Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = MEMS accelerometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8935 KiB  
Article
Use of Attitude and Heading Reference System (AHRS) to Analyze the Impact of Safety Nets on the Accelerations Occurring in the Human Body During a Collision
by Mariusz Gołkowski, Jerzy Kwaśniewski, Maciej Roskosz, Paweł Mazurek, Szymon Molski and Józef Grzybowski
Sensors 2024, 24(23), 7431; https://doi.org/10.3390/s24237431 - 21 Nov 2024
Viewed by 275
Abstract
The article presents accelerations occurring in the human body when falling onto a safety net. An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for objects, including pitch, roll, and yaw. These sensors are made [...] Read more.
The article presents accelerations occurring in the human body when falling onto a safety net. An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for objects, including pitch, roll, and yaw. These sensors are made of microelectromechanical systems (MEMS) gyroscopes, accelerometers, and magnetometers. Usually, they are used in aircraft flight instruments due to their high precision. In the present article, these sensors were used to test safety nets, protecting people or objects falling from heights. The measurement was made for two heights: 6 m and 3.5 m. During the research, a type of mannequin that is a representative model of the human body for the largest segment of the adult population was used. The measurement was carried out using two independent measurement systems. One recorded the accelerations at the chest of the tested object, while the sensors of the second system were placed at the head, arms, and legs. The compiled measurement results were related to the permissible acceleration values that do not threaten human health and life. Full article
Show Figures

Figure 1

Figure 1
<p>Detailed view of the safety system with safety nets.</p>
Full article ">Figure 2
<p>General view of the safety system with safety nets.</p>
Full article ">Figure 3
<p>Hybrid III 95th test dummy.</p>
Full article ">Figure 4
<p>View of a set of modules connected by the CAN bus of the PRP-W2 system. From the left: data recorder, AHRS system, air data computer, GPS module, analogue input module, PWM input module.</p>
Full article ">Figure 5
<p>View of the PCDL-01 data recorder.</p>
Full article ">Figure 6
<p>View of the PCAI-01 analogue input module.</p>
Full article ">Figure 7
<p>GUARDA recorder placed on the parachute jumper’s chest.</p>
Full article ">Figure 8
<p>Arrangement of the elements of the PRP-W2 measurement system.</p>
Full article ">Figure 9
<p>Installation of the GUARDA recorder on the chest.</p>
Full article ">Figure 10
<p>Measurement conditions.</p>
Full article ">Figure 11
<p>Acceleration variation distribution for the center of gravity.</p>
Full article ">Figure 12
<p>Acceleration variation distribution for the head sensor.</p>
Full article ">Figure 13
<p>Acceleration variation distribution for the center of gravity.</p>
Full article ">Figure 14
<p>Acceleration variation distribution for the head sensor.</p>
Full article ">Figure 15
<p>Results of the PRP-W2 system tests—dump no. 1; H = 6.0 m.</p>
Full article ">Figure 16
<p>Results of the PRP-W2 system tests—dump no. 2; H = 3.5 m.</p>
Full article ">Figure 17
<p>Results of the PRP-W2 system tests—comparison for center of gravity and head.</p>
Full article ">Figure 18
<p>Acceleration variation distribution for the GUARDA system—dump no. 1; H = 6.0 m.</p>
Full article ">Figure 19
<p>Acceleration variation distribution for the GUARDA system—dump no. 2; H = 3.5 m.</p>
Full article ">Figure 20
<p>Modulus of acceleration variation a<sub>tot</sub> distribution for the GUARDA system.</p>
Full article ">
26 pages, 1397 KiB  
Article
Inertial Measurement Unit Self-Calibration by Quantization-Aware and Memory-Parsimonious Neural Networks
by Matteo Cardoni, Danilo Pietro Pau, Kiarash Rezaei and Camilla Mura
Electronics 2024, 13(21), 4278; https://doi.org/10.3390/electronics13214278 - 31 Oct 2024
Viewed by 547
Abstract
This paper introduces a methodology to compensate inertial Micro-Electro-Mechanical System (IMU-MEMS) time-varying calibration loss, induced by stress and aging. The approach relies on a periodic assessment of the sensor through specific stimuli, producing outputs which are compared with the response of a high-precision [...] Read more.
This paper introduces a methodology to compensate inertial Micro-Electro-Mechanical System (IMU-MEMS) time-varying calibration loss, induced by stress and aging. The approach relies on a periodic assessment of the sensor through specific stimuli, producing outputs which are compared with the response of a high-precision sensor, used as ground truth. At any re-calibration iteration, differences with respect to the ground truth are approximated by quantization-aware trained tiny neural networks, allowing calibration-loss compensations. Due to the unavailability of aging IMU-MEMS datasets, a synthetic dataset has been produced, taking into account aging effects with both linear and nonlinear calibration loss. Also, field-collected data in conditions of thermal stress have been used. A model relying on Dense and 1D Convolution layers was devised and compensated for an average of 1.97 g and a variance of 1.07 g2, with only 903 represented with 16 bit parameters. The proposed model can be executed on an intelligent signal processing inertial sensor in 126.4 ms. This work represents a step forward toward in-sensor machine learning computing through integrating the computing capabilities into the sensor package that hosts the accelerometer and gyroscope sensing elements. Full article
Show Figures

