tosta e Melo, Efi Tragia, Benjamin Trocme, Vasileios Tsourapis, Ekaterini Tzamariudaki, Antonin Vacheret, Angel Valer Melchor, Veronica Valsecchi, Vincent van Beveren, Thijs van Eeden, Daan van Eijk, Véronique Van Elewyck, Hans van Haren, Godefroy Vannoye, George Vasileiadis, Francisco Vazquez De Sola, Cedric Verilhac, Alessandro Veutro, Salvatore Viola, Daniele Vivolo, Joern Wilms, Harold Yepes Ramirez, Giorgos Zarpapis, Sandra Zavatarelli, Angela Zegarelli, Daniele Zito, Juan de Dios Zornoza, Juan Zuñiga and Natalia Zywuckaadd Show full author list remove Hide full author list
Electronics 2024, 13(11), 2044; https://doi.org/10.3390/electronics13112044 - 24 May 2024
Viewed by 900
Abstract
The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of [...] Read more.
The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three-inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module also includes calibration instruments and electronics for power, readout, and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and ten prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, which total 828 as of October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. The validation of a pre-production series has been completed, and a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure safe operation at the bottom of the Mediterranean Sea throughout the observatory’s lifespan. Full article
Show Figures

Figure 1

Figure 1
<p>Artistic view of the KM3NeT detector. The illustration is not to scale: sunlight does not reach the depths at which the KM3NeT detector is deployed. The total instrumented volume of the KM3NeT detectors, once completed, will be around 1 km<sup>3</sup> for ARCA and 7 × 10<sup>6</sup> m<sup>3</sup> for ORCA.</p>
Full article ">Figure 2
<p>(<b>Left</b>) Two-dimensional vertical cross-section of the DOM showing the position of the PB and the main elements of the DOM indicated with arrows. (<b>Right</b>) Three-dimensional representation of the DOM.</p>
Full article ">Figure 3
<p>View of the PB of the DOM (upgraded version). The different DC/DC converters to generate the voltages needed by the FPGA and the remaining components of the CLB are marked.</p>
Full article ">Figure 4
<p>Architecture of the PB. The rails, which provide the different power supplies needed by the DOM, are managed by the start sequencer, which generates at startup the monotonic power sequence requested by the CLB FPGA. The monitor subsystem surveys the voltages and currents of the different rails, as well as the temperature sensor installed on the board. The 12 V is filtered at the input and the hysteresis system prevents instabilities while powering up and down the PB.</p>
Full article ">Figure 5
<p>Diagram of the power supply distribution at the DOM. The BOB of the DOM provides 12 volts to the power board, where the power rails for the Nanobeacon, Piezo, CLB and PMTs are generated. Note that two 3.3 V rails are available, one for the CLB and another for the PMTs.</p>
Full article ">Figure 6
<p>Scheme of the Pi filter functioning as input high-frequency filter on the PB.</p>
Full article ">Figure 7
<p>Bode diagram of the Pi filter at the PB to filter out high-frequency noise. From 1 MHz up to 1 GHz, the insertion losses are below −35 dB.</p>
Full article ">Figure 8
<p>Scheme of the hysteresis subsystem. The configuration of the operational amplifier allows it to start at 11 V and to disconnect when the input voltage drops below 9.5 V. In this way, instabilities are prevented at power up and power down.</p>
Full article ">Figure 9
<p>Startup sequence of the PB. The figure shows that the PB indeed generates the various voltages in the sequence needed by the Xilinx FPGA on the CLB.</p>
Full article ">Figure 10
<p>Template of the circuit to read out the current. The output line of a power rail passes through a 20 mΩ resistor, where the drop voltage is amplified in a high-precision amplifier. The output of the amplifier is read out in an ADC channel and sent via I<sup>2</sup>C outside of the PB to the CLB.</p>
Full article ">Figure 11
<p>Stackup of the PB PCB. It contains four layers, all of them being copper and with a width of 35 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. The dielectric material is FR4, with a core of 1000 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m and two external frames of 200 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. For a better representation, the image is not to scale.</p>
Full article ">Figure 12
<p>Picture of a CLB with the test points for production functional tests. The different power rail test points are marked on the picture. A CLB running operational firmware is used as load and for measuring the voltages.</p>
Full article ">
11 pages, 3281 KiB  
Article
A Silicon-Photo-Multiplier-Based Camera for the Terzina Telescope on Board the Neutrinos and Seismic Electromagnetic Signals Space Mission
by Leonid Burmistrov
Instruments 2024, 8(1), 13; https://doi.org/10.3390/instruments8010013 - 20 Feb 2024
Viewed by 1586
Abstract
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above [...] Read more.
