Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
entropy-logo

Journal Browser

Journal Browser

Exploring the NP-Complexity of Nature: Critical Phenomena, Chaos, Fractals, Graphs, Boson Sampling, Quantum Computing and More

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Complexity".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 23195

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
Interests: quantum fundamentals; quantum optics; critical phenomena; phase transitions; electromagnetic waves

Special Issue Information

Dear Colleagues,

Tremendous recent progress in informational, computational, and quantum technologies has brought complex systems whose functionality is directly based on their NP/#P-complexity to the frontiers of modern science, research, and engineering. The examples are various quantum many-body systems for quantum computing aimed at demonstrating supremacy over classical  computers in solving the problems that require an exponentially large number of operations. One such problem is boson sampling. Many other examples emerge in material science, condensed matter, and nuclear physics. In particular, they include various mesoscopic systems with unusual properties determined by the cooperative, topological, or critical phenomena. The basic models of the phase transitions in the statistical physics, such as the Ising and monomer-dimer models, directly address the NP/#P-complexity of the critical phenomena. The protocols and models employed in modern communications and cryptography, as well as the mathematical objects/models in the graph theory, theory of fractals and chaos, number theory, and combinatorics also have an intimate connection with the NP- and #P-complete problems of computational complexity theory. An example of the latter is a matrix permanent computing of which was the first counting problem proven to be #P-complete and yet corresponded to an easy, linear-time polynomial problem in accepting paths. Remarkably, the graph theory and the Markov chain Monte Carlo method recently provided a fully polynomial randomized approximation scheme (FPRAS) for numerical computation of the permanent of nonnegative matrices and the ferromagnetic Ising model. Machine learning and artificial intelligence techniques constitute an alternative, rapidly progressing way of addressing NP/#P-complex problems.

The modern stage in the development of the broad multidisciplinary area of research outlined above is characterized by a transition from the abstract general analysis and schemes to the invention, design, implementation, and application of the real NP/#P-complexity-based systems.

This Special Issue presents this recent advance in the theory of the NP/#P-complexity of nature, finding new models and systems that demonstrate or implement the NP/#P-complexity, developing analytic and computational methods for the analysis of such systems, as well as establishing connections and analogies between different complex systems. We welcome multidisciplinary NP/#P-complexity related papers—from papers devoted to the pure  mathematics of the NP/#P-complex objects/models and computational/approximation methods and algorithms, including the ones based on the machine learning and artificial intelligence techniques, to papers addressing the particular NP/#P-complex features of the actual systems in physics, chemistry, biology, material science, engineering, communication technologies, cryptography, quantum and classical computing, statistics, social sciences and more.

Prof. Vitaly Kocharovsky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NP- and #P-complexities
  • statistical physics
  • chaos
  • fractals
  • phase transition
  • critical phenomena
  • Ising model
  • monomer-dimer model
  • graph theory
  • quantum computing
  • quantum information
  • boson sampling
  • cryptography
  • matrix permanent
  • stochastic matrix
  • q-analysis
  • combinatorics
  • number-theoretic complexity
  • randomized approximation scheme
  • Monte Carlo method
  • artificial intelligence
  • machine learning
  • complex system