Figure 1

Figure 1
<p>Design schema of silicon comb-like structure, used for accelerometers and gyroscopes.</p>
Full article ">Figure 2
<p>Compensation block incorporating the tiny neural network. The subtraction block indicates the element-wise subtraction of the compensation error to the uncompensated output.</p>
Full article ">Figure 3
<p>Golden Reference and MEMS response data collection procedure. Element-wise subtraction of each couple of responses (from the MEMS and from the GR) is used to compute the compensation error for each response.</p>
Full article ">Figure 4
<p>Tiny neural network inference procedure, with MEMS uncompensated responses as input and compensation error as output.</p>
Full article ">Figure 5
<p>Re-calibration system architecture featuring periodic network updates. The compensation block is the one from <a href="#electronics-13-04278-f002" class="html-fig">Figure 2</a>. The subtraction operator indicates the element-wise subtraction of each response in output from the compensation block to the Golden Reference responses.</p>
Full article ">Figure 6
<p>Architectural diagram of the Neural Network training implemented inside a Microcontroller or a Microprocessor.</p>
Full article ">Figure 7
<p>Simulated MEMS model illustration.</p>
Full article ">Figure 8
<p>Example MEMS and GR model responses to impulse, square and sine training functions. The MEMS model for these measurements is the resulting model after 3 days of simulated time.</p>
Full article ">Figure 9
<p>One of the LSM6DSV IMU device under test acceleration readings on the X, Y, and Z axes, along with the measured temperature during a thermal cycle. Acceleration measurement error is visibly temperature dependent.</p>
Full article ">Figure 10
<p>The calibration and re-calibration process. Stimuli could be applied at the beginning of each period (of 1 day of duration) to perform calibration and/or re-calibration.</p>
Full article ">Figure 11
<p>MCP of the models as the number of re-calibration iterations changes, from <a href="#sec8dot2dot1-electronics-13-04278" class="html-sec">Section 8.2.1</a>. The error bars represent the maximum and minimum compensation percentage.</p>
Full article ">Figure 12
<p>MCP, separately for each model, as the number of re-calibration iterations changes, from <a href="#sec8dot2dot1-electronics-13-04278" class="html-sec">Section 8.2.1</a>. The error bars represent the maximum and minimum compensation percentages.</p>
Full article ">Figure 13
<p>An example of the MEMS, GR, and calibrated responses to the test sequence of 4 days and 5 s of <span class="html-italic">X</span>-axis data utilizing Quantized Conv1D-Dense as the (re-)calibration model.</p>
Full article ">
40 pages, 22416 KiB  
Article
In-Depth Analysis of Low-Cost Micro Electromechanical System (MEMS) Accelerometers in the Context of Low Frequencies and Vibration Amplitudes
by Piotr Emanuel Srokosz, Ewa Daniszewska, Jakub Banach and Michał Śmieja
Sensors 2024, 24(21), 6877; https://doi.org/10.3390/s24216877 - 26 Oct 2024
Viewed by 669
Abstract
Shock and vibration hazards to civil structures are common and come not only from earthquakes but most often from mining operations or foundation work involving the installation of piles using hammer-driving and vibrating technology. The purpose of this study is to present test [...] Read more.
Shock and vibration hazards to civil structures are common and come not only from earthquakes but most often from mining operations or foundation work involving the installation of piles using hammer-driving and vibrating technology. The purpose of this study is to present test methods for low-cost MEMS accelerometers in terms of their selection for low-amplitude acceleration vibration-prone object-monitoring systems. Tests of 24 commercially available digital accelerometers were carried out on a custom-built test bench, selecting four models for detailed tests conducted on a specially built precision vibration table capable of inflicting accelerations at frequencies of 1–2 Hz, using displacements as small as a few micrometers. The analysis of the results was based, among other things, on a modified method of determining the signal-to-noise ratio (SNR) and also on the idea of the effective number of bits (ENOB). The results of the analysis showed that among low-cost MEMS accelerometers, there are some that are successfully suitable for the monitoring and warning of excessive vibration hazards in situations where objects are extremely sensitive to such impacts (e.g., treatment rooms in hospitals). Examples of accelerometers capable of detecting harmonic vibrations with amplitudes as small as 10 mm/s2 or impulsive shocks with amplitudes of at least 70 mm/s2 are indicated. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Figure 1
<p>Allan variance interpretation (S—slope factor) [<a href="#B38-sensors-24-06877" class="html-bibr">38</a>].</p>
Full article ">Figure 2
<p>Experimental setup for AV measurements. 1—accelerometer; 2—dual-channel data acquisition unit; 3—power supply; 4—wooden board; 5—polyurethane foam. The resonant frequency of the system as a mass-spring model is about 44.7 Hz.</p>
Full article ">Figure 3
<p>Block diagram of a single MEMS sensor data acquisition unit.</p>
Full article ">Figure 4
<p>Harmonic signal with linearly decreasing amplitude (S1).</p>
Full article ">Figure 5
<p>Harmonic signal with linearly decreasing amplitude (S2).</p>
Full article ">Figure 6
<p>Step signal with linearly decreasing amplitude (P1).</p>
Full article ">Figure 7
<p>Step signal with linearly decreasing amplitude (P2).</p>
Full article ">Figure 8
<p>Exciter scheme (modified 200 W wideband loudspeaker). 1—NdFeB magnet; 2—hall sensor; 3—aluminum support frame; 4—base (steel ballast braced with plaster); 5—steel frame; 6—accelerometer mounting platform (plastic composite covered with shielding copper); 7—copper coil; 8—ferrite magnet; 9—loudspeaker diaphragm.</p>
Full article ">Figure 9
<p>Vibration table with various MEMS placement configurations.</p>
Full article ">Figure 10
<p>Block diagram of exciter driver.</p>
Full article ">Figure 11
<p>Example modules with MEMS accelerometers.</p>
Full article ">Figure 12
<p>Allan variance for grade A accelerometers (x-axis).</p>
Full article ">Figure 13
<p>Allan variance for grade A accelerometers (y-axis).</p>
Full article ">Figure 14
<p>Allan variance for grade A accelerometers (z-axis).</p>
Full article ">Figure 15
<p>S1 signal recorded by ADXL313.</p>
Full article ">Figure 16
<p>S2 signal recorded by ADXL313.</p>
Full article ">Figure 17
<p>P1 signal recorded by ADXL313.</p>
Full article ">Figure 18
<p>P2 signal recorded by ADXL313.</p>
Full article ">Figure 19
<p>Filtered S1 signal recorded by LSM6DSVX16.</p>
Full article ">Figure 20
<p>Filtered S2 signal recorded by LSM6DSVX16.</p>
Full article ">Figure 21
<p>SNR for S1 signal.</p>
Full article ">Figure 22
<p>SNR for S2 signal.</p>
Full article ">Figure 23
<p>MSNR for S1 signal.</p>
Full article ">Figure 24
<p>MSNR for S2 signal.</p>
Full article ">Figure 25
<p>ENOB evaluated for S2 signal.</p>
Full article ">Figure 26
<p>DR evaluated for S2 signal.</p>
Full article ">Figure 27
<p>P1 signal recorded by LSM6DSVX16.</p>
Full article ">Figure 28
<p>P2 signal recorded by LSM6DSVX16.</p>
Full article ">Figure 29
<p>P2 signal recorded by MMA8452Q.</p>
Full article ">Figure 30
<p>P1 signal recorded by ISM330DHCX (y-axis excitation; pulses recorded in the z-axis).</p>
Full article ">Figure 31
<p>Construction of the Trauma Center of the Regional Specialized Hospital in Olsztyn (Poland); event recorder module installed on the wall of the hospital building adjacent to the construction site.</p>
Full article ">Figure A1
<p>Allan variance for grade B accelerometers (x-axis).</p>
Full article ">Figure A2
<p>Allan variance for grade B accelerometers (y-axis).</p>
Full article ">Figure A3
<p>Allan variance for grade B accelerometers (z-axis).</p>
Full article ">Figure A4
<p>Allan variance for grade C accelerometers (x-axis).</p>
Full article ">Figure A5
<p>Allan variance for grade C accelerometers (y-axis).</p>
Full article ">Figure A6
<p>Allan variance for grade C accelerometers (z-axis).</p>
Full article ">Figure A7
<p>S1 signal recorded by BMI270.</p>
Full article ">Figure A8
<p>S2 signal recorded by BMI270.</p>
Full article ">Figure A9
<p>S1 signal recorded by IIM42352.</p>
Full article ">Figure A10
<p>S2 signal recorded by IIM42352.</p>
Full article ">Figure A11
<p>S1 signal recorded by ISM330DHCX.</p>
Full article ">Figure A12
<p>S2 signal recorded by ISM330DHCX.</p>
Full article ">Figure A13
<p>S1 signal recorded by KX132.</p>
Full article ">Figure A14
<p>S2 signal recorded by KX132.</p>
Full article ">Figure A15
<p>S1 signal recorded by LIS2DW12.</p>
Full article ">Figure A16
<p>S2 signal recorded by LIS2DW12.</p>
Full article ">Figure A17
<p>S1 signal recorded by LSM6DSVX16.</p>
Full article ">Figure A18
<p>S2 signal recorded by LSM6DSVX16.</p>
Full article ">Figure A19
<p>S1 signal recorded by MMA8452Q.</p>
Full article ">Figure A20
<p>S2 signal recorded by MMA8452Q.</p>
Full article ">Figure A21
<p>P1 signal recorded by BMI270.</p>
Full article ">Figure A22
<p>P2 signal recorded by BMI270.</p>
Full article ">Figure A23
<p>P1 signal recorded by IIM42352.</p>
Full article ">Figure A24
<p>P2 signal recorded by IIM42352.</p>
Full article ">Figure A25
<p>P1 signal recorded by ISM330DHCX.</p>
Full article ">Figure A26
<p>P2 signal recorded by ISM330DHCX.</p>
Full article ">Figure A27
<p>P1 signal recorded by KX132.</p>
Full article ">Figure A28
<p>P2 signal recorded by KX132.</p>
Full article ">Figure A29
<p>P1 signal recorded by LIS2DW12.</p>
Full article ">Figure A30
<p>P2 signal recorded by LIS2DW12.</p>
Full article ">Figure A31
<p>P1 signal recorded by LSM6DSVX16.</p>
Full article ">Figure A32
<p>P2 signal recorded by LSM6DSVX16.</p>
Full article ">Figure A33
<p>P1 signal recorded by MMA8452Q.</p>
Full article ">Figure A34
<p>P2 signal recorded by MMA8452Q.</p>
Full article ">
22 pages, 8060 KiB  
Article
Total Least Squares In-Field Identification for MEMS-Based Inertial Measurement Units
by Massimo Duchi and Edoardo Ida’
Robotics 2024, 13(11), 156; https://doi.org/10.3390/robotics13110156 - 23 Oct 2024
Viewed by 984
Abstract
Inertial Measurement Units are widely used in various applications and, hardware-wise, they primarily consist of a tri-axial accelerometer and a tri-axial gyroscope. For low-end commercial employments, the low cost of the device is crucial: this makes MEMS-based sensors a popular choice in this [...] Read more.
Inertial Measurement Units are widely used in various applications and, hardware-wise, they primarily consist of a tri-axial accelerometer and a tri-axial gyroscope. For low-end commercial employments, the low cost of the device is crucial: this makes MEMS-based sensors a popular choice in this context. However, MEMS-based transducers are prone to significant, non-uniform and environmental-condition-dependent systematic errors, that require frequent re-calibration to be eliminated. To this end, identification methods that can be performed in-field by non-expert users, without the need for high-precision or costly equipment, are of particular interest. In this paper, we propose an in-field identification procedure based on the Total Least Squares method for both tri-axial accelerometers and gyroscopes. The proposed identification model is linear and requires no prior knowledge of the parameters to be identified. It enables accelerometer calibration without the need for specific reference surface orientation relative to Earth’s gravity and allows gyroscope calibration to be performed independently of accelerometer data, without requiring the sensor’s sensitive axes to be aligned with the rotation axes during calibration. Experiments conducted on NXP sensors FXOS8700CQ and FXAS21002 demonstrated that using parameters identified by our method reduced cross-validation standard deviations by about two orders of magnitude compared to those obtained using manufacturer-provided parameters. This result indicates that our method enables the effective calibration of IMU sensor parameters, relying only on simple 3D-printed equipment and significantly improving IMU performance at minimal cost. Full article
Show Figures

