Connecting Riparian Phyllospheres to Aquatic Microbial Communities in a Freshwater Stream System
<p>Study sites near the Saw Kill (solid line, flow is right to left). Locations of <span class="html-italic">A. rubrum</span> used for leaf sampling denoted by white circles. Aerosol-creating waterfalls upstream of both riparian sites noted, along with the location of the outflow for the Bard College wastewater treatment plant.</p> "> Figure 2
<p>Culture-based phyllosphere bacteria counts: (<b>A</b>) geometric mean and standard error of culturable bacteria grown from leaf prints and normalized by leaf surface area (riparian <span class="html-italic">n</span> = 60, forest <span class="html-italic">n</span> = 60), (<b>B</b>) geometric mean and standard error of culturable bacteria grown from leaf wash (riparian <span class="html-italic">n</span> = 20, forest <span class="html-italic">n</span> = 20), and culture-independent (qPCR) abundances of (<b>C</b>) 16S gene copies (riparian <span class="html-italic">n</span> = 20, forest <span class="html-italic">n</span> = 20), and (<b>D</b>) ARG indicator IntI1 copies per ml leaf wash (riparian <span class="html-italic">n</span> = 20, forest <span class="html-italic">n</span> = 20). Statistically significant differences denoted by an asterisk (*).</p> "> Figure 3
<p>Alpha-diversity comparisons between forest leaf PMC samples (<span class="html-italic">n</span> = 18) and riparian leaf PMC samples (<span class="html-italic">n</span> = 20): (<b>A</b>) predicted ASV’s (Chao1 index) and (<b>B</b>) Shannon Diversity index calculated from non-rarefied samples. Boxes and lines denote data range and mean, and black points represent outliers. Green and dark blue points denote by-sample index value. Statistically significant difference denoted with an asterisk (*).</p> "> Figure 4
<p>Phylogenetic tree demonstrating the by-sample abundances of ASV’s identified as sewage-related found on riparian (dark blue), and forest (green) phyllospheres. Each point represents a sample, point size relates to # of ASVs, ranging from 1 to 125.</p> "> Figure 5
<p>Venn diagram demonstrating the number of shared ASVs between forest (green), riparian (dark blue), and water (light blue) microbial communities.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Surface Water and Phyllosphere Sampling
2.3. Bacterial Analyses
2.3.1. Culture-Based Methods
2.3.2. Culture-Independent Methods
2.4. Bioinformatic and Statistical Analyses
3. Results
3.1. Environmental Conditions and Quantification of Leaf PMCs
3.2. Comparing Bacterial Communities in Riparian and Forest Ecosystems
3.2.1. Riparian Leaf PMCs Show Higher Level of Diversity
3.2.2. Bacterial Communities in Riparian Ecosystems Are Distinct from Forest Ecosystems
3.3. Water–Phyllosphere Connections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, C.E.; Kinkel, L.L. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In Phyllosphere Microbiology; Lindow, S.E., Hecht-Poinar, E.I., Elliott, V.J., Eds.; APS Press: St. Paul, MN, USA, 2002; pp. 365–375. [Google Scholar]
- Lighthart, B.; Shaffer, B.T. Increased airborne bacterial survival as a function of particle content and size. Aerosol Sci. Technol. 1997, 27, 439–446. [Google Scholar] [CrossRef]
- Redford, A.J.; Bowers, R.M.; Knight, R.; Linhart, Y.; Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 2010, 12, 2885–2893. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Leveau, J.H.J.; Beattie, G.A.; Lindow, S.E.; Mahaffee, W.F. Phyllosphere, Front and Center: Focus on a Formerly ‘Ecologically Neglected’ Microbial Milieu. Phytobiomes J. 2023, 7, 140–144. [Google Scholar] [CrossRef]