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 3104 KiB  
Article
Vector Arithmetic in the Triangular Grid
by Khaled Abuhmaidan, Monther Aldwairi and Benedek Nagy
Entropy 2021, 23(3), 373; https://doi.org/10.3390/e23030373 - 20 Mar 2021
Cited by 2 | Viewed by 3037
Abstract
Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: [...] Read more.
Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: it is not closed under vector-addition, which gives a challenge. The points of the triangular grid are represented by zero-sum and one-sum coordinate-triplets keeping the symmetry of the grid and reflecting the orientations of the triangles. This system is expanded to the plane using restrictions like, at least one of the coordinates is an integer and the sum of the three coordinates is in the interval [−1,1]. However, the vector arithmetic is still not straightforward; by purely adding two such vectors the result may not fulfill the above conditions. On the other hand, for various applications of digital grids, e.g., in image processing, cartography and physical simulations, one needs to do vector arithmetic. In this paper, we provide formulae that give the sum, difference and scalar product of vectors of the continuous coordinate system. Our work is essential for applications, e.g., to compute discrete rotations or interpolations of images on the triangular grid. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>The three regular grids: the square, the hexagonal and the triangular grids and their grid points (midpoints of the pixels).</p>
Full article ">Figure 2
<p>(<b>a</b>) The discrete symmetric coordinate system for the hexagonal and (<b>b</b>) for the triangular grids. The coordinate values can also be considered to be assigned the midpoints of the corresponding pixels.</p>
Full article ">Figure 3
<p>Any grid-vector of specific length and direction will lead to a grid-point in the square and the hexagonal grids but not in the triangular grid.</p>
Full article ">Figure 4
<p>The symmetric coordinate system for the trihexagonal grid can also be used for the triangular grid and also for its dual, for the hexagonal grid, at the same time.</p>
Full article ">Figure 5
<p>(<b>a</b>,<b>b</b>): Dividing each triangle to three areas—A, B and C. The letters assigned to the isosceles triangles are based on the orientation of sides. (<b>c</b>): The areas actually rhombuses in the plane.</p>
Full article ">Figure 6
<p>A composition of the barycentric technique and discrete coordinate system to address points <span class="html-italic">p</span> and <span class="html-italic">q</span> in the triangular plane by coordinate triplets in (<b>a</b>,<b>b</b>), respectively.</p>
Full article ">Figure 7
<p>Addressing the points in a hexagon containing one area of each type, where the midpoint (<span class="html-italic">m</span>) of the hexagon has coordinates (<span class="html-italic">i</span>, <span class="html-italic">j</span>, <span class="html-italic">k</span>) and 0 <span class="html-italic">≤ u ≤</span> 1 and 0 <span class="html-italic">≤ v ≤</span> 1 in each area.</p>
Full article ">Figure 8
<p>The corresponding constant coordinate value for each area.</p>
Full article ">Figure 9
<p>The plane is tessellated by three types of rhombuses; it can also be seen as the surface of a mesh of the cubic grid having three faces of each cube on the surface.</p>
Full article ">Figure 10
<p>(<b>a</b>) Consider vectors <span class="html-italic">v</span><sub>1</sub> = (0.387, −1, 0.213) and <span class="html-italic">v</span><sub>2</sub> = (0.677, 0, −0.477); both are Type B. In this case, the direct-sum of vectors will be <span class="html-italic">s</span> = (1.064, −1, −0.264), which is Type B as well and hence is a result-vector for Ω. (<b>b</b>) Consider vectors <span class="html-italic">v</span><sub>1</sub> = (0.173, −0.813, 0) and <span class="html-italic">v</span><sub>2</sub> = (0.677, 0, −0.477) of Types C and B<span class="html-italic">,</span> respectively. In this case, the direct-sum of vectors will be <span class="html-italic">s</span> = (0.851, −0.813, −0.477), which is not compatible with Ω showing the nonlinearity of the system.</p>
Full article ">Figure 11
<p>(<b>a</b>) The six regions of the triangular plane. (<b>b</b>) The signs of the coordinate triplet for each region of the triangular plane.</p>
Full article ">Figure 12
<p>Examples for vector arithmetic: (<b>a</b>) Consider the scalar product of vector <span class="html-italic">v</span> = (0.5, 0, −0.25) with a positive integer multiplier <span class="html-italic">n</span> = 4 (that is to compute <span class="html-italic">v + v + v + v</span>) which yields to vector <span class="html-italic">r</span> = (2, 0, −1). (<b>b</b>) Consider the addition of vectors <span class="html-italic">v</span><sub>1</sub> = (0.75, 0, −0.25) and <span class="html-italic">v</span><sub>2</sub> = (−0.25, 0, 0.75) which results in vector <span class="html-italic">r</span> = (0, −0.5, 0). (<b>c</b>) The addition of the opposite vectors <span class="html-italic">v</span><sub>1</sub> = (1, 0, 0) and <span class="html-italic">v</span><sub>2</sub> = (−1, 0, 0) give vector <span class="html-italic">r</span> = (0, 0, 0).</p>
Full article ">Figure 13
<p>Example of image translation by vector addition: the points represented by vectors <span class="html-italic">v</span><sub>1</sub>, …, <span class="html-italic">v</span><sub>8</sub> have been translated by vector <span class="html-italic">k</span> = (−0.848, −0.353, 1) to get the points represented by vectors <span class="html-italic">u</span><sub>1</sub>, …, <span class="html-italic">u</span><sub>8</sub>.</p>
Full article ">Figure 14
<p>Example for zooming an image by vector arithmetic: the star defined by points represented by vectors <span class="html-italic">a</span><sub>1</sub>, …, <span class="html-italic">j</span><sub>1</sub> given in blue color are doubled and tripled, the resulted vectors and shapes are presented in red and green color.</p>
Full article ">
43 pages, 8151 KiB  
Article
Integrable and Chaotic Systems Associated with Fractal Groups
by Rostislav Grigorchuk and Supun Samarakoon
Entropy 2021, 23(2), 237; https://doi.org/10.3390/e23020237 - 18 Feb 2021
Cited by 5 | Viewed by 2565
Abstract
Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association [...] Read more.
Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association with studies around the Banach-Tarski Paradox) and John Milnor’s question on the existence of groups of intermediate growth between polynomial and exponential. Fractal groups arise in various fields of mathematics, including the theory of random walks, holomorphic dynamics, automata theory, operator algebras, etc. They have relations to the theory of chaos, quasi-crystals, fractals, and random Schrödinger operators. One important development is the relation of fractal groups to multi-dimensional dynamics, the theory of joint spectrum of pencil of operators, and the spectral theory of Laplace operator on graphs. This paper gives a quick access to these topics, provides calculation and analysis of multi-dimensional rational maps arising via the Schur complement in some important examples, including the first group of intermediate growth and its overgroup, contains a discussion of the dichotomy “integrable-chaotic” in the considered model, and suggests a possible probabilistic approach to studying the discussed problems. Full article
Show Figures