Figure 1

Figure 1
<p>Fixed frame (F-frame) and Mobile frame (M-frame) at the beginning of the calibration procedure.</p>
Full article ">Figure 2
<p>3D-printed equipment used for the tests, including a rectangular prism housing (<b>a</b>), an 18-faced housing (<b>b</b>), a non-sloped reference (<b>c</b>) and a sloped reference (<b>d</b>).</p>
Full article ">Figure 3
<p>First six orientations of the re-orientation scheme for the prismatic housing.</p>
Full article ">Figure 4
<p>IMU mounted inside the prismatic housing (<b>a</b>) and inside the 18-faced housing (<b>b</b>).</p>
Full article ">Figure 5
<p>Experimental equipment in the initial orientation of the procedure for the <span class="html-italic">Sloped 18-faced</span> setup.</p>
Full article ">Figure A1
<p>Flowchart illustrating the key steps of the calibration procedure.</p>
Full article ">
17 pages, 7212 KiB  
Article
Zigbee-Based Wireless Sensor Network of MEMS Accelerometers for Pavement Monitoring
by Nicky Andre Prabatama, Mai Lan Nguyen, Pierre Hornych, Stefano Mariani and Jean-Marc Laheurte
Sensors 2024, 24(19), 6487; https://doi.org/10.3390/s24196487 - 9 Oct 2024
Viewed by 2606
Abstract
In this paper, we propose a wireless sensor network for pavement health monitoring exploiting the Zigbee technology. Accelerometers are adopted to measure local accelerations linked to pavement vibrations, which are then converted into displacements by a signal processing algorithm. Each device consists of [...] Read more.
In this paper, we propose a wireless sensor network for pavement health monitoring exploiting the Zigbee technology. Accelerometers are adopted to measure local accelerations linked to pavement vibrations, which are then converted into displacements by a signal processing algorithm. Each device consists of an on-board unit buried in the roadway and a roadside unit. The on-board unit comprises a microcontroller, an accelerometer and a Zigbee module that transfers acceleration data wirelessly to the roadside unit. The roadside unit consists of a Raspberry Pi, a Zigbee module and a USB Zigbee adapter. Laboratory tests were conducted using a vibration table and with three different accelerometers, to assess the system capability. A typical displacement signal from a five-axle truck was applied to the vibration table with two different displacement peaks, allowing for two different vehicle speeds. The prototyped system was then encapsulated in PVC packaging, deployed and tested in a real-life road situation with a fatigue carousel featuring rotating truck axles. The laboratory and on-road measurements show that displacements can be estimated with an accuracy equivalent to that of a reference sensor. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) System Architecture; (<b>b</b>) prototype tested in the laboratory.</p>
Full article ">Figure 2
<p>(<b>a</b>) Block diagram of the embedded unit; (<b>b</b>) embedded unit prototype.</p>
Full article ">Figure 3
<p>(<b>a</b>) Block diagram of the roadside unit; (<b>b</b>) roadside unit system.</p>
Full article ">Figure 4
<p>Five-axle truck displacement signals used for the vibrating table.</p>
Full article ">Figure 5
<p>(<b>a</b>) Vibrating pot test; (<b>b</b>) vibrating table test.</p>
Full article ">Figure 6
<p>Description of the five steps adopted to extract the displacement time histories from raw acceleration data.</p>
Full article ">Figure 7
<p>Vibrating table tests: (<b>a</b>) example of raw acceleration signal; (<b>b</b>) velocity history after the first integration; (<b>c</b>) displacement history after the second time integration; (<b>d</b>) final displacement history provided by the Hilbert transform.</p>
Full article ">Figure 8
<p>Vibrating table tests featuring a peak displacement of 0.25 mm and a vehicle speed of 45 km/h: (<b>a</b>) exemplary raw ADXL355 acceleration signal; (<b>b</b>–<b>d</b>) displacement histories obtained with the adopted signal processing procedure applied to measurements collected with the three MEMS accelerometers.</p>
Full article ">Figure 9
<p>Vibrating table tests featuring a peak displacement of 0.5 mm and a vehicle speed of 45 km/h: (<b>a</b>) exemplary raw MS1002 acceleration signal; (<b>b</b>–<b>d</b>) displacement histories obtained with the adopted signal processing procedure applied to measurements collected with the three MEMS accelerometers.</p>
Full article ">Figure 10
<p>Vibrating table tests featuring a peak displacement of 0.25 mm and a vehicle speed of 18 km/h: (<b>a</b>) raw ADXL355 acceleration signal; (<b>b</b>–<b>d</b>) displacement histories obtained with measurements collected with the three MEMS accelerometers.</p>
Full article ">Figure 11
<p>Vibrating table tests featuring a peak displacement of 0.25 mm and a vehicle speed of 92 km/h: (<b>a</b>) raw ADXL355 acceleration signal; (<b>b</b>–<b>d</b>) displacement histories obtained with measurements collected with the three MEMS accelerometers.</p>
Full article ">Figure 12
<p>Designed and fabricated PVC packaging, and assembly of the embedded unit.</p>
Full article ">Figure 13
<p>(<b>a</b>) Device installation scheme; (<b>b</b>) installation of the device in the pavement.</p>
Full article ">Figure 14
<p>(<b>a</b>) Position of the roadside unit on the test track; (<b>b</b>) accelerated pavement testing setup.</p>
Full article ">Figure 15
<p>(<b>a</b>) Raw acceleration, and (<b>b</b>) displacement time history obtained with the reported signal processing strategy.</p>
Full article ">
18 pages, 18528 KiB  
Article
Data Poisoning Attack against Neural Network-Based On-Device Learning Anomaly Detector by Physical Attacks on Sensors
by Takahito Ino, Kota Yoshida, Hiroki Matsutani and Takeshi Fujino
Sensors 2024, 24(19), 6416; https://doi.org/10.3390/s24196416 - 3 Oct 2024
Viewed by 2958
Abstract
In this paper, we introduce a security approach for on-device learning Edge AIs designed to detect abnormal conditions in factory machines. Since Edge AIs are easily accessible by an attacker physically, there are security risks due to physical attacks. In particular, there is [...] Read more.
In this paper, we introduce a security approach for on-device learning Edge AIs designed to detect abnormal conditions in factory machines. Since Edge AIs are easily accessible by an attacker physically, there are security risks due to physical attacks. In particular, there is a concern that the attacker may tamper with the training data of the on-device learning Edge AIs to degrade the task accuracy. Few risk assessments have been reported. It is important to understand these security risks before considering countermeasures. In this paper, we demonstrate a data poisoning attack against an on-device learning Edge AI. Our attack target is an on-device learning anomaly detection system. The system adopts MEMS accelerometers to measure the vibration of factory machines and detect anomalies. The anomaly detector also adopts a concept drift detection algorithm and multiple models to accommodate multiple normal patterns. For the attack, we used a method in which measurements are tampered with by exposing the MEMS accelerometer to acoustic waves of a specific frequency. The acceleration data falsified by this method were trained on an anomaly detector, and the result was that the abnormal state could not be detected. Full article
Show Figures