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above 100 PeV and ultra-high-energy Earth-skimming neutrinos in the atmosphere, ensuring a large exposure. This work mainly concerns the description of the Cherenkov camera, composed of SiPMs, for the Terzina telescope. To increase the data-taking period, the NUSES orbit will be Sun-synchronous (with a height of about 550 km), thus allowing Terzina to always point toward the dark side of the Earth’s limb. The Sun-synchronous orbit requires small distances to the poles, and as a consequence, we expect an elevated dose to be received by the SiPMs. Background rates due to the dose accumulated by the SiPM would become a dominant contribution during the last two years of the NUSES mission. In this paper, we illustrate the measured effect of irradiance on SiPM photosensors with a variable-intensity beam of 50 MeV protons up to a 30 Gy total integrated dose. We also show the results of an initial study conducted without considering the contribution of solar wind protons and with an initial geometry with Geant4. The considered geometry included an entrance lens as one of the options in the initial design of the telescope. We characterize the SiPM output signal shape with different μ-cell sizes. We describe the developed parametric SiPM simulation, which is a part of the full Terzina simulation chain. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>Left</b>): Schematics of bias (red) and readout of SiPM sensors. We used 100 nF capacitor and 8 kΩ resistor. (<b>Center</b>): SiPM response to a 370 nm laser with ∼25 ps pulse duration (FWHM) in saturation mode (all <span class="html-italic">μ</span>-cells produce an avalanche). The waveform was recorded with a 2 GHz oscilloscope. (<b>Right</b>): Fit with an exponent of the SiPM signal tail. We measured 44 ns decay time for 25 µm cell size.</p>
Full article ">Figure 2
<p>(<b>Left</b>): Measurements with an LED and laser, with/without an integration sphere, of the SiPM signal decay time as a function of the <span class="html-italic">μ</span>-cell size. (<b>Right</b>): Rate at the fixed threshold (7 p.e.’s) as a function of the SiPM signal decay time obtained with the parametric simulation of the SiPM response.</p>
Full article ">Figure 3
<p>(<b>Left top</b>): Examples of simulated waveforms with the OCT processes only (the AP probability is set to 0). (<b>Left bottom</b>): Example of the waveform with the AP process only (the OCT probability is set to 0). (<b>Right</b>): The process history avalanche tree; the black line corresponds to OCT processes, while the red line corresponds to AP processes. For this diagram only, we set the equal probabilities of AP and OCT to 30% and the decay time constant of the <span class="html-italic">μ</span>-cell recovery time to 50 ns. Starting from the third generation, one can see the slight suppression from the right (AP) with respect to the left side (OCT). The AP/OCT probability with respect to the first generation is represented by the Z-axis.</p>
Full article ">Figure 4
<p>(<b>Left</b>): Dose due to trapped protons and electrons in silicon obtained with SPENVIS for 3 years in Terzina’s orbit vs. thickness of fused silica shielding. (<b>Center</b>,<b>Right</b>): Accumulated dose in the aluminum volume located in the vicinity of the camera and its readout electronics as a function of particle energy (for electrons and protons, respectively). The total accumulated dose in 3 years in the aluminum plane is 7.2 Gy for electrons and 3.1 Gy for protons. The electrons after ∼ 1 MeV produce more secondary gammas with high enough energy to deposit a dose in the SiPM camera.</p>
Full article ">Figure 5
<p>(<b>Left</b>): The initial geometry of the Terzina telescope. The input light (green trace) corrects its initial trajectory due to the corrector lens. Then, the primary spherical mirror reflects the photon toward the secondary mirror, which finally focalizes it on the SiPM camera. (<b>Center</b>): Example of background electrons with ∼6 MeV energy, producing Cherenkov light in the corrector lens and inducing dE/dx losses in the SiPM camera. The image represents a 300 <span class="html-italic">μ</span>s snapshot in space. The background electrons are in red, while the Cherenkov light is in green. One can notice that these background photons have a wide angular spread. (<b>Right</b>): Zoom on the SiPM camera showing the aluminum volume, exactly where we count the dose deposition. One can see the camera with separate pixels made of silica.</p>
Full article ">Figure 6