Figure 1

Figure 1
<p>Binary rooted tree, <math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math>, where the vertices are identified with <math display="inline"><semantics> <msup> <mrow> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> <mo>∗</mo> </msup> </semantics></math>.</p>
Full article ">Figure 2
<p>Examples of finite automata generating (<b>a</b>) Grigorchuk group <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math>, (<b>b</b>) Lamplighter group, (<b>c</b>) Hanoi tower group <math display="inline"><semantics> <mrow> <mi mathvariant="script">H</mi> </mrow> </semantics></math><sup>(3)</sup>, (<b>d</b>) Hanoi tower group <math display="inline"><semantics> <mrow> <mi mathvariant="script">H</mi> </mrow> </semantics></math><sup>(4)</sup>, (<b>e</b>) Basilica group, (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>M</mi> <mi>G</mi> <mo>(</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> </semantics></math>, (<b>g</b>) free group <span class="html-italic">F</span><sub>3</sub> of rank three, and (<b>h</b>) ℤ<sub>2</sub> <sub>*</sub> ℤ<sub>2</sub> <sub>*</sub> ℤ<sub>2</sub>.</p>
Full article ">Figure 3
<p>Dynamical pictures of <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <msub> <mo>ω</mo> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mi> </mi> <mo>∘</mo> <mo>…</mo> <mo>∘</mo> <msub> <mi>F</mi> <mrow> <msub> <mo>ω</mo> <mn>0</mn> </msub> </mrow> </msub> </mrow> </semantics></math> for (<b>a</b>) <span class="html-italic">ω</span> = (012)<sup>∞</sup> and (<span class="html-italic">y</span>,<span class="html-italic">z</span>,<span class="html-italic">u</span>) = (1,2,3), (<b>b</b>) <span class="html-italic">ω</span> = (01)<sup>∞</sup> and (<span class="html-italic">y</span>,<span class="html-italic">z</span>,<span class="html-italic">u</span>) = (1,2,3), (<b>c</b>) a random <span class="html-italic">ω</span> and (<span class="html-italic">y</span>,<span class="html-italic">z</span>,<span class="html-italic">u</span>) = (1,2,3), and (<b>d</b>) a random <span class="html-italic">ω</span> and (<span class="html-italic">y</span>,<span class="html-italic">z</span>,<span class="html-italic">u</span>) = (1,3,3).</p>
Full article ">Figure 4
<p>Foliation of ℝ<sup>2</sup> by (<b>a</b>) horizontal hyperbolas <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">F</mi> <mi>θ</mi> </msub> </mrow> </semantics></math> where, maroon, red and black corresponds to <span class="html-italic">θ</span> &lt; −1, <span class="html-italic">θ</span> ∈ [−1,1] and <span class="html-italic">θ</span> &gt; 1, respectively, and (<b>b</b>) vertical hyperbola <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>η</mi> </msub> </mrow> </semantics></math> where, purple, blue and black corresponds to <span class="html-italic">η</span> &lt; −1, <span class="html-italic">η</span> ∈ [−1,1] and <span class="html-italic">η</span> &gt; 1, respectively.</p>
Full article ">Figure 5
<p>(<b>a</b>) The “cross” <math display="inline"><semantics> <mi mathvariant="script">K</mi> </semantics></math>, (<b>b</b>) foliation of <math display="inline"><semantics> <mi mathvariant="script">K</mi> </semantics></math> by real slices of horizontal hyperbolas <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">F</mi> <mi>θ</mi> </msub> </mrow> </semantics></math> (<span class="html-italic">θ</span> ∈ [−1,1]), and (<b>c</b>) foliation of <math display="inline"><semantics> <mi mathvariant="script">K</mi> </semantics></math> by real slices of vertical hyperbolas <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">H</mi> <mi>η</mi> </msub> </mrow> </semantics></math> (<span class="html-italic">η</span> ∈ [−1,1]).</p>
Full article ">Figure 6
<p>Joint spectrum of <math display="inline"><semantics> <msup> <mi mathvariant="script">H</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> </semantics></math>.</p>
Full article ">Figure 7
<p>Dynamical picture of the Basilica map <span class="html-italic">B</span>.</p>
Full article ">Figure 8
<p>Transducer or sequential machine.</p>
Full article ">Figure 9
<p>Composition of automata.</p>
Full article ">Figure 10
<p>Form of outgoing edges.</p>
Full article ">Figure 11
<p>Cayley graphs of (<b>a</b>) ℤ<sup>2</sup>, (<b>b</b>) free group of rank 2, (<b>c</b>) group of intermediate growth <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math> (<b>d</b>) surface group of genus 2.</p>
Full article ">Figure 12
<p>Schreier graphs of (<b>a</b>) <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math> (finite), (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math> (infinite and bi-infinite), (<b>c</b>) <math display="inline"><semantics> <msup> <mi mathvariant="script">H</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> </semantics></math> (<b>d</b>) Basilica.</p>
Full article ">Figure 13
<p>Graph substitution to obtain <math display="inline"><semantics> <msub> <mo>Γ</mo> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math> from <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>n</mi> </msub> </semantics></math> of the group <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math>.</p>
Full article ">Figure 14