Figure 1

Figure 1
<p>Autoencoder-based anomaly detector.</p>
Full article ">Figure 2
<p>Overview of ELM.</p>
Full article ">Figure 3
<p>Overview of concept drift detection algorithm. (<b>a</b>) Trained centroids are sequentially calculated during training. (<b>b</b>) Test centroids are sequentially calculated during inference. (<b>c</b>) When concept drift occurs, the test centroid moves away from the train centroid. (<b>d</b>) When the test centroid exceeds the threshold, a concept drift is detected and a new instance is created. The new instance computes its own train centroid from the latest data (training data).</p>
Full article ">Figure 4
<p>Expected drift rate behavior. (<b>a</b>) Concept drift does not occur; (<b>b</b>) Concept drift occurs.</p>
Full article ">Figure 5
<p>Behavior of multi-instance on-device learning anomaly detector.</p>
Full article ">Figure 6
<p>Behavior of anomaly detector without attack.</p>
Full article ">Figure 7
<p>Behavior of anomaly detector with data poisoning attack.</p>
Full article ">Figure 8
<p>Experimental setup. (<b>a</b>) Overall setup; (<b>b</b>) Cooling fan and speaker.</p>
Full article ">Figure 9
<p>Block diagram of experimental setup.</p>
Full article ">Figure 10
<p>Observed frequency spectrum while both cooling fans are stopped.</p>
Full article ">Figure 11
<p>Relationship between irradiated acoustic wave frequency (in audible range), observed peak frequency, and amplitude.</p>
Full article ">Figure 12
<p>Relationship between irradiated acoustic wave frequency (in ultrasonic range), observed peak frequency, and amplitude.</p>
Full article ">Figure 13
<p>Effects of sound pressure for observed peak amplitude (frequency of acoustic waves: 3000 Hz).</p>
Full article ">Figure 14
<p>Samples of observed data. (<b>a</b>) Normal state; (<b>b</b>) Abnormal state; (<b>c</b>) Poisoned state.</p>
Full article ">Figure 15
<p>Error and drift rate without data poisoning attack.</p>
Full article ">Figure 16
<p>Error and drift rate with data poisoning attack.</p>
Full article ">
14 pages, 4775 KiB  
Article
A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement
by Jiacheng Li, Rui Feng, Xiaoyi Wang, Huiliang Cao, Keru Gong and Huikai Xie
Micromachines 2024, 15(9), 1173; https://doi.org/10.3390/mi15091173 - 22 Sep 2024
Viewed by 870
Abstract
This paper reports the design, fabrication, and characterization of a MEMS capacitive accelerometer with an asymmetrical comb finger arrangement. By optimizing the ratio of the gaps of a rotor finger to its two adjacent stator fingers, the sensitivity of the accelerometer is maximized [...] Read more.
This paper reports the design, fabrication, and characterization of a MEMS capacitive accelerometer with an asymmetrical comb finger arrangement. By optimizing the ratio of the gaps of a rotor finger to its two adjacent stator fingers, the sensitivity of the accelerometer is maximized for the same comb finger area. With the fingers’ length, width, and depth at 120 μm, 4 μm, and 45 μm, respectively, the optimized finger gap ratio is 2.5. The area of the proof mass is 750 μm × 560 μm, which leads to a theoretical thermomechanical noise of 9 μg/√Hz. The accelerometer has been fabricated using a modified silicon-on-glass (SOG) process, in which a groove is pre-etched into the glass to hold the metal electrode. This SOG process greatly improves the silicon-to-glass bonding yield. The measurement results show that the resonant frequency of the accelerometer is about 2.05 kHz, the noise floor is 28 μg/√Hz, and the nonlinearity is less than 0.5%. Full article
(This article belongs to the Special Issue MEMS Sensors and Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Stereo structures of the accelerometer; (<b>b</b>) detail of the accelerometer structures.</p>
Full article ">Figure 2
<p>(<b>a</b>) The accelerometer structure topology; (<b>b</b>) equivalent circuit diagram of the accelerometer.</p>
Full article ">Figure 3
<p>The relationship between the capacitive sensitivity and the parameters <span class="html-italic">d</span> and <span class="html-italic">p</span> in the case of a certain chip area.</p>
Full article ">Figure 4
<p>(<b>a</b>) Block diagram of the phase-locked amplifier circuit; (<b>b</b>) actual manufactured PCB board.</p>
Full article ">Figure 5
<p>SOG process flow chart: (<b>a</b>) etching of the back cavity of the silicon wafer; (<b>b</b>) etching of the groove of the glass wafer; (<b>c</b>) fabrication of metal electrode; (<b>d</b>) the anodic bonding step; (<b>e</b>) thinning of the silicon wafer; (<b>f</b>) Etching of comb finger and spring structures.</p>
Full article ">Figure 6
<p>(<b>a</b>) SEM photograph of the accelerometer; (<b>b</b>) SEM photograph of comb fingers.</p>
Full article ">Figure 7
<p>Dynamic test system.</p>
Full article ">Figure 8
<p>Frequency response of the accelerometer.</p>
Full article ">Figure 9
<p>Quasi-static test system.</p>
Full article ">Figure 10
<p>Quasi-static response of the accelerometer.</p>
Full article ">Figure 11
<p>Spectrogram of the accelerometer output.</p>
Full article ">Figure 12
<p>Allan standard deviation curve.</p>
Full article ">
18 pages, 6172 KiB  
Article
Integrated Amorphous Carbon Film Temperature Sensor with Silicon Accelerometer into MEMS Sensor
by Qi Zhang, Xiaoya Liang, Wenzhe Bi, Xing Pang and Yulong Zhao
Micromachines 2024, 15(9), 1144; https://doi.org/10.3390/mi15091144 - 12 Sep 2024
Viewed by 3259
Abstract
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer [...] Read more.
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer chip. The a-C film was deposited by DC magnetron sputtering and linear ion beam, respectively. The nanostructures of two types of films were observed by SEM and TEM. The cluster size of sp2 was analyzed by Raman, and the content of sp2 and sp3 of the carbon film was analyzed by XPS. It showed that the DC-sputtered amorphous carbon film, which had a higher sp2 content, had better temperature-sensitive properties. Then, an integrated sensor chip was designed, and the structure of the accelerometer was simulated and optimized to determine the final sizes. The temperature sensor module had a sensitivity of 1.62 mV/°C at the input voltage of 5 V with a linearity of 0.9958 in the temperature range of 20~150 °C. The sensitivity of the sensor is slightly higher than that of traditional metal film temperature sensors. The accelerometer module had a sensitivity of 1.4 mV/g/5 V, a nonlinearity of 0.38%, a repeatability of 1.56%, a total thermomechanical noise of 509 μg over the range of 1 to 20 Hz, and an average thermomechanical noise density of 116 µg/√Hz, which is smaller than the input acceleration amplitude for testing sensitivity. Under different temperatures, the performance of the accelerometer was tested. This research provided significant insights into the convenient procedure to develop a high-performance, economical temperature–accelerometer-integrated MEMS sensor. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 3rd Edition)
Show Figures

Figure 1

Figure 1
<p>The SEM image of the amorphous carbon. (<b>a</b>) Prepared by DC sputtering; (<b>b</b>) prepared by ion beam.</p>
Full article ">Figure 2
<p>The Raman spectrum of the amorphous carbon. (<b>a</b>) Prepared by DC sputtering; (<b>b</b>) prepared by ion beam.</p>
Full article ">Figure 3
<p>The XPS spectrum of the amorphous carbon. (<b>a</b>) Prepared by DC sputtering; (<b>b</b>) prepared by ion beam.</p>
Full article ">Figure 4
<p>Test results of temperature-resistance characteristics of amorphous carbon thin films. (<b>a</b>) Prepared by DC sputtering (Sample A); (<b>b</b>) prepared by ion beam (Sample B).</p>
Full article ">Figure 5
<p>Temperature dependence of electrical conductivity of a-C and a-C:H films. (<b>a</b>) Prepared by DC sputtering (Sample A); (<b>b</b>) prepared by ion beam (Sample B) at the temperature range of 0~50 °C. (<b>c</b>) Prepared by ion beam (Sample B) at the temperature range of 50~100 °C. (<b>d</b>) Prepared by ion beam (Sample B) at the temperature range of 100~120 °C.</p>
Full article ">Figure 6
<p>(<b>a</b>) Theoretical Wheatstone bridge circuit for temperature sensors; (<b>b</b>) actual Wheatstone bridge circuit for temperature sensors.</p>
Full article ">Figure 7
<p>Design parameters of a-C temperature sensor.</p>
Full article ">Figure 8
<p>Temperature sensor processing flow diagrams. (<b>a</b>) Photolithography; (<b>b</b>) a-C deposition; (<b>c</b>) lift off.</p>
Full article ">Figure 9
<p>(<b>a</b>) Schematic of accelerometer; (<b>b</b>) zoomed-in view of R<sub>2</sub>; (<b>c</b>) zoomed-in view of R<sub>1</sub>; (<b>d</b>) zoomed-in view of temperature sensor; (<b>e</b>) TEM picture of the surface of the a-C temperature sensor. (<b>f</b>) read-out circuit.</p>
Full article ">Figure 10
<p>(<b>a</b>) Finite element simulation analysis of embedded cross-beam sensitive structures; (<b>b</b>) Stress simulation of sensitive beams with different sizes of accelerometer.</p>
Full article ">Figure 11
<p>Integrated temperature sensor and accelerometer processing flow diagrams. (<b>a</b>) Ion injection; (<b>b</b>) resistor etching; (<b>c</b>) deposited insulation layer; (<b>d</b>) back cavity etching; (<b>e</b>) glass corrosion; (<b>f</b>) silicon-glass bonding; (<b>g</b>) thermistor deposition; (<b>h</b>) metal wire etching; (<b>i</b>) electrode sputtering; (<b>j</b>) front structure release.</p>
Full article ">Figure 12
<p>Test results of a-C temperature sensor modules with integrated sensor. (<b>a</b>) Read-out circuit of temperature sensor modules; (<b>b</b>) the output voltage versus temperature of temperature sensor modules.</p>
Full article ">Figure 13
<p>Static test results of the accelerometer.</p>
Full article ">Figure 14
<p>The noise power density spectrum of accelerometer modules of integrated sensor.</p>
Full article ">Figure 15
<p>Temperature effect on the accelerometer of the integrated sensor. (<b>a</b>) The output voltage versus acceleration in the temperature range of 20 °C to 150 °C; (<b>b</b>) the sensitivity and linearity of the accelerometer in the temperature range of 20 °C to 150 °C.</p>
Full article ">Figure 16
<p>Sensor output after temperature compensation.</p>
Full article ">
8 pages, 411 KiB  
Article
Modeling Electronic Devices with a Casimir Cavity
by G. Jordan Maclay
Physics 2024, 6(3), 1124-1131; https://doi.org/10.3390/physics6030070 - 10 Sep 2024
Viewed by 3130
Abstract
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive [...] Read more.
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive forces and torques have been produced using various configurations of media and materials. Just a few electronic devices have been explored that utilize the electrical properties of the Casimir effect. Recently, experimental results were presented that described the operation of an electronic device that employed a Casimir cavity attached to a standard MIM (metal–insulator–metal) structure. The DC (direct current) conductance of the novel MIM device was enhanced by the attached cavity and found to be directly proportional to the capacitance of the attached cavity. The phenomenological model proposed assumed that the cavity reduced the vacuum fluctuations, which resulted in a reduced injection of carriers. The analysis presented here indicates that the optical cavity actually enhances vacuum fluctuations, which would predict a current in the opposite direction from that observed. Further, the vacuum fluctuations near the electrode are shown to be approximately independent of the size of the optical cavity, in disagreement with the experimental data which show a dependence on the size. Thus, the proposed mechanism of operation does not appear correct. A more detailed theoretical analysis of these devices is needed, in particular, one that uses real material parameters and computes the vacuum fluctuations for the entire device. Such an analysis would reveal how these devices operate and might suggest design principles for a new genre of electronic devices that make use of vacuum fluctuations. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