<p>(<b>Left</b>): Photo of the SiPM samples installed in the IFJ PAN proton beam facility. The light spot indicates the proton beam location. (<b>Top</b>): The measured SiPM current as a function of the bias voltage for different accumulated doses (1 × 1 mm<sup>2</sup>, 25 µm cell, without resin). (<b>Bottom</b>): The waveform of the SiPM signal recorded in dark conditions and corresponding to single p.e. signals before (red) and after irradiation (black). The curve in blue shows the output SiPM signal before the breakdown voltage. It demonstrates the stability of the signal baseline.</p>
Full article ">Figure 7
<p>(<b>Left</b>): Amplitude of the signal (arrow) from the 5.6 GeV electrons impinging perpendicularly to the PMT surface. The black curve corresponds to all the measured events, while the red one requires a coincidence with a plastic scintillator, ensuring clean sample of electrons without secondaries. (<b>Right</b>): Amplitude of the signal from the 5.6 GeV electron impinging parallel to the PMT surface.</p>
Full article ">Figure A1
<p>(<b>Left</b>): Single-p.e. response of a SiPM (amplitude spectrum). The first peak corresponds to a pedestal, the second is where only one p.e. is detected, and others are due to the primary p.e. triggering other micro-cells via either optical cross-talk or after-pulses. (<b>Right</b>): For comparison, we show the spectrum of a PMT with its pedestal. The simulation is shown in red, while the black line corresponds to the measurements. The single-photoelectron peak is superimposed with rare contamination due to two primary p.e.’s, as shown by the simulation of the two-p.e. response in the blue line. The number of p.e.’s on the x-axis is after the amplification of the dynode stages (the peak corresponds to a gain of 7.5 × 10<sup>6</sup>).</p>
Full article ">
8 pages, 520 KiB  
Communication
The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments
by Marina Zykova, Elena Voronina, Alexander Chepurnov, Mikhail Leder, Maria Kornilova, Alexey Tankeev, Sergey Vlasov, Alexander Chub, Albert Gangapshev, Ali Gezhaev, Dzhamilya Tekueva and Igor Avetisov
Materials 2024, 17(4), 832; https://doi.org/10.3390/ma17040832 - 9 Feb 2024
Viewed by 1014
Abstract
Ultra-low-radioactivity titanium alloys are promising materials for the manufacture of low-background detectors which are being developed for experiments in astroparticle physics and neutrino astrophysics. Structural titanium is manufactured on an industrial scale from titanium sponge. The ultra-low-background titanium sponge can be produced on [...] Read more.
Ultra-low-radioactivity titanium alloys are promising materials for the manufacture of low-background detectors which are being developed for experiments in astroparticle physics and neutrino astrophysics. Structural titanium is manufactured on an industrial scale from titanium sponge. The ultra-low-background titanium sponge can be produced on an industrial scale with a contamination level of less than 1 mBq/kg of uranium and thorium isotopes. The pathways of contaminants during the industrial production of structural titanium were analyzed. The measurements were carried out using two methods: inductively coupled plasma mass spectroscopy (ICP-MS) and gamma spectroscopy using high-purity germanium detectors (HPGes). It was shown that the level of contamination with radioactive impurities does not increase during the remelting of titanium sponge and mechanical processing. We examined titanium alloy samples obtained at different stages of titanium production, namely an electrode compaction, a vacuum arc remelting with a consumable electrode, and a cold rolling of titanium sheets. We found out that all doped samples that were studied would be a source of uranium and thorium contamination in the final titanium alloys. It has been established that the only product allowed obtaining ultra-low-background titanium was the commercial VT1-00 alloy, which is manufactured without master alloys addition. The master alloys in the titanium production process were found cause U/Th contamination. Full article
Show Figures

Figure 1

Figure 1
<p>Scheme of a low-background gamma spectrometer in passive protection (<b>a</b>) and a sample scheme (mm) (<b>b</b>) for HP-Ge measurements made from a titanium ingot. The copper protection layer is highlighted in pink-brown, the lead layer is highlighted in red, and borated polyethylene is highlighted in white.</p>
Full article ">
20 pages, 1010 KiB  
Article
VLBI Analysis of a Potential High-Energy Neutrino Emitter Blazar
by Janka Kőmíves, Krisztina Éva Gabányi, Sándor Frey and Emma Kun
Universe 2024, 10(2), 78; https://doi.org/10.3390/universe10020078 - 6 Feb 2024
Viewed by 1451
Abstract
Recent studies suggest that high-energy neutrinos can be produced in the jets of blazars, radio-loud active galactic nuclei (AGN) with jets pointing close to the line of sight. Due to the relatively poor angular resolution of current neutrino detectors, several sources can be [...] Read more.