- Leveau, J. A brief from the leaf: Latest research to inform our understanding of the phyllosphere microbiome. Curr. Opin. Microbiol. 2019, 49, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Vacher, C.; Hampe, A.; Porté, A.J.; Sauer, U.; Compant, S.; Morris, C.E. The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 1–24. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Burrows, S.M.; Elbert, W.; Lawrence, M.G.; Poschl, U. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef]
- Blanchard, D.C. The Ejection of Drops from the Sea and Their Enrichment with Bacteria and Other Materials—A Review. Estuaries 1989, 12, 127–137. [Google Scholar] [CrossRef]
- Blanchard, D.C. The production, distribution, and bacterial enrichment of the sea-salt aerosol. In Air-Sea Exchange of Gases and Particles; Springer: Dordrecht, The Nederlands, 1983; pp. 407–454. [Google Scholar]
- Blanchard, D.C.; Syzdek, L. Bubbles and Water-to Air Transfer of Bacteria. Bull. Amer. Meteorol. Soc. 1971, 52, 1136–1141. [Google Scholar]
- Blanchard, D.C.; Syzdek, L. Mechanism for Water-to-Air Transfer and Concentration of Bacteria. Science 1970, 170, 626. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, D.C.; Syzdek, L.D. Water-to-Air Transfer and Enrichment of Bacteria in Drops from Bursting Bubbles. Appl. Environ. Microbiol. 1982, 43, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, D.C.; Syzdek, L.D. Enrichment of Bacteria in Airborne Drops from Bubbles Bursting at the Surface of Bacterial-Laden Waters. Bull. Amer. Meteorol. Soc. 1978, 59, 1516. [Google Scholar]
- Blanchard, D.C.; Syzdek, L.D. Concentration of Bacteria in Jet Drops from Bursting Bubbles. J. Geophys. Res. 1972, 77, 5087. [Google Scholar] [CrossRef]
- Blanchard, D.C.; Syzdek, L.D.; Weber, M.E. Bubble Scavenging of Bacteria in Fresh-Water Quickly Produces Bacterial Enrichment in Airborne Jet Drops. Limnol. Oceanogr. 1981, 26, 961–964. [Google Scholar] [CrossRef]
- Aller, J.Y.; Kuznetsova, M.R.; Jahns, C.J.; Kemp, P.F. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol. Sci. 2005, 36, 801–812. [Google Scholar] [CrossRef]
- Dueker, M.E.; Weathers, K.C.; O’Mullan, G.D.; Juhl, A.R.; Uriarte, M. Environmental Controls on Coastal Coarse Aerosols: Implications for Microbial Content and Deposition in the Near-Shore Environment. Environ. Sci. Technol. 2011, 45, 3386–3392. [Google Scholar] [CrossRef]
- Dueker, M.E.; O’Mullan, G.D.; Martinez, J.; Juhl, A.R.; Weathers, K.C. Onshore wind speed modulates microbial aerosols along an urban waterfront. Atmosphere 2017, 8, 215. [Google Scholar] [CrossRef]
- Baylor, E.R.; Baylor, M.B.; Blanchard, D.C.; Syzdek, L.D.; Appel, C. Virus transfer from surf to wind. Science 1977, 198, 575–580. [Google Scholar] [CrossRef]
- Ahuja, S. Water Reclamation and Sustainability; Elsevier: Amsterdam, The Netherlands, 2014; p. 496. [Google Scholar]
- Marks, R.; Kruczalak, K.; Jankowska, K.; Michalska, M. Bacteria and fungi in air over the Gulf of Gdansk and Baltic sea. J. Aerosol. Sci. 2001, 32, 237–250. [Google Scholar] [CrossRef]
- Dueker, M.E.; O’Mullan, G.D.; Weathers, K.C.; Juhl, A.R.; Uriarte, M. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences 2012, 9, 803–813. [Google Scholar] [CrossRef]
- Evans, S.E.; Dueker, M.E.; Logan, J.R.; Weathers, K.C. The biology of fog: Results from coastal Maine and Namib Desert reveal common drivers of fog microbial composition. Sci. Total Environ. 2019, 647, 1547–1556. [Google Scholar] [CrossRef]
- Dueker, M.E.; French, S.; O’Mullan, G.D. Comparison of Bacterial Diversity in Air and Water of a Major Urban Center. Front. Microbiol. 2018, 9, 2868. [Google Scholar] [CrossRef] [PubMed]