Figure 1
<p>The MIMOC (metal–insulator–metal optical cavity) device. An optical cavity (OC) of thickness <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </semantics></math> made from PMMA (polymethyl methacralate, spin coated photoresist) or SiO<sub>2</sub> is bounded by an aluminum mirror and a MIM interface. The latter consists of a palladium electrode of thickness <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>p</mi> </mrow> </semantics></math>, a layer of insulator of thickness <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>I</mi> </mrow> </semantics></math>, and a thick nickel electrode. A current is positive if it flows from the Pd electrode to the grounded Ni electrode.</p>
Full article ">Figure 2
<p>The conductance in mS of the device shown in <a href="#physics-06-00070-f001" class="html-fig">Figure 1</a>, as a function of 100/thickness <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </semantics></math> of the optical cavity made from PMMA. <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </semantics></math> varies from 33 nm to 1100 nm for the data shown. The data are taken from Figure 3b of Ref. [<a href="#B7-physics-06-00070" class="html-bibr">7</a>] and Figure 4a of Ref. [<a href="#B8-physics-06-00070" class="html-bibr">8</a>]. The solid line just connects the data points. A linear fit <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0.3519</mn> <mi>x</mi> </mrow> </semantics></math> through the origin is also shown (as the dotted line) along with the coefficient of determination (<math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math>).</p>
Full article ">Figure 3
<p>The dimensionless normalized variance in energy, <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>12</mn> <mo>/</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <msup> <mi>v</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mfenced separators="" open="&#x2329;" close="&#x232A;"> <msup> <mrow> <mo>(</mo> <mo>Δ</mo> <mi>U</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfenced> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <msup> <mo form="prefix">csc</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> <mo>/</mo> <mi>a</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, from Equation (<a href="#FD8-physics-06-00070" class="html-disp-formula">8</a>) as a function of the location within the cavity <span class="html-italic">z</span> nm for a cavity of width <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> nm. The variance increases without bound at the locations of the plates, <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> nm and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> nm.</p>
Full article ">Figure 4
<p>Normalized variance in energy for cavities of width for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>33</mn> </mrow> </semantics></math> nm (black dashed) and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1100</mn> </mrow> </semantics></math> nm (in red). Near the origin, the variances are almost identical.</p>
Full article ">Figure 5
<p>Fractional difference in variance for optical cavities of width 33 nm and 1100 nm, corresponding to data in <a href="#physics-06-00070-f004" class="html-fig">Figure 4</a>. The fractional difference is calculated as the ratio of the difference of the variances at 33 and 1100 nm to the variance at 33 nm.</p>
Full article ">
17 pages, 7194 KiB  
Article
Development of a MEMS Piezoresistive High-g Accelerometer with a Cross-Center Block Structure and Reliable Electrode
by Cun Li, Ran Zhang, Le Hao and Yulong Zhao
Sensors 2024, 24(17), 5540; https://doi.org/10.3390/s24175540 - 27 Aug 2024
Viewed by 3569
Abstract
A MEMS piezoresistive sensor for measuring accelerations greater than 100,000 g (about 106 m/s2) is described in this work. To enhance the performance of the sensor, specifically widening its measurement range and natural frequency, a cross-beam construction with a center [...] Read more.
A MEMS piezoresistive sensor for measuring accelerations greater than 100,000 g (about 106 m/s2) is described in this work. To enhance the performance of the sensor, specifically widening its measurement range and natural frequency, a cross-beam construction with a center block was devised, and a Wheatstone bridge was formed by placing four piezoresistors at the ends of the fixed beams to convert acceleration into electricity. The location of the varistor was determined using the finite element approach, which yielded the optimal sensitivity. Additionally, a reliable Pt-Ti-Pt-Au electrode was designed to solve the issue of the electrode failing under high impact and enhancing the stability of the ohmic contact. The accelerometer was fabricated using MEMS technology, and the experiment with a Hopkinson pressure bar and hammering was conducted, and the bias stability was measured. It had a sensitivity of 1.06 μV/g with good linearity. The simulated natural frequency was 633 kHz The test result revealed that the accelerometer can successfully measure an acceleration of 100,000 g. Full article
(This article belongs to the Special Issue Advanced Sensors in MEMS: 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>Model of sensor.</p>
Full article ">Figure 2
<p>Simplified double-ended solidly supported beam.</p>
Full article ">Figure 3
<p>(<b>a</b>) Maximum stress and design boundary intersection cloud diagram; (<b>b</b>) natural frequency and design boundary intersection cloud diagram.</p>
Full article ">Figure 4
<p>(<b>a</b>) Dimensions to meet stress requirements; (<b>b</b>) dimensions to meet natural frequency requirements.</p>
Full article ">Figure 5
<p>Stress–strain simulation cloud at 100,000 g: (<b>a</b>) stress map; (<b>b</b>) strain cloud diagram.</p>
Full article ">Figure 6
<p>Sensor chip modal simulation cloud of each order: (<b>a</b>) first-order mode; (<b>b</b>) second-order mode; (<b>c</b>) third-order mode; (<b>d</b>) fourth-order mode.</p>
Full article ">Figure 7
<p>Resistor arrangement.</p>
Full article ">Figure 8
<p>Stress profile on the upper surface of the chip.</p>
Full article ">Figure 9
<p>Process flow diagram of acceleration sensor chip.</p>
Full article ">Figure 10
<p>Chips under the microscope.</p>
Full article ">Figure 11
<p>Types of I–V curves for four metals forming metal–semiconductor contacts: (<b>a</b>) directly after sputtering; (<b>b</b>) after one week of resting.</p>
Full article ">Figure 12
<p>The packaging scheme.</p>
Full article ">Figure 13
<p>Sensor hammer test: (<b>a</b>) hammering test bench; (<b>b</b>) test boards; (<b>c</b>) test circuit working block diagram.</p>
Full article ">Figure 14
<p>Hammering test output signal (250 mV is the amplified output signal, and 0.08 ms is the duration).</p>
Full article ">Figure 15
<p>Sensor output voltage fitting curve.</p>
Full article ">Figure 16
<p>Zero drift of high g-value accelerometer.</p>
Full article ">Figure 17
<p>Hopkinson bar test.</p>
Full article ">Figure 18
<p>Hopkinson rod test signal output: (<b>a</b>) 100,000 g acceleration impact (107 mV is the output voltage, 20 μs is the duration of a single pulse.); (<b>b</b>) 150,000 g acceleration impact (2 μs is the signal pulse width).</p>
Full article ">
24 pages, 5248 KiB  
Article
Resonant MEMS Accelerometer with Low Cross-Axis Sensitivity—Optimized Based on BP and NSGA-II Algorithms
by Jiaqi Miao, Pinghua Li, Mingchen Lv, Suzhen Nie, Yang Liu, Ruimei Liang, Weijiang Ma and Xuye Zhuang
Micromachines 2024, 15(8), 1049; https://doi.org/10.3390/mi15081049 - 18 Aug 2024
Cited by 1 | Viewed by 3932
Abstract
This article proposes a low cross-axis sensitivity resonant MEMS(Micro-Electro-Mechanical Systems) accelerometer that is optimized based on the BP and NSGA-II algorithms. When resonant accelerometers are used in seismic monitoring, automotive safety systems, and navigation applications, high immunity and low cross-axis sensitivity are required. [...] Read more.
This article proposes a low cross-axis sensitivity resonant MEMS(Micro-Electro-Mechanical Systems) accelerometer that is optimized based on the BP and NSGA-II algorithms. When resonant accelerometers are used in seismic monitoring, automotive safety systems, and navigation applications, high immunity and low cross-axis sensitivity are required. To improve the high immunity of the accelerometer, a coupling structure is introduced. This structure effectively separates the symmetric and antisymmetric mode frequencies of the DETF resonator and prevents mode coupling. To obtain higher detection accuracy and low cross-axis sensitivity, a decoupling structure is introduced. To find the optimal dimensional parameters of the decoupled structure, the BP and NSGA-II algorithms are used to optimize the dimensional parameters of the decoupled structure. The optimized decoupled structure has an axial stiffness of 6032.21 N/m and a transverse stiffness of 6.29 N/m. The finite element analysis results show that the sensitivity of the accelerometer is 59.1 Hz/g (Y-axis) and 59 Hz/g (X-axis). Cross-axis sensitivity is 0.508% (Y-axis) and 0.339% (X-axis), which is significantly lower than most resonant accelerometers. The coupling structure and optimization method proposed in this paper provide a new solution for designing resonant accelerometers with high interference immunity and low cross-axis sensitivity. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of the overall structure of an SRA with a coupled structure.</p>
Full article ">Figure 2
<p>Biaxial resonant accelerometer working principle.</p>
Full article ">Figure 3
<p>First-order mode shapes for bending vibration of double-ended solidly supported beams.</p>
Full article ">Figure 4
<p>Schematic diagram of DETF resonator with coupling structure.</p>
Full article ">Figure 5
<p>Comparison of theoretical and finite element analysis results: (<b>a</b>) Length of the resonant beam; (<b>b</b>) Width of the resonant beam; (<b>c</b>) Coupling beam length; (<b>d</b>) Coupling beam width.</p>
Full article ">Figure 5 Cont.
<p>Comparison of theoretical and finite element analysis results: (<b>a</b>) Length of the resonant beam; (<b>b</b>) Width of the resonant beam; (<b>c</b>) Coupling beam length; (<b>d</b>) Coupling beam width.</p>
Full article ">Figure 6
<p>Comparison of resonance frequency between conventional DETF resonator and DETF resonator with coupling structure: (<b>a</b>) Conventional DETF resonator antisymmetric mode intrinsic frequency 279.810 kHz; (<b>b</b>) Conventional DETF resonator symmetrical mode intrinsic frequency 283.750 kHz; (<b>c</b>) DETF resonator with coupled structure antisymmetric mode intrinsic frequency 176.060 kHz; (<b>d</b>) Symmetric modal intrinsic frequency of DETF resonator with coupled structure 330.530 kHz.</p>
Full article ">Figure 7
<p>Effect of resonant beam length l<sub>x</sub> and coupled beam length l<sub>o</sub> on resonant frequency and frequency difference Δf: (<b>a</b>) Length of resonant beam l<sub>x</sub>; (<b>b</b>) Coupling beam length l<sub>o</sub>.</p>
Full article ">Figure 8
<p>Schematic diagram of decoupling structure.</p>
Full article ">Figure 9
<p>Finite element analysis results of decoupling structure axial stiffness and lateral stiffness: (<b>a</b>) Axial stiffness k<sub>y</sub> = 5642.54 N/m; (<b>b</b>) Lateral stiffness k<sub>x</sub> = 7.04 N/m.</p>
Full article ">Figure 10
<p>Influence of dimensional parameters of decoupled structures on axial and lateral stiffness: (<b>a</b>) Decoupling beam length; (<b>b</b>) Decoupling beam width; (<b>c</b>) Decoupling gap.</p>
Full article ">Figure 11
<p>Schematic diagram of single-stage micro leverage mechanism.</p>
Full article ">Figure 12
<p>Effect of dimensional parameters of lever beam on sensitivity: (<b>a</b>) Lever beam length; (<b>b</b>) Lever beam width.</p>
Full article ">Figure 13
<p>Decoupled structural optimization frameworks.</p>
Full article ">Figure 14
<p>BPNN fitting results: (<b>a</b>) Axial stiffness; (<b>b</b>) Lateral stiffness.</p>
Full article ">Figure 15
<p>Optimization flowchart for NSGA-II algorithm.</p>
Full article ">Figure 16
<p>Pareto optimal solution set.</p>
Full article ">Figure 17
<p>Operating modes and interference modes of SRAs.</p>
Full article ">Figure 18
<p>Accelerometer stress distribution after applying 100 g acceleration.</p>
Full article ">Figure 19
<p>The resonance frequency of the accelerometer after applying 100 g acceleration to the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis, respectively.</p>
Full article ">Figure 19 Cont.
<p>The resonance frequency of the accelerometer after applying 100 g acceleration to the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis, respectively.</p>
Full article ">
17 pages, 13009 KiB  
Article
A Near-Vertical Well Attitude Measurement Method with Redundant Accelerometers and MEMS IMU/Magnetometers
by Shaowen Ji, Chunxi Zhang, Shuang Gao and Aoxiang Lian
Appl. Sci. 2024, 14(14), 6138; https://doi.org/10.3390/app14146138 - 15 Jul 2024
Viewed by 3059
Abstract
Vertical drilling is the first stage of petroleum exploitation and directional well technology. The near-vertical attitude at each survey station directly determines the whole direction accuracy of the borehole trajectory. However, the attitude measurement for near-vertical wells has poor azimuth accuracy because the [...] Read more.
Vertical drilling is the first stage of petroleum exploitation and directional well technology. The near-vertical attitude at each survey station directly determines the whole direction accuracy of the borehole trajectory. However, the attitude measurement for near-vertical wells has poor azimuth accuracy because the poor signal-to-noise ratio of radial accelerometers hardly obtains the correct horizontal attitude, especially the roll angle. In this paper, a novel near-vertical attitude measurement method was proposed to address this issue. The redundant micro-electromechanical system (MEMS) accelerometers were employed to replace the original accelerometers from MEMS inertial measurement unit (IMU)/magnetometers for calculating horizontal attitude under near-vertical conditions. In addition, a simplified four-position calibration method for the redundant accelerometers was proposed to compensate for the installation and non-orthogonal error. We found that the redundant accelerometers enhanced the signal-to-noise ratio to upgrade the azimuth accuracy at the near-vertical well section. Compared with the traditional method, the experiment results show that the average azimuth errors and roll errors are reduced from 34.45° and 27.09° to 5.7° and 0.61°, respectively. The designed configuration scheme is conducive to the miniaturized design and low-cost requirements of wellbore measuring tools. The proposed attitude measurement method can effectively improve the attitude accuracy of near-vertical wells. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