Recent studies suggest that high-energy neutrinos can be produced in the jets of blazars, radio-loud active galactic nuclei (AGN) with jets pointing close to the line of sight. Due to the relatively poor angular resolution of current neutrino detectors, several sources can be regarded as the possible counterpart of a given neutrino event. Therefore, follow-up observations of counterpart candidates in the electromagnetic regime are essential. Since the Very Long Baseline Interferometry (VLBI) technique provides the highest angular resolution to study the radio jets of blazars, a growing number of investigations are being conducted to connect individual blazars to given high-energy neutrino events. We analyzed more than 20 years of available archival VLBI data of the blazar CTD 74, which has been listed as a possible counterpart of a neutrino event. Using cm-wavelength data, we investigated the jet structure, determined the apparent speed of jet components, and the core flux density before and after the neutrino event. Our results indicate stationary jet features and a significant brightening of the core after the neutrino event. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>The <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> </semantics></math> coverages of two observations performed at <math display="inline"><semantics> <mrow> <mn>8.6</mn> </mrow> </semantics></math> GHz. The axes represent the baseline vectors in <span class="html-italic">u</span> and <span class="html-italic">v</span> coordinates in units of million wavelengths. <b>Left</b>: The <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> </semantics></math> coverage of the observation performed on 27 March 2017 with VLBA-only baselines. <b>Right</b>: The <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> </semantics></math> coverage of the observation performed on 18 November 2020 with VLBA and global baselines.</p>
Full article ">Figure 2
<p>VLBI images of CTD 74 obtained through hybrid mapping for the measurements taken in 1996 at 2, 5, and 8 GHz in panels (<b>a</b>–<b>c</b>), respectively. In all maps, the positions of the Gaussian components fitted to the visibility data are marked. (<b>a</b>): The peak intensity is 1160 mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The lowest contours are at <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>3.44</mn> </mrow> </semantics></math> mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The restoring beam size is <math display="inline"><semantics> <mrow> <mn>7.54</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>3.34</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math>. The position angle of the major axis is <math display="inline"><semantics> <mrow> <mi>PA</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mo>.</mo> <msup> <mn>35</mn> <mo>°</mo> </msup> </mrow> </semantics></math>. (<b>b</b>): The peak intensity is 1020 mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The lowest contours are at <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>5.44</mn> </mrow> </semantics></math> mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The restoring beam size is <math display="inline"><semantics> <mrow> <mn>3.92</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>1.44</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>PA</mi> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mo>.</mo> <msup> <mn>63</mn> <mo>°</mo> </msup> </mrow> </semantics></math>. (<b>c</b>): The peak intensity is 746 mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The lowest contours are at <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>4.45</mn> </mrow> </semantics></math> mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The restoring beam size is <math display="inline"><semantics> <mrow> <mn>2.07</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>0.926</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>PA</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mo>.</mo> <msup> <mn>59</mn> <mo>°</mo> </msup> </mrow> </semantics></math>. In each map, the lowest positive contour is drawn at the <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> image noise level, and subsequent contours increase by a factor of two. The restoring beams are shown in the lower left corners of each panel.</p>
Full article ">Figure 3
<p>VLBI image of CTD 74 taken on 12 February 2014 at 8 GHz, created via a Gaussian model fitting to the self-calibrated visibilities. The location and size (FWHM) of the model components are indicated with crosses and circles. The peak intensity is 867 mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The lowest contour is at <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>3.7</mn> </mrow> </semantics></math> mJy <math display="inline"><semantics> <msup> <mi>beam</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> at 3 times the image noise level. The restoring beam size is <math display="inline"><semantics> <mrow> <mn>1.0</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>0.77</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>PA</mi> <mo>=</mo> <mo>−</mo> <mn>78</mn> <mo>.</mo> <msup> <mn>8</mn> <mo>°</mo> </msup> </mrow> </semantics></math>. It is shown in the lower left corner of the image.</p>
Full article ">Figure 4