<p>Limit graphs of <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>(</mo> <mo>∂</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p><math display="inline"><semantics> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> </semantics></math> values on the face <span class="html-italic">y</span> = 0, where (<b>a</b>) <span class="html-italic">X</span> values, (<b>b</b>) <span class="html-italic">Y</span> values, (<b>c</b>) <span class="html-italic">Z</span> values, and (<b>d</b>) <span class="html-italic">U</span> values, plotted in <span class="html-italic">xz</span> plane.</p>
Full article ">Figure 16
<p>Dynamical pictures of <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> <mo>,</mo> <mi>δ</mi> <mo>)</mo> </mrow> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> <mo>,</mo> <mi>δ</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>1.5</mn> <mo>,</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
17 pages, 358 KiB  
Article
Partial Boolean Functions With Exact Quantum Query Complexity One
by Guoliang Xu and Daowen Qiu
Entropy 2021, 23(2), 189; https://doi.org/10.3390/e23020189 - 3 Feb 2021
Cited by 5 | Viewed by 2065
Abstract
We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly [...] Read more.
We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorithm. Due to the second characterization, we construct a function F that maps any n-bit partial Boolean function to some integer, and if an n-bit partial Boolean function f depends on k bits and can be computed exactly by a 1-query quantum algorithm, then F(f) is non-positive. In addition, we show that the number of all n-bit partial Boolean functions that depend on k bits and can be computed exactly by a 1-query quantum algorithm is not bigger than an upper bound depending on n and k. Most importantly, the upper bound is far less than the number of all n-bit partial Boolean functions for all efficiently big n. Full article
14 pages, 282 KiB  
Article
Elliptic Solutions of Dynamical Lucas Sequences
by Michael J. Schlosser and Meesue Yoo
Entropy 2021, 23(2), 183; https://doi.org/10.3390/e23020183 - 31 Jan 2021
Cited by 3 | Viewed by 1593
Abstract
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. [...] Read more.
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler–Cassini identity. Full article
16 pages, 297 KiB  
Article
Universal Regimes in Long-Time Asymptotic of Multilevel Quantum System Under Time-Dependent Perturbation
by Vladimir Akulin
Entropy 2021, 23(1), 99; https://doi.org/10.3390/e23010099 - 12 Jan 2021
Viewed by 1780
Abstract
In the framework of an exactly soluble model, one considers a typical problem of the interaction between radiation and matter: the dynamics of population in a multilevel quantum system subject to a time dependent perturbation. The algebraic structure of the model is taken [...] Read more.
In the framework of an exactly soluble model, one considers a typical problem of the interaction between radiation and matter: the dynamics of population in a multilevel quantum system subject to a time dependent perturbation. The algebraic structure of the model is taken richly enough, such that there exists a strong argument in favor of the fact that the behavior of the system in the asymptotic of long time has a universal character, which is system-independent and governed by the functional property of the time dependence exclusively. Functional properties of the excitation time dependence, resulting in the regimes of resonant excitation, random walks, and dynamic localization, are identified. Moreover, an intermediate regime between the random walks and the localization is identified for the polyharmonic excitation at frequencies given by the Liouville numbers. Full article
8 pages, 3541 KiB  
Article
Random Matrix Theory Analysis of a Temperature-Related Transformation in Statistics of Fano–Feshbach Resonances in Thulium Atoms
by Emil T. Davletov, Vladislav V. Tsyganok, Vladimir A. Khlebnikov, Daniil A. Pershin and Alexey V. Akimov
Entropy 2020, 22(12), 1394; https://doi.org/10.3390/e22121394 - 10 Dec 2020
Cited by 1 | Viewed by 2218
Abstract
Recently, the transformation from random to chaotic behavior in the statistics of Fano–Feshbach resonances was observed in thulium atoms with rising ensemble temperature. We performed random matrix theory simulations of such spectra and analyzed the resulting statistics in an attempt to understand the [...] Read more.
Recently, the transformation from random to chaotic behavior in the statistics of Fano–Feshbach resonances was observed in thulium atoms with rising ensemble temperature. We performed random matrix theory simulations of such spectra and analyzed the resulting statistics in an attempt to understand the mechanism of the transformation. Our simulations show that, when evaluated in terms of the Brody parameter, resonance statistics do not change or change insignificantly when higher temperature resonances are appended to the statistics. In the experiments evaluated, temperature was changed simultaneously with optical dipole trap depth. Thus, simulations included the Stark shift based on the known polarizability of the free atoms and assuming their polarizability remains the same in the bound state. Somewhat surprisingly, we found that, while including the Stark shift does lead to minor statistical changes, it does not change the resonance statistics and, therefore, is not responsible for the experimentally observed statistic transformation. This observation suggests that either our assumption regarding the polarizability of Feshbach molecules is poor or that an additional mechanism changes the statistics and leads to more chaotic statistical behavior. Full article
Show Figures