Figure 1
<p>The spatial relationships of the coordinate frame.</p>
Full article ">Figure 2
<p>Schematic diagram of magnetic field components.</p>
Full article ">Figure 3
<p>The schematic of attitude calculation-based MEMS-IMU/magnetometers.</p>
Full article ">Figure 4
<p>Wellbore attitudes characteristics in near-vertical state.</p>
Full article ">Figure 5
<p>Monte Carlo simulation of attitude errors. (<b>a</b>) The error characteristics of pitch at different roll and pitch angles. (<b>b</b>) The error variation of roll angle at different pitch and roll angles. (<b>c</b>) The error variation of azimuth angle at different roll and pitch angles. (<b>d</b>) The error variation of azimuth angle at different azimuth and pitch angles.</p>
Full article ">Figure 6
<p>Schematic of accelerometer redundancy configuration.</p>
Full article ">Figure 7
<p>Accelerometer relative error and offset angle curves.</p>
Full article ">Figure 8
<p>Schematic of installation angle and calibration for redundant accelerometers. (<b>a</b>) Installation angle and calibration. (<b>b</b>) Four-position calibration method.</p>
Full article ">Figure 9
<p>Compensation for non-orthogonal redundant accelerometers.</p>
Full article ">Figure 10
<p>Redundant sensor configuration on hexahedron structure.</p>
Full article ">Figure 11
<p>Schematic of near-vertical algorithm and well section types.</p>
Full article ">Figure 12
<p>Turntable test of near-vertical wellbore attitude.</p>
Full article ">Figure 13
<p>Comparison of pitch errors at different attitudes. (<b>a</b>) Pitch error at azimuth 330° and roll 0°. (<b>b</b>) Pitch error at azimuth 330° and roll 90°. (<b>c</b>) Pitch error at azimuth 150° and roll 90°. (<b>d</b>) Pitch error at azimuth 150° and roll 180°.</p>
Full article ">Figure 14
<p>Comparison of roll errors at different attitudes. (<b>a</b>) Roll error at azimuth 330° and roll 0°. (<b>b</b>) Roll error at azimuth 330° and roll 90°. (<b>c</b>) Roll error at azimuth 150° and roll 90°. (<b>d</b>) Roll error at azimuth 150° and roll 180°.</p>
Full article ">Figure 15
<p>Comparison of azimuth errors at different attitudes. (<b>a</b>) Azimuth error at azimuth 330° and roll 0°. (<b>b</b>) Azimuth error at azimuth 330° and roll 90°. (<b>c</b>) Azimuth error at azimuth 150° and roll 90°. (<b>d</b>) Azimuth error at azimuth 150° and roll 180°.</p>
Full article ">
21 pages, 6260 KiB  
Article
Evaluation of the Diagnostic Sensitivity of Digital Vibration Sensors Based on Capacitive MEMS Accelerometers
by Marek Fidali, Damian Augustyn, Jakub Ochmann and Wojciech Uchman
Sensors 2024, 24(14), 4463; https://doi.org/10.3390/s24144463 - 10 Jul 2024
Viewed by 990
Abstract
In recent years, there has been an increasing use of digital vibration sensors that are based on capacitive MEMS accelerometers for machine vibration monitoring and diagnostics. These sensors simplify the design of monitoring and diagnostic systems, thus reducing implementation costs. However, it is [...] Read more.
In recent years, there has been an increasing use of digital vibration sensors that are based on capacitive MEMS accelerometers for machine vibration monitoring and diagnostics. These sensors simplify the design of monitoring and diagnostic systems, thus reducing implementation costs. However, it is important to understand how effective these digital sensors are in detecting rolling bearing faults. This article describes a method for determining the diagnostic sensitivity of diagnostic parameters provided by commercially available vibration sensors based on MEMS accelerometers. Experimental tests were conducted in laboratory conditions, during which vibrations from 11 healthy and faulty rolling bearings were measured using two commercial vibration sensors based on MEMS accelerometers and a piezoelectric accelerometer as a reference sensor. The results showed that the diagnostic sensitivity of the parameters depends on the upper-frequency band limit of the sensors, and the parameters most sensitive to the typical fatigue faults of rolling bearings are the peak and peak-to-peak amplitudes of vibration acceleration. Despite having a lower upper-frequency range compared to the piezoelectric accelerometer, the commercial vibration sensors were found to be sensitive to rolling bearing faults and can be successfully used in continuous monitoring and diagnostics systems for machines. Full article
Show Figures