<p>Separation of the jet components from the core as a function of time at 8 GHz. The apparent proper motion of J1 and J2 components that could consistently be identified through most of the epochs was modeled with a linear function. These functions are indicated by the dashed red and solid yellow lines, respectively. The blue vertical line marks the time of the neutrino event EHEA2012-05-23 (23 May 2012).</p>
Full article ">Figure 5
<p>The position angles of components J2 (green) and S2 (magenta) as a function of time. The angles are measured from north through east. The average and standard deviation of the position angles are indicated. The blue vertical line marks the time of the neutrino event EHEA2012-05-23 (23 May 2012).</p>
Full article ">Figure 6
<p>Top: Flux density of the core component as a function of time at 8 GHz (black squares). Bottom: Peak intensity (purple circles) in each image restored with the same beam (see details in the text). The errors of the peak intensities are comparable to the size of the symbol. The blue vertical line marks the time of the neutrino event EHEA2012-05-23 (23 May 2012).</p>
Full article ">Figure 7
<p>Brightness temperature of the core component as a function of time as measured at 8 GHz. The blue vertical line marks the time of the neutrino event EHEA2012-05-23 (23 May 2012). The red horizontal line indicates the value of the equipartition brightness temperature <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>·</mo> <msup> <mn>10</mn> <mn>10</mn> </msup> </mrow> </semantics></math> K [<a href="#B55-universe-10-00078" class="html-bibr">55</a>].</p>
Full article ">Figure 8
<p>The radio light curve of CTD 74 at 15 GHz as measured by the OVRO monitoring program (red crosses, [<a href="#B7-universe-10-00078" class="html-bibr">7</a>]) along with the flux densities of the core component obtained from the 8 GHz VLBI measurements (black squares). The time of the neutrino event EHEA2012-05-23 is indicated by the blue vertical line.</p>
Full article ">
6 pages, 515 KiB  
Proceeding Paper
Development of a Clock Generation and Time Distribution System for Hyper-Kamiokande
by Lucile Mellet, Mathieu Guigue, Boris Popov, Stefano Russo and Vincent Voisin
Phys. Sci. Forum 2023, 8(1), 72; https://doi.org/10.3390/psf2023008072 - 18 Jan 2024
Viewed by 785
Abstract
The construction of the next-generation water Cherenkov detector Hyper-Kamiokande (HK) has started. It will have about a ten times larger fiducial volume compared to the existing Super-Kamiokande detector, as well as increased detection performances. The data collection process is planned from 2027 onwards. [...] Read more.
The construction of the next-generation water Cherenkov detector Hyper-Kamiokande (HK) has started. It will have about a ten times larger fiducial volume compared to the existing Super-Kamiokande detector, as well as increased detection performances. The data collection process is planned from 2027 onwards. Time stability is crucial, as detecting physics events relies on reconstructing Cherenkov rings based on the coincidence between the photomultipliers. The above requires a distributed clock jitter at each endpoint that is smaller than 100 ps. In addition, since this detector will be mainly used to detect neutrinos produced by the J-PARC accelerator in Tokai, each event needs to be timed-tagged with a precision better than 100 ns, with respect to UTC, in order to be associated with a proton spill from J-PARC or the events observed in other detectors for multi-messenger astronomy. The HK collaboration is in an R&D phase and several groups are working in parallel for the electronics system. This proceeding will present the studies performed at LPNHE (Paris) related to a novel design for the time synchronization system in Kamioka with respect to the previous KamiokaNDE series of experiments. We will discuss the clock generation, including the connection scheme between the GNSS receiver (Septentrio) and the atomic clock (free-running Rubidium), the precise calibration of the atomic clock and algorithms to account for errors on satellites orbits, the redundancy of the system, and a two-stage distribution system that sends the clock and various timing-sensitive information to each front-end electronics module, using a custom protocol. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

Figure 1
<p>Detailed scheme of the proposed timing system for HK (redundancy not included).</p>
Full article ">Figure 2
<p>Overlapping Allan standard deviation (ADEV) for the free Rb clock and the GNSS receiver.</p>
Full article ">Figure 3
<p>Evolution of time differences between the Rubidium clock (deterministic drift removed) and French UTC via GPS signals over 6 days.</p>
Full article ">
14 pages, 12785 KiB  
Article
Investigating the Potential of Perovskite Nanocrystal-Doped Liquid Scintillator: A Feasibility Study
by Na-Ri Kim, Kyung-Kwang Joo and Hyun-Gi Lee
Sensors 2023, 23(23), 9490; https://doi.org/10.3390/s23239490 - 29 Nov 2023
Viewed by 1126
Abstract
Liquid scintillators are extensively employed as targets in neutrino experiments and in medical radiography. Perovskite nanocrystals are recognized for their tunable emission spectra and high photoluminescence quantum yields. In this study, we investigated the feasibility of using perovskites as an alternative to fluor, [...] Read more.
