<p>(<b>a</b>) Common bionic prototypes in the biomimetic surface design process (<b>b</b>) raw materials used for surface preparation; and (<b>c</b>) schematic diagram of the three-dimensional structure of photoresist micropillars.</p> Full article ">Figure 2
<p>Photoresist biomimetic surface production process.</p> Full article ">Figure 3
<p>Equipment and operation procedures for the evaporation experiment of sessile droplets on bionic surfaces.</p> Full article ">Figure 4
<p>Changes in contact angle and contact line of a 1.0 μL droplet on SS-1 and CS-3 surfaces at a substrate temperature of (<b>a</b>) 50 °C; (<b>b</b>) 60 °C; (<b>c</b>) 70 °C; (<b>d</b>) 80 °C.</p> Full article ">Figure 4 Cont.
<p>Changes in contact angle and contact line of a 1.0 μL droplet on SS-1 and CS-3 surfaces at a substrate temperature of (<b>a</b>) 50 °C; (<b>b</b>) 60 °C; (<b>c</b>) 70 °C; (<b>d</b>) 80 °C.</p> Full article ">Figure 5
<p>(<b>a</b>) Dimensionless height of a 1.0 μL droplet over time for different surfaces and substrate temperatures; (<b>b</b>) initial equilibrium contact angle of a 1.0 μL droplet on different surfaces and substrate temperatures.</p> Full article ">Figure 5 Cont.
<p>(<b>a</b>) Dimensionless height of a 1.0 μL droplet over time for different surfaces and substrate temperatures; (<b>b</b>) initial equilibrium contact angle of a 1.0 μL droplet on different surfaces and substrate temperatures.</p> Full article ">Figure 6
<p>Changes in contact angle and contact line of a 1.0 μL droplet on different surfaces at a substrate temperature of (<b>a</b>) 50 °C; (<b>b</b>) 60 °C; (<b>c</b>) 70 °C; (<b>d</b>) 80 °C.</p> Full article ">Figure 6 Cont.
<p>Changes in contact angle and contact line of a 1.0 μL droplet on different surfaces at a substrate temperature of (<b>a</b>) 50 °C; (<b>b</b>) 60 °C; (<b>c</b>) 70 °C; (<b>d</b>) 80 °C.</p> Full article ">Figure 7
<p>(<b>a</b>) The initial equilibrium contact angle of the droplet changes under different surface and substrate temperature conditions; (<b>b</b>) the initial adhesion work of the droplet changes under different surface and substrate temperature conditions.</p> Full article ">Figure 8
<p>Temperature distribution in the droplet liquid–vapour interface on the CS-3 and SS-3 surfaces at different periods when the substrate temperature is (<b>a</b>) 50 °C and (<b>b</b>) 80 °C.</p> Full article ">Figure 9
<p>The temperature distribution at the centre-line of the droplet’s liquid–vapour interface at different periods when the substrate temperature of the CS-3 surface is (<b>a</b>) 50 °C, (<b>c</b>) 60 °C, (<b>e</b>) 70 °C or (<b>g</b>) 80 °C; the temperature distribution at the centre line of the droplet’s liquid–vapour interface at different periods when the substrate temperature of the SS-3 surface is (<b>b</b>) 50 °C, (<b>d</b>) 60 °C, (<b>f</b>) 70 °C or (<b>h</b>) 80 °C.</p> Full article ">Figure 9 Cont.
<p>The temperature distribution at the centre-line of the droplet’s liquid–vapour interface at different periods when the substrate temperature of the CS-3 surface is (<b>a</b>) 50 °C, (<b>c</b>) 60 °C, (<b>e</b>) 70 °C or (<b>g</b>) 80 °C; the temperature distribution at the centre line of the droplet’s liquid–vapour interface at different periods when the substrate temperature of the SS-3 surface is (<b>b</b>) 50 °C, (<b>d</b>) 60 °C, (<b>f</b>) 70 °C or (<b>h</b>) 80 °C.</p> Full article ">Figure 10
<p>(<b>a</b>) Temperature difference at the droplet’s liquid–vapour interface in the initial state under different surface and substrate temperature conditions; (<b>b</b>) variation in the overall average evaporation rate of the droplet with the surface and substrate temperature.</p> Full article ">