Figure 1

Figure 1
<p>A characteristic molecular spectrum obtained using the RMT approach. The zero-energy level is taken to be equal to the sum of energies of two noninteracting atoms in the dipole trap with a projection of magnetic moments <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>F</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. RMT simulation parameters used here are the same as for simulation of ‘s-wave’ resonance statistics and summarized in the first row of <a href="#entropy-22-01394-t001" class="html-table">Table 1</a>.</p>
Full article ">Figure 2
<p>Comparison of the NNSFR distributions obtained by RMT simulations for S and D resonances. (<b>A</b>) The empirical cumulative distribution function (ECDF) of NNSFR for the spectrum measured at 2.2 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">K</mi> </mrow> </semantics></math> fitted with Brody distribution (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">η</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>). (<b>B</b>) ECDF of the spectrum generated by RMT simulations with mean energy spacing <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>S</mi> </msub> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5.6</mn> </mrow> </semantics></math> MHz and coupling constant <math display="inline"><semantics> <mrow> <msubsup> <mi>ν</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>l</mi> </mrow> <mi>S</mi> </msubsup> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> MHz were chosen to reproduce the density <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mn>2.2</mn> <mi mathvariant="sans-serif">μ</mi> <mi>K</mi> </mrow> <mi>S</mi> </msubsup> </mrow> </semantics></math> and Brody distribution constant <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">η</mi> <mi>S</mi> </msub> </mrow> </semantics></math> obtained from the experiment. (<b>C</b>) ECDF of NNSFR distribution for the D resonance alone, measured at 12 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">K</mi> </mrow> </semantics></math> (S resonances subtracted from all observed resonances) and fitted with Brody distribution (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">η</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>0.21</mn> </mrow> </semantics></math>). (<b>D</b>) NNSFR ECDF of the spectrum generated by RMT simulations with mean energy spacing <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>D</mi> </msub> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10.7</mn> </mrow> </semantics></math> MHz and coupling constant <math display="inline"><semantics> <mrow> <msubsup> <mi>ν</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>l</mi> </mrow> <mi>D</mi> </msubsup> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>2.9</mn> </mrow> </semantics></math> MHz, chosen to reproduce the experimental density of D-resonances <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mn>12</mn> <mi mathvariant="sans-serif">μ</mi> <mi>K</mi> </mrow> <mi>D</mi> </msubsup> </mrow> </semantics></math> and the corresponding Brody parameter <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">η</mi> <mi>D</mi> </msub> </mrow> </semantics></math>. In (<b>B</b>,<b>D</b>) the shaded colors around the simulations represent all realizations of RMT simulations, with the number of realizations being proportional to the opacity of the shaded area.</p>
Full article ">Figure 3
<p>Comparison of NNSFR distributions obtained using RMT simulations for S+D resonances. (<b>A</b>) ECDF of NNSFR for the spectrum measured at 12 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">K</mi> </mrow> </semantics></math> fitted with Brody distribution (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">η</mi> <mrow> <mi>S</mi> <mo>+</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mn>0.63</mn> </mrow> </semantics></math>). (<b>B</b>) ECDF of the spectrum generated by the RMT model for an independent S and D set of resonances with <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5.6</mn> </mrow> </semantics></math> MHz and <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>D</mi> </msub> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10.7</mn> </mrow> </semantics></math> MHz values of mean energy spacing between molecular bound states in corresponding Born-Oppenheimer molecular potentials.</p>
Full article ">Figure 4
<p>Brody parameters calculated for various trapping beam powers. The blue curve represents S-resonances only, and the orange curve represents S- and D-resonances. The gray area represents the standard deviation of the calculated points. The red and green horizontal lines represent the Brody parameters extracted from the experimental data for S- and S+D resonances, respectively [<a href="#B10-entropy-22-01394" class="html-bibr">10</a>].</p>
Full article ">
12 pages, 1805 KiB  
Article
MRI Brain Classification Using the Quantum Entropy LBP and Deep-Learning-Based Features
by Ali M. Hasan, Hamid A. Jalab, Rabha W. Ibrahim, Farid Meziane, Ala’a R. AL-Shamasneh and Suzan J. Obaiys
Entropy 2020, 22(9), 1033; https://doi.org/10.3390/e22091033 - 15 Sep 2020
Cited by 18 | Viewed by 4803
Abstract
Brain tumor detection at early stages can increase the chances of the patient’s recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and [...] Read more.
Brain tumor detection at early stages can increase the chances of the patient’s recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.) by using the quantum calculus. Then we employ the result to extend the local binary patterns (LBP) to get the quantum entropy LBP (QELBP). The proposed study consists of two approaches of features extractions of MRI brain scans, namely, the QELBP and the deep learning DL features. The classification of MRI brain scan is improved by exploiting the excellent performance of the QELBP–DL feature extraction of the brain in MRI brain scans. The combining all of the extracted features increase the classification accuracy of long short-term memory network when using it as the brain tumor classifier. The maximum accuracy achieved for classifying a dataset comprising 154 MRI brain scan is 98.80%. The experimental results demonstrate that combining the extracted features improves the performance of MRI brain tumor classification. Full article
Show Figures