- Dueker, M.E.; O’Mullan, G.D. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols. Sci. Total Environ. 2014, 478, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Dueker, M.E.; O’Mullan, G.D.; Juhl, A.R.; Weathers, K.C.; Uriarte, M. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic Superfund site. Environ. Sci. Technol. 2012, 46, 10926–10932. [Google Scholar] [CrossRef]
- Lighthart, B. The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol. Ecol. 1997, 23, 263–274. [Google Scholar] [CrossRef]
- Warren, S.D. Microorganisms of the Phyllosphere: Origin, Transport, and Ecological Functions. Front. For. Glob. Chang. 2022, 5, 843168. [Google Scholar] [CrossRef]
- Hanson, C.A.; Fuhrman, J.A.; Horner-Devine, M.C.; Martiny, J.B. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012, 10, 497–506. [Google Scholar] [CrossRef]
- Finkel Omri, M.; Burch Adrien, Y.; Elad, T.; Huse Susan, M.; Lindow Steven, E.; Post Anton, F.; Belkin, S. Distance-Decay Relationships Partially Determine Diversity Patterns of Phyllosphere Bacteria on Tamrix Trees across the Sonoran Desert. Appl. Environ. Microbiol. 2012, 78, 6187–6193. [Google Scholar] [CrossRef]
- Yan, K.; Han, W.; Zhu, Q.; Li, C.; Dong, Z.; Wang, Y. Leaf surface microtopography shaping the bacterial community in the phyllosphere: Evidence from 11 tree species. Microbiol. Res. 2022, 254, 126897. [Google Scholar] [CrossRef]
- Koskella, B. The phyllosphere. Curr. Biol. 2020, 30, R1143–R1146. [Google Scholar] [CrossRef]
- Rastogi, G.; Coaker, G.L.; Leveau, J.H.J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 2013, 348, 1–10. [Google Scholar] [CrossRef]
- Schlechter, R.O.; Miebach, M.; Remus-Emsermann, M.N.P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 2019, 19, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lavy, A.; McGrath, D.G.; Matheus Carnevali, P.B.; Wan, J.; Dong, W.; Tokunaga, T.K.; Thomas, B.C.; Williams, K.H.; Hubbard, S.S.; Banfield, J.F. Microbial communities across a hillslope-riparian transect shaped by proximity to the stream, groundwater table, and weathered bedrock. Ecol. Evol. 2019, 9, 6869–6900. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Zeglin, L.H.; Ramos, R.J.; Platt, T.G.; Pandey, A.; Michaels, T.; Masigol, M.; Klompen, A.M.L.; Kelly, M.C.; Jumpponen, A.; et al. Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. BioScience 2020, 70, 548–562. [Google Scholar] [CrossRef]
- Adomako, M.O.; Yu, F.-H. Potential effects of micro- and nanoplastics on phyllosphere microorganisms and their evolutionary and ecological responses. Sci. Total Environ. 2023, 884, 163760. [Google Scholar] [CrossRef]
- Ivashchenko, K.V.; Korneykova, M.V.; Sazonova, O.I.; Vetrova, A.A.; Ermakova, A.O.; Konstantinov, P.I.; Sotnikova, Y.L.; Soshina, A.S.; Vasileva, M.N.; Vasenev, V.I.; et al. Phylloplane Biodiversity and Activity in the City at Different Distances from the Traffic Pollution Source. Plants 2022, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Das, S.; Roy, A.; Rakwal, R.; Jones, O.A.H.; Popek, R.; Agrawal, G.K.; Sarkar, A. Interactive relations between plants, the phyllosphere microbial community, and particulate matter pollution. Sci. Total Environ. 2023, 890, 164352. [Google Scholar] [CrossRef]
- Laforest-Lapointe, I.; Messier, C.; Kembel Steven, W. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. mSystems 2017, 2, 10–1128. [Google Scholar] [CrossRef]
- Guo, L.; Maghirang, R.G. Numerical Simulation of Airflow and Particle Collection by Vegetative Barriers. Eng. Appl. Comput. Fluid Mech. 2012, 6, 110–122. [Google Scholar] [CrossRef]