Figure 1

Figure 1
<p>The influence of the surface conditions of interacting bearing elements on the number and intensity of generated vibration signals.</p>
Full article ">Figure 2
<p>Material loss on the inner race of the bearing.</p>
Full article ">Figure 3
<p>A block diagram of the digital accelerometer.</p>
Full article ">Figure 4
<p>The test bench: 1—engine rotation speed controller; 2—radial load; 3—bearing housing; 4—vibration sensor with magnet holder; 5—processing electronics; 6—PC.</p>
Full article ">Figure 5
<p>Experimental setup.</p>
Full article ">Figure 6
<p>Sensitivity value of features for sensor SE1 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 6 Cont.
<p>Sensitivity value of features for sensor SE1 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 7
<p>Sensitivity value of features for sensor SE2 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 7 Cont.
<p>Sensitivity value of features for sensor SE2 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 8
<p>Sensitivity value of features for sensor SEref at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 9
<p>Sensitivity values for different stages of cage damage for sensor SE1 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 10
<p>Sensitivity values for different stages of cage damage for sensor SE2 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 11
<p>Sensitivity values for different stages of cage damage for sensor SEref at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 12
<p>Differential sensitivity value for sensor SE1 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">Figure 13
<p>Differential sensitivity value for sensor SE2 at speeds of (<b>a</b>) 600 rpm, (<b>b</b>) 1500 rpm, and (<b>c</b>) 3000 rpm.</p>
Full article ">
33 pages, 9944 KiB  
Article
An Experimental Investigation of Noise Sources’ Contribution in the Multi-Chip Module Open-Loop Comb-Drive Capacitive MEMS Accelerometer
by Mariusz Jankowski, Michał Szermer, Piotr Zając, Piotr Amrozik, Cezary Maj, Jacek Nazdrowicz, Grzegorz Jabłoński and Bartosz Sakowicz
Electronics 2024, 13(13), 2599; https://doi.org/10.3390/electronics13132599 - 2 Jul 2024
Viewed by 3585
Abstract
The paper presents the noise analysis of a MEMS and ASIC readout integrated circuit (ROIC) constituting the accelerometer developed in the frame of the InnoReh project, aiming at the development of methods for monitoring patients with imbalance disorders. Several experiments were performed at [...] Read more.
The paper presents the noise analysis of a MEMS and ASIC readout integrated circuit (ROIC) constituting the accelerometer developed in the frame of the InnoReh project, aiming at the development of methods for monitoring patients with imbalance disorders. Several experiments were performed at different temperatures and in different configurations: ROIC alone, ROIC with emulated parasitic capacitances, MEMS and ROIC in separate packages, and MEMS and ROIC in a single package. Many noise/interference sources were considered. The results obtained experimentally were compared to the results of theoretical investigations and were within the same order of magnitude, although in practice, the observed noise was always greater than the theoretical estimation. The paper also includes an in-depth analysis to explain these differences. Moreover, it is argued that, in terms of noise, the MEMS sensing element, and not the ROIC, is the quality-limiting factor. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