Figure 1

Figure 1
<p>Proposed quantum entropy local binary patterns (QELBP)–deep-learning (DL) model.</p>
Full article ">Figure 2
<p>Structure of DL feature extraction.</p>
Full article ">Figure 3
<p>MRI brain images from the collected dataset.</p>
Full article ">Figure 4
<p>MRI brain images from the collected dataset (<b>a</b>) Original MRI images; (<b>b</b>) enhanced by the Gaussian filter with kernel of (3 × 3); (<b>c</b>) normalized MRI.</p>
Full article ">Figure 5
<p>Training process.</p>
Full article ">
44 pages, 1786 KiB  
Article
Unification of the Nature’s Complexities via a Matrix Permanent—Critical Phenomena, Fractals, Quantum Computing, ♯P-Complexity
by Vitaly Kocharovsky, Vladimir Kocharovsky and Sergey Tarasov
Entropy 2020, 22(3), 322; https://doi.org/10.3390/e22030322 - 12 Mar 2020
Cited by 7 | Viewed by 4049
Abstract
We reveal the analytic relations between a matrix permanent and major nature’s complexities manifested in critical phenomena, fractal structures and chaos, quantum information processes in many-body physics, number-theoretic complexity in mathematics, and ♯P-complete problems in the theory of computational complexity. They follow from [...] Read more.
We reveal the analytic relations between a matrix permanent and major nature’s complexities manifested in critical phenomena, fractal structures and chaos, quantum information processes in many-body physics, number-theoretic complexity in mathematics, and ♯P-complete problems in the theory of computational complexity. They follow from a reduction of the Ising model of critical phenomena to the permanent and four integral representations of the permanent based on (i) the fractal Weierstrass-like functions, (ii) polynomials of complex variables, (iii) Laplace integral, and (iv) MacMahon master theorem. Full article
Show Figures