Liquid scintillators are extensively employed as targets in neutrino experiments and in medical radiography. Perovskite nanocrystals are recognized for their tunable emission spectra and high photoluminescence quantum yields. In this study, we investigated the feasibility of using perovskites as an alternative to fluor, a substance that shifts the wavelengths. The liquid scintillator candidates were synthesized by doping perovskite nanocrystals with emission wavelengths of 450, 480, and 510 nm into fluor PPO with varying nanocrystal concentrations in a toluene solvent. The several properties of the perovskite nanocrystal-doped liquid scintillator were measured and compared with those of a secondary wavelength shifter, bis-MSB. The emission spectra of the perovskite nanocrystal-doped liquid scintillator exhibited a distinct monochromatic wavelength, indicating energy transfer from PPO to the perovskite nanocrystals. Using a 60Co radioactive source setup with two photomultiplier tubes (PMTs), the light yields, pulse shape, and wavelength shifts of the scintillation events were measured. The light yields were evaluated based on the observed Compton edges from γ-rays, and compared across the synthesized samples. A decrease (or increase) in area-normalized PMT pulse height was observed at higher perovskite nanocrystal (or PPO) concentrations. The results demonstrated the sufficient potential of perovskite nanocrystals as an alternative to traditional wavelength shifters in a liquid scintillator. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Figure 1
<p>Scintillation light emitted by the PVLS samples under UV excitation: (<b>a</b>) eight samples with different PPO concentrations (PPO only); (<b>b</b>) nine samples with different concentration of bis-MSB (PPO fixed + bis-MSB); (<b>c</b>–<b>e</b>) nine samples with different concentrations of perovskite nanocrystals with 450, 480, and 510 nm (PPO fixed + perovskite). The PPO concentration is kept constant at 3 g/L for (<b>b</b>–<b>f</b>) Schematic structure of the perovskite solvent, fluor, and the conventional wavelength shifter used to synthesized the samples.</p>
Full article ">Figure 2
<p>Emission spectra measurements of the synthesized LS samples shown in <a href="#sensors-23-09490-t001" class="html-table">Table 1</a> and <a href="#sensors-23-09490-t002" class="html-table">Table 2</a>. Labels such as A1, A5, or A8 (or B1, B5, B9) refer to the samples with different concentrations of fluor (or wavelength shifter) listed in <a href="#sensors-23-09490-t001" class="html-table">Table 1</a> (or <a href="#sensors-23-09490-t002" class="html-table">Table 2</a>): (<b>a</b>) Emission spectra for different PPO concentrations of 0.5, 3.0, and 10 g/L; (<b>b</b>) Emission spectrum with different bis-MSB concentrations; (<b>c</b>–<b>e</b>) emission spectra for different perovskite nanocrystal concentrations at 450, 480 and 510 nm. In (<b>b</b>–<b>e</b>), Spectra for wavelength shifter concentrations of 0.5, 5.0 and 50 mg/L. The PPO concentration was fixed at 3.0 g/L. The excitation wavelength for photoluminescence emission is 340 nm.</p>
Full article ">Figure 3
<p>Emission spectra of bis-MSB and perovskite nanocrystals functioning as wavelength shifters. The wavelength shifter is dissolved in the solvent, toluene; (<b>a</b>) emission spectra of bis-MSB; (<b>b</b>) emission spectra of perovskite nanocrystals with 450, 480, and 510 nm. The color corresponding to each wavelength is shown as a translucent region.</p>
Full article ">Figure 4
<p>(<b>a</b>) Experimental setup used for measuring the scintillation light emitted from the synthesized samples. A vial containing the LS is situated in the center of the PTFE coupler. The response of the synthesized samples is measured using two adjacent 2-inch PMTs; (<b>b</b>) a short-pass filter is attached to the PMT on the right side to check for any shift in the emission spectrum; (<b>c</b>) quantum efficiency and transmittance values for the PMT H7195 and the 425 nm short-pass filter are depicted as a function of wavelength.</p>
Full article ">Figure 5
<p>Observed scintillation light yield of the samples A5, B9, C9, D9, and E9, obtained from two H7195 PMTs using the setup shown in <a href="#sensors-23-09490-f004" class="html-fig">Figure 4</a>a. A clear PE correlation is observed between the two PMTs by coincidence of the scintillation event. The inset presents a 1D projection plot for the observed PE. The upper (lower) inset corresponds to the PE distribution of PMT-B (PMT-A). Each PE distribution is fitted to characterize the light yield.</p>
Full article ">Figure 6
<p>Area-normalized waveforms with different PPO, bis-MSB, and perovskite nanocrystal concentrations: (<b>a</b>) Observed pulse shape with varying PPO concentrations; (<b>b</b>) observed pulse shape with varying bis-MSB concentrations; (<b>c</b>–<b>e</b>) observed pulse shape with different perovskite quantum dot concentrations. Perovskite nanocrystals of 450, 480, and 510 nm doped in sample groups C, D, and E. Except for group A, the PPO concentration was constant (3 g/L). The waveform was obtained by averaging the area-normalized pulse shapes of 10,000 scintillation events.</p>