Figure 1
<p>MEMS accelerometer structure (X axis) [<a href="#B14-electronics-13-02599" class="html-bibr">14</a>].</p>
Full article ">Figure 2
<p>MEDIPOST device and its environment.</p>
Full article ">Figure 3
<p>Internal structure of the analog signal path or readout integrated circuit (ROIC), including: capacitance Mismatch Compensation Circuit (MCC), Digital Control Circuit (DCC), capacitance to voltage (C2V) converter, first-stage differential amplifier (AMP1) with a fixed gain of 4, second-stage single-ended amplifier (AMP2) with a configurable gain from 1 to 8, 10-bit analog to digital voltage converter (ADC).</p>
Full article ">Figure 4
<p>MEMS layout and microphoto [<a href="#B14-electronics-13-02599" class="html-bibr">14</a>] with removed lid (Z, Y, and X axis accelerometers from left to right) and ROIC layout and microphoto (X, Y, and Z readout channels from top to bottom).</p>
Full article ">Figure 5
<p>Application of PCB boards in ROIC test setups; the second (<b>b</b>) version of the PCB (used in (<b>b</b>–<b>d</b>) test setups) was remade from the first (<b>a</b>) version with a different power supply block and produced by a different manufacturer.</p>
Full article ">Figure 6
<p>Application of PCB boards in MEMS and ROIC test setups; the second (<b>b</b>) version of the PCB was remade from the first (<b>a</b>) version with a different power supply block and produced by a different manufacturer; the (<b>c</b>) PCB version is an adaptation of the (<b>b</b>) version; the (<b>d</b>) version is based on the same PCB version as in the ROIC test setups presented in <a href="#electronics-13-02599-f005" class="html-fig">Figure 5</a>b,c,d.</p>
Full article ">Figure 7
<p>ROIC #4 specimen with connections removed between its analog inputs and package pins.</p>
Full article ">Figure 8
<p>Scrutinized test sockets and application of the selected one.</p>
Full article ">Figure 9
<p>ROIC #5 specimen with removed connections between its analog inputs and package pins.</p>
Full article ">Figure 10
<p>MEMS and ROIC PCB with the test socket in the thermal chamber.</p>
Full article ">Figure 11
<p>Readout temperature dependence for several tested MEMS and ROIC setups.</p>
Full article ">Figure 12
<p>Readout temperature dependence for several test sessions of the MEMS and ROIC #1 setup.</p>
Full article ">Figure 13
<p>Readout temperature dependence for several test sessions of the MEMS and ROIC #2 setup.</p>
Full article ">Figure 14
<p>Readout temperature dependence for the MEMS and ROIC #1 setup.</p>
Full article ">Figure 15
<p>Readout temperature dependence for the MEMS and ROIC #3 setup.</p>
Full article ">Figure 16
<p>Readout temperature dependence for all tested ROIC setups.</p>
Full article ">Figure 17
<p>Readout temperature dependence for majority of tested ROIC, CAPS and ROIC, MEMS and ROIC, and MEMS, PCB, and ROIC setups.</p>
Full article ">Figure 18
<p>Comparison of readout thermal dependence for two test setups based on the same ROIC specimens: ROIC #5 and MEMS and ROIC #3.</p>
Full article ">Figure 19
<p>Readout temperature dependence for all setup variants of ROIC #4.</p>
Full article ">Figure 20
<p>Readout temperature dependence for ROIC #1 and #4–5 (disconnected inputs).</p>
Full article ">Figure 21
<p>Readout temperature dependence for ROIC #1, #3–5, and CAPS and ROIC #1.</p>
Full article ">Figure 22
<p>Comparison of readout thermal dependence for two test setups based on the same ROIC specimens: ROIC #6 and CAPS and ROIC #1.</p>
Full article ">Figure 23
<p>Clock signals (red and blue) and analog voltages at outputs of signal processing blocks: differential (green and violet) outputs of the C2V and AMP1 and single (green) output of the AMP2.</p>
Full article ">Figure 24
<p>Readout standard deviation measured with an oscilloscope for the ROIC #4 and ROIC #6 setups.</p>
Full article ">Figure 25
<p>Readout standard deviation measured with an oscilloscope for the CAPS and ROIC #1 and MEMS, PCB, and ROIC #1 setups.</p>
Full article ">Figure 26
<p>Noise amplitude spectral density measured with an oscilloscope for the ROIC #4 and ROIC #6 setups (blue curve). The orange curve shows the moving average of 100 samples for the same data.</p>
Full article ">Figure 27
<p>Noise amplitude spectral density measured with an oscilloscope for the CAPS and ROIC #1 and MEMS, PCB, and ROIC #1 setups (blue curve). The orange curve shows the moving average of 100 samples for the same data.</p>
Full article ">Figure 28
<p>FFT of the AMP2 output waveform (input of the built-in ADC) for the M&amp;P&amp;R #1.</p>
Full article ">Figure 29
<p>FFT of the AMP2 output waveform (input of the built-in ADC) for ROIC #4 and ROIC #6 at 200 kHz analog clock frequency.</p>
Full article ">Figure 30
<p>FFT of the AMP2 output waveform (input of the built-in ADC) for CAPS and ROIC #1 and MEMS, PCB, and ROIC #1 at 200 kHz analog clock frequency.</p>
Full article ">Figure 31
<p>Envelopes of readout distributions for MEMS, PCB, and ROIC #1 for several operation modes of the thermal chamber.</p>
Full article ">Figure 32
<p>Power spectral density of the thermal chamber during different operation phases.</p>
Full article ">
23 pages, 11691 KiB  
Article
Cost-Effective Data Acquisition Systems for Advanced Structural Health Monitoring
by Kamer Özdemir and Ahu Kömeç Mutlu
Sensors 2024, 24(13), 4269; https://doi.org/10.3390/s24134269 - 30 Jun 2024
Cited by 1 | Viewed by 4166
Abstract
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first [...] Read more.
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first device, termed CEDAS_acc, integrates the ADXL355 MEMS accelerometer with a RaspberryPi mini-computer, ideal for measuring strong ground motions and assessing structural modal properties during forced vibration tests and structural monitoring of mid-rise buildings. The second device, CEDAS_geo, incorporates the SM24 geophone sensor with a Raspberry Pi, designed for weak ground motion measurements, making it suitable for seismograph networks, seismological research, and early warning systems. Both devices function as acceleration/velocity Data Acquisition Systems (DAS) and standalone data loggers, featuring hardware components such as a single-board mini-computer, sensors, Analog-to-Digital Converters (ADCs), and micro-SD cards housed in protective casings. The CEDAS_acc includes a triaxial MEMS accelerometer with three ADCs, while the CEDAS_geo uses horizontal and vertical geophone elements with an ADC board. To validate these devices, rigorous tests were conducted. Offset Test, conducted by placing the sensor on a leveled flat surface in six orientations, demonstrating the accelerometer’s ability to provide accurate measurements using gravity as a reference; Frequency Response Test, performed at the Gebze Technical University Earthquake and Structure Laboratory (GTU-ESL), comparing the devices’ responses to the GURALP-5TDE reference sensor, with CEDAS_acc evaluated on a shaking table and CEDAS_geo’s performance assessed using ambient vibration records; and Noise Test, executed in a low-noise rural area to determine the intrinsic noise of CEDAS_geo, showing its capability to capture vibrations lower than ambient noise levels. Further field tests were conducted on a 10-story reinforced concrete building in Gaziantep, Turkey, instrumented with 8 CEDAS_acc and 1 CEDAS_geo devices. The building’s response to a magnitude 3.2 earthquake and ambient vibrations was analyzed, comparing results to the GURALP-5TDE reference sensors and demonstrating the devices’ accuracy in capturing peak accelerations and modal frequencies with minimal deviations. The study also introduced the Record Analyzer (RECANA) web application for managing data analysis on CEDAS devices, supporting various data formats, and providing tools for filtering, calibrating, and exporting data. This comprehensive study presents valuable, practical solutions for SHM, enhancing accessibility, reliability, and efficiency in structural and seismic monitoring applications and offering robust alternatives to traditional, costlier systems. Full article
(This article belongs to the Special Issue Structural Health Monitoring Based on Sensing Technology)
Show Figures

Figure 1

Figure 1
<p>CEDAS devises photos are depicted. (<b>a</b>) CEDAS_geo device (<b>b</b>) CEDAS_acc device.</p>
Full article ">Figure 2
<p>ADS1256—SM24 connection diagram.</p>
Full article ">Figure 3
<p>CEDAS_geo ADC board header pinout [<a href="#B27-sensors-24-04269" class="html-bibr">27</a>].</p>
Full article ">Figure 4
<p>CEDAS_acc sensor board header pinout [<a href="#B28-sensors-24-04269" class="html-bibr">28</a>].</p>
Full article ">Figure 5
<p>Raspberry Pi 4 Model B GPIO connector pinout [<a href="#B29-sensors-24-04269" class="html-bibr">29</a>].</p>
Full article ">Figure 6
<p>CEDAS device algorithm flowchart.</p>
Full article ">Figure 7
<p>Sensor orientations used in the offset calibration test [<a href="#B19-sensors-24-04269" class="html-bibr">19</a>].</p>
Full article ">Figure 8
<p>Time series from the CEDAS_acc offset test depicts a total of six orientations. Segments divided by dashed lines represent each flip.</p>
Full article ">Figure 9
<p>Sensor placements for frequency response tests of (<b>b</b>) geophone and (<b>c</b>) accelerometer device sensors with (<b>a</b>) GURALP-5TDE reference sensor.</p>
Full article ">Figure 10
<p>Spectral density of synchronous environmental noise recording from both devices and the reference sensor at the same location.</p>
Full article ">Figure 11
<p>Shows the response curve (or transfer function) of the CEDAS_geo.</p>
Full article ">Figure 12
<p>Time series of the shake tests.</p>
Full article ">Figure 13
<p>Spectral density of the shake tests.</p>
Full article ">Figure 14
<p>Spectral density amplitude deviation of CEDAS_acc with regard to the reference device.</p>
Full article ">Figure 15
<p>Spectral noise density of CEDAS_geo and CEDAS_acc devices in a low-noise environment compared to low-and high-noise models.</p>
Full article ">Figure 16
<p>Aerial photos of the building from (<b>a</b>) side and (<b>b</b>) top.</p>
Full article ">Figure 17
<p>The locations of the sensors on the building.</p>
Full article ">Figure 18
<p>Acceleration, velocity, and displacement time series of GURALP-5TDE and CEDAS devices from the building in the NS direction.</p>
Full article ">Figure 19
<p>Acceleration, velocity, and displacement time series of GURALP-5TDE and CEDAS devices from the building in the EW direction.</p>
Full article ">Figure 20
<p>Spectral density of the response of the building in the NS and EW directions.</p>
Full article ">Figure 21
<p>Transfer functions of devices from different floors of the building in NS and EW directions.</p>
Full article ">Figure 22
<p>Representative ambient vibration time series of GURALP-5TDE and CEDAS devices from the 9th floor of the building in the NS and EW directions.</p>
Full article ">Figure 23
<p>Spectral density and modal frequencies of representative ambient vibration data of Guralp and CEDAS devices from the top floor of the building in the NS and EW directions.</p>
Full article ">
Back to TopTop