Figure 1

Figure 1
<p>A fractal pattern of an accumulation of the integral in Equation (<a href="#FD79-entropy-22-00322" class="html-disp-formula">79</a>) with an increasing range of the integration, <math display="inline"><semantics> <mrow> <mo stretchy="false">[</mo> <mo>−</mo> <mi>T</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in the case of <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> and the integer base <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. At <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>, the integral converges to the permanent’s exact value, <math display="inline"><semantics> <mrow> <mi>per</mi> <mi>A</mi> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mrow> </semantics></math>, in accord with the permanent’s integral representation in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>). The insert magnifies a self-similar fractal structure caused by a hierarchy of extrema of the permanental function <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>π</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> shown in Figure 3 in a vicinity of the primary extremum <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>A fractal, similar to a Cantor-Lebesgue function or Devil’s staircase (dotted curve), pattern of the accumulation of the integral in Equation (<a href="#FD79-entropy-22-00322" class="html-disp-formula">79</a>) (solid curve) with an increasing range of the integration, <math display="inline"><semantics> <mrow> <mo stretchy="false">[</mo> <mo>−</mo> <mi>T</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in the case of <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and the integer base <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. At <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>, the integral converges to the exact value of the permanent, <math display="inline"><semantics> <mrow> <mi>per</mi> <mi>A</mi> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mrow> </semantics></math>, as per the permanent’s representation in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>).</p>
Full article ">Figure 3
<p>A fractal hierarchy of extrema for the permanental function <math display="inline"><semantics> <mrow> <mi>Re</mi> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> </mrow> </semantics></math> in Equation (<a href="#FD81-entropy-22-00322" class="html-disp-formula">81</a>): Two sequences of peaks of the secondary series of extrema located at <math display="inline"><semantics> <mrow> <msubsup> <mi>t</mi> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <msub> <mi>k</mi> <mn>1</mn> </msub> </msup> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>s</mi> <mn>2</mn> </msub> <msup> <mn>2</mn> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msup> </mfrac> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo>−</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, to the left (<math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>) and right (<math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>) from the extremum <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </semantics></math>, of the primary series; cf. <a href="#entropy-22-00322-f001" class="html-fig">Figure 1</a>. The integer base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mspace width="4pt"/> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Convergence of the permanent’s integral representation in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>) to the exact value of the permanent, <math display="inline"><semantics> <mrow> <mi>per</mi> <mi>A</mi> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mrow> </semantics></math>, with increasing range of the integration <span class="html-italic">T</span> for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The circles show the scaled integral in Equation (<a href="#FD79-entropy-22-00322" class="html-disp-formula">79</a>) for <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>80</mn> </mrow> </semantics></math>. The dashed line corresponds to the exact scaled value, <math display="inline"><semantics> <mrow> <mi>per</mi> <mi>A</mi> <mo>/</mo> <mi>n</mi> <mo>!</mo> </mrow> </semantics></math>, of the permanent. The non-integer base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>A fractal hierarchy of extrema for the scaled permanental function in Equation (<a href="#FD88-entropy-22-00322" class="html-disp-formula">88</a>), <math display="inline"><semantics> <mrow> <mi>Re</mi> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>π</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <msup> <mi>n</mi> <mi>n</mi> </msup> </mrow> </semantics></math>. The insert shows the first ten extrema (<math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>10</mn> </mrow> </semantics></math>) on a logarithmic scale, <math display="inline"><semantics> <mrow> <mo form="prefix">log</mo> <mi>t</mi> </mrow> </semantics></math>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, the matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>A fractal walk of the permanental row function <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi>W</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, Equation (<a href="#FD88-entropy-22-00322" class="html-disp-formula">88</a>), on the complex plane starting from its maximum real value <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi>W</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <mi>n</mi> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The non-integer base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, the matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>A fractal walk of the scaled row-sum function (<a href="#FD91-entropy-22-00322" class="html-disp-formula">91</a>) (the two left insets) and the scaled permanental function, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mo>/</mo> <msup> <mi>n</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mrow> <mo stretchy="false">[</mo> <msub> <mover accent="true"> <mi>B</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>π</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mrow> <mi>n</mi> </msup> </mrow> </semantics></math>, (the right insert) on the complex plane with the independent variable <span class="html-italic">t</span> running over an indicated interval <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mo>−</mo> <mi>T</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math> for the matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of the sizes <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (<b>c</b>). The fractal support’s border is the hypocycloid (<a href="#FD92-entropy-22-00322" class="html-disp-formula">92</a>) with <span class="html-italic">n</span> cusps enclosed with the unit circle. With increasing range of walk, <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, the fractal fully covers the support. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The 2d probability density function <math display="inline"><semantics> <mrow> <msubsup> <mi>ρ</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> of the fractal row function in Equation (<a href="#FD91-entropy-22-00322" class="html-disp-formula">91</a>) for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> (<b>c</b>). The border of the fractal is clearly visible as the hypocycloid (<a href="#FD92-entropy-22-00322" class="html-disp-formula">92</a>) enclosed with the unit circle. The non-integer base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>A scaled logarithm, <math display="inline"><semantics> <mrow> <mo form="prefix">log</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math>, of the 2d probability density function <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> of the fractal permanental function in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>), <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mo>/</mo> <msup> <mi>n</mi> <mi>n</mi> </msup> </mrow> </semantics></math>, for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, the matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The 2d probability density function <math display="inline"><semantics> <mrow> <msubsup> <mi>ρ</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> of the scaled fractal first-row function (<a href="#FD91-entropy-22-00322" class="html-disp-formula">91</a>), <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>B</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, (gray contour) closely reproduced by the zeroth-order approximation (<a href="#FD104-entropy-22-00322" class="html-disp-formula">104</a>) of its multivariate counterpart <math display="inline"><semantics> <mrow> <msubsup> <mi>ρ</mi> <mi>n</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (black contour) for the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> circulant matrix with a power-law decay of its first-row entries, <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>q</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>A steady convergence of the permanent’s integral representation in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>) to the exact value of the permanent, <math display="inline"><semantics> <mrow> <mi>per</mi> <mi>A</mi> <mo>=</mo> <msup> <mi>e</mi> <mi>a</mi> </msup> <mi mathvariant="sans-serif">Γ</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, with increasing range of the integration <span class="html-italic">T</span> for the circulant <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>a</mi> <msub> <mi>δ</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math>: The scaled integral in Equation (<a href="#FD79-entropy-22-00322" class="html-disp-formula">79</a>), <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <mi>per</mi> <mi>A</mi> </mrow> </semantics></math>, as a function of <span class="html-italic">T</span>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, the matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>(<b>a</b>) A fractal walk of the scaled row-sum function (<a href="#FD91-entropy-22-00322" class="html-disp-formula">91</a>) with the independent variable running over the interval <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mo>−</mo> <mi>T</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mspace width="4pt"/> <mi>T</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, and (<b>b</b>) the range of the scaled row-sum multivariate polynomial <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>B</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mo stretchy="false">{</mo> <msub> <mi>z</mi> <mi>q</mi> </msub> <mo>|</mo> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>n</mi> <mo stretchy="false">}</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <mrow> <mo stretchy="false">(</mo> <msubsup> <mo>∑</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> in Equation (<a href="#FD96-entropy-22-00322" class="html-disp-formula">96</a>) on the complex plane for a circulant matrix with the power-law varying entries of the first row <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>q</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>, matrix size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Equal each other distribution functions, <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>ρ</mi> <mi>n</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, of the scaled fractal permanental function in Equation (<a href="#FD76-entropy-22-00322" class="html-disp-formula">76</a>), <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>π</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi>n</mi> </msubsup> </mrow> </semantics></math>, and scaled complex multivariate polynomial in Equation (<a href="#FD96-entropy-22-00322" class="html-disp-formula">96</a>), <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">¯</mo> </mover> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mo stretchy="false">{</mo> <msub> <mi>z</mi> <mi>q</mi> </msub> <mo>|</mo> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>n</mi> <mo stretchy="false">}</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi>n</mi> </msubsup> </mrow> </semantics></math>, (dark gray) as well as their zeroth-order approximation in Equation (<a href="#FD103-entropy-22-00322" class="html-disp-formula">103</a>) (light gray) for the circulant <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix with a varying first row <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>q</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>. The base is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>…</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>The function <math display="inline"><semantics> <msub> <mi>D</mi> <mi>n</mi> </msub> </semantics></math> in Equation (<a href="#FD116-entropy-22-00322" class="html-disp-formula">116</a>) in a logarithmic scale, <math display="inline"><semantics> <mrow> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> <msub> <mi>D</mi> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, for the non-prime odd values of the integer variable <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math> in the interval <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>130</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for prime <span class="html-italic">n</span>.</p>
Full article ">Figure 15
<p>The scaled permanent, <math display="inline"><semantics> <mrow> <msup> <mi>n</mi> <mi>n</mi> </msup> <mi>per</mi> <msub> <mi>A</mi> <mi>n</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>!</mo> </mrow> </semantics></math>, of the doubly stochastic circulant <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math> matrix <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>n</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mi>n</mi> </msub> <mo>/</mo> <msub> <mi>λ</mi> <mn>1</mn> </msub> </mrow> </semantics></math> specified in Equation (<a href="#FD134-entropy-22-00322" class="html-disp-formula">134</a>) as a function of the matrix size: the dots—an exact numerical calculation, the crosses—the McCullagh asymptotics in Equation (<a href="#FD128-entropy-22-00322" class="html-disp-formula">128</a>), the dashed-dotted curve—the diagonal (random phase) approximation in Equation (<a href="#FD140-entropy-22-00322" class="html-disp-formula">140</a>), the dashed line—the leading asymptotics in Equation (<a href="#FD137-entropy-22-00322" class="html-disp-formula">137</a>); <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>.</p>
Full article ">
Back to TopTop