Full article ">Figure 7
<p>PE ratio observed between PMT-A and PMT-B using a 425 nm short-pass filter at different fluor concentrations: (<b>a</b>) measurement at the different bis-MSB concentration without filter for comparison; (<b>b</b>) measurement with different PPO concentrations; (<b>c</b>) measurement with different bis-MSB concentrations; (<b>d</b>–<b>f</b>) measurement with different perovskite nanocrystal concentrations of 450, 480, and 510 nm. The distribution shifts to the left as the concentration of the wavelength shifter increases. This shift is attributed to the use of the short-pass filter on the PMT-B side, which selectively allows wavelengths shorter than 425 nm to pass through, affecting the distribution. The PE ratio of (<b>b</b>–<b>f</b>) were obtained with the filter.</p>
Full article ">Figure 8
<p>Featured properties of the synthesized LS samples with different PPO (wavelength shifter) concentrations are presented in (<b>a</b>–<b>e</b>). The scintillation light yield obtained from the Compton edge is presented in (<b>a</b>,<b>b</b>). (<b>c</b>,<b>d</b>) shows the area-normalized pulse-height obtained from the accumulated pulse height. The relative shift in the wavelength of the scintillation light is observed using a short-pass filter, as shown in (<b>e</b>,<b>f</b>). The QE-corrected light yield is given in (<b>g</b>,<b>h</b>). Uncertainties were determined from the deviations of values obtained from repeated measurements.</p>
Full article ">
12 pages, 5273 KiB  
Article
A Compact Particle Detector for Space-Based Applications: Development of a Low-Energy Module (LEM) for the NUSES Space Mission
by Riccardo Nicolaidis, Francesco Nozzoli, Giancarlo Pepponi and on behalf of the NUSES Collaboration
Instruments 2023, 7(4), 40; https://doi.org/10.3390/instruments7040040 - 13 Nov 2023
Cited by 3 | Viewed by 1971
Abstract
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of relatively low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. [...] Read more.
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of relatively low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays, for the detection and study of Cerenkov light emitted by Extensive Air Showers generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and to 0.1–10 MeV photons and will include the Low Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of relatively low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range along the Low Earth Orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this Physics channel of interest could give new insight into the understanding of complex phenomena such as eventual correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating van Allen belts. With its compact sizes and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen Belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature of space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10 × 10 × 10 cm3, and in its “active collimation” approach dealing with the problem of multiple scattering at these very relatively low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from the Monte Carlo simulation (Geant4) will be shown. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) The NUSES platform can be visualized in 3D. The Terzina detector faces the Earth’s limb and measures fluorescence light from Extensive Air Showers (EAS) or Upgoing Air Showers (UAS) that are caused by the decay of the neutrino <math display="inline"><semantics> <mi>τ</mi> </semantics></math>. The Zirè-LEM is shown as a small purple box. The detector is positioned outside the satellite’s tray and is pointing towards the zenith. Lastly, Zirè is located inside the tray of the satellite and has three windows facing external space. (<b>b</b>) A visual representation of the Zirè-LEM detector. The 8 mm thick aluminum shield is depicted in the picture as a dark surface. Its goal is to reduce the occupancy of the veto scintillators, absorbing a large fraction of sub-MeV electrons. The particles that are the target are those whose incident directions allow them to enter the detector through the five holes shown in the picture.</p>
Full article ">Figure 2
<p>In the upper part of the figure, the expanded visualization of the LEM detector and its internal components. From the upper-left part of the figure: the aluminum shield has five holes/channels for the detector. The five channels are then evident in the active collimator, which is made of a plastic scintillator. In the core of the detector, the 5 Δ<span class="html-italic">E</span>-<span class="html-italic">E</span> detectors are positioned. After that, a calorimeter made of plastic scintillator is added to expand the energy range. In the lower part of the detector, there is an ACD made of plastic scintillator, followed by the bottom section of the aluminum shield. Below, the images describe the assembling and the geometry of the Low Energy Module (LEM) detector.</p>
Full article ">Figure 3
<p>Schematics of the LEM detection approach; the green track is an example of good events (fully confined), and the red track represents an event to be rejected (not fully confined). The yellow star markers represent the energy deposited by the charged particle into the sensitive elements of the detector. Good events are characterized by a partial energy deposit in the thinner SD (100 μm) and a complete energy release in the thicker SD (300 μm) or, eventually, in the plastic calorimeter. In the second case, since the energy resolution of the plastic scintillator is worse, energy measurement will be affected by a larger uncertainty. Nevertheless, only when the energy release caused by the particle is confined within the detector an accurate PID is possible. Events to be rejected are characterized by an energy release in at least one of the two ACDs, or in more than two SDs not aligned on the same axis (e.g., two SDs that belong to different independent channels). Nonetheless, MIP particles (e.g., atmospheric muons on the ground), corresponding to crossing particles, will be used for calibration purposes.</p>
Full article ">Figure 4
<p>The picture shows the event display of the GEANT4 simulation of the Zire-LEM detector. (<b>Left Panel</b>) Visualization of 10-proton events (particle’s trajectory is depicted by the blue line) with kinetic energy uniformly extracted between 3 and 50 MeV. (<b>Right Panel</b>) Visualization of 10-electron events (particle’s trajectory is depicted by the red lines) with kinetic energy randomly extracted between 0.1 and 5 MeV. The green lines are photons produced during the electron’s bremsstrahlung. Only in one case (displayed on the right-hand side of the left panel), the photon is re-absorbed via the photoelectric effect. It is possible to see that for electrons, the multiple scattering phenomenon is more impacting. This provides a graphical visualization of the need for an innovative active collimation technique for detecting the particle’s direction at relatively low energy.</p>
Full article ">Figure 5
<p>(<b>a</b>) PID capability for events impinging on the top 100 μm silicon detector and fully contained within the LEM. (<b>b</b>) Particle tagging efficiency for the three families of particles: electrons, protons, and alpha particles. For each particle family (Monte Carlo truth) reported on the horizontal axis, the tagging efficiency is reported on each histogram bin.</p>
Full article ">Figure 6
<p>Angular resolution and Field Of View (FOV) of the LEM for protons on the left and electrons on the right. The different colors encode the pair in the Δ<span class="html-italic">E</span>-<span class="html-italic">E</span> spectrometer that is triggered. Since the detector exhibits axial symmetry, different colors are used to distinguish between adjacent lateral channels (in blue or red) and the central channel (in black). It is possible to see, on the right panel, the important effect of the electron’s multiple scattering. Some electrons hitting the aluminum shield are then scattered in the direction encoded by one of the five channels.</p>
Full article ">Figure 7
<p>Geometric factor estimation for the LEM.</p>
Full article ">Figure 8
<p>Estimated rate map having considered a satellite polar orbit, Sun-synchronous 97° and 550 km of altitude. For the conversion from isotropic fluxes to rates we used an ≃0.2 cm<sup>2</sup>sr geometric factor. The thicker contour in the map represents the region inside which the LEM will operate in the histogram-based mode.</p>
Full article ">Figure 9
<p>Mounting arrangement of the 5 pairs of silicon detectors within the LEM. On the right-hand side of the picture, some pictures of the PIPS detectors manufactured by AMETEK/ORTEC and by MIRION/CANBERRA are reported.</p>
Full article ">Figure 10
<p>Some preliminary measurements were performed using the DAQ manufactured by Nuclear Instruments SRL. For these measurements, a fully depleted silicon detector with an embedded CSA was used (AP-CAM25 manufactured by MIRION). The spectra were acquired by exposing the detector to different radioactive sources. As indicated in the legend, the red curve represents the Compton edge of the 662 keV gamma-ray from the decay of <math display="inline"><semantics> <msup> <mrow/> <mn>137</mn> </msup> </semantics></math>Cs. The blue spectrum displays the peak at 59.5 keV from the decay of the <math display="inline"><semantics> <msup> <mrow/> <mn>241</mn> </msup> </semantics></math>Am radioactive source. The black spectrum was obtained by exposing the silicon detector to both radioactive sources, <math display="inline"><semantics> <msup> <mrow/> <mn>241</mn> </msup> </semantics></math>Am and <math display="inline"><semantics> <msup> <mrow/> <mn>137</mn> </msup> </semantics></math>Cs.</p>
Full article ">
Back to TopTop