- Wu, S.; Bashir, M.A.; Raza, Q.-U.-A.; Rehim, A.; Geng, Y.; Cao, L. Application of riparian buffer zone in agricultural non-point source pollution control—A review. Front. Sustain. Food Syst. 2023, 7, 985870. [Google Scholar] [CrossRef]
- de Santana, C.O.; Spealman, P.; Azulai, D.; Reid, M.; Dueker, M.E.; Perron, G.G. Bacteria communities and water quality parameters in riverine water and sediments near wastewater discharges. Sci. Data 2022, 9, 578. [Google Scholar] [CrossRef]
- Chen, X.Y.; Ran, P.X.; Ho, K.F.; Lu, W.J.; Li, B.; Gu, Z.P.; Song, C.J.; Wang, J. Concentrations and Size Distributions of Airborne Microorganisms in Guangzhou during Summer. Aerosol Air Qual. Res. 2012, 12, 1336–1344. [Google Scholar] [CrossRef]
- Tang, G.; Fan, Y.; Li, X.; Tian, R.; Tang, R.; Xu, L.; Zhang, J. Effects of leaf properties on the counts of microbes on the leaf surfaces of wheat, rye and triticale. FEMS Microbiol. Ecol. 2023, 99, fiad024. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Interactions among amphotericin B, 5-fluorocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro. Antimicrob. Agents Chemother. 1982, 22, 763–770. [Google Scholar] [CrossRef]
- Ismaïl, R.; Aviat, F.; Michel, V.; Le Bayon, I.; Gay-Perret, P.; Kutnik, M.; Fédérighi, M. Methods for Recovering Microorganisms from Solid Surfaces Used in the Food Industry: A Review of the Literature. Int. J. Environ. Res. Public Health 2013, 10, 6169–6183. [Google Scholar] [CrossRef]
- Gaze, W.H.; Zhang, L.; Abdouslam, N.A.; Hawkey, P.M.; Calvo-Bado, L.; Royle, J.; Brown, H.; Davis, S.; Kay, P.; Boxall, A.B.A.; et al. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. Isme J. 2011, 5, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput Biol 2014, 10, e1003531. [Google Scholar] [CrossRef] [PubMed]
- Laforest-Lapointe, I.; Messier, C.; Kembel, S.W. Tree phyllosphere bacterial communities: Exploring the magnitude of intra- and inter-individual variation among host species. PeerJ 2016, 4, e2367. [Google Scholar] [CrossRef] [PubMed]
- Laforest-Lapointe, I.; Messier, C.; Kembel, S.W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 2016, 4, 27. [Google Scholar] [CrossRef]
- Maki, T.; Hosaka, K.; Lee, K.C.; Kawabata, Y.; Kajino, M.; Uto, M.; Kita, K.; Igarashi, Y. Vertical distribution of airborne microorganisms over forest environments: A potential source of ice-nucleating bioaerosols. Atmos. Environ. 2023, 302, 119726. [Google Scholar] [CrossRef]
- Roldán, D.M.; Kyrpides, N.; Woyke, T.; Shapiro, N.; Whitman, W.B.; Králová, S.; Sedláček, I.; Busse, H.-J.; Menes, R.J. Hymenobacter artigasi sp. nov., isolated from air sampling in maritime Antarctica. Int. J. Syst. Evol. Microbiol. 2020, 70, 4935–4941. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Subramanian, P.; Choi, H.; Weon, H.Y.; Kim, S.; Kwon, S.W.; Lee, D.; Han, B.H.; Hong, S.B.; Heo, J. Five novel Hymenobacter species isolated from air: Hymenobacter cellulosilyticus sp. nov., Hymenobacter cellulosivorans sp. nov., Hymenobacter aerilatus sp. nov., Hymenobacter sublimis sp. nov. and Hymenobacter volaticus sp. nov. Int. J. Syst. Evol. Microbiol. 2023, 73, 006026. [Google Scholar] [CrossRef] [PubMed]
- Roldán, D.M.; Kyrpides, N.; Woyke, T.; Shapiro, N.; Whitman, W.B.; Králová, S.; Sedláček, I.; Busse, H.J.; Menes, R.J. Hymenobacter caeli sp. nov., an airborne bacterium isolated from King George Island, Antarctica. Int. J. Syst. Evol. Microbiol. 2021, 71, 004838. [Google Scholar] [CrossRef]
- Erkorkmaz, B.A.; Gat, D.; Rudich, Y. Aerial transport of bacteria by dust plumes in the Eastern Mediterranean revealed by complementary rRNA/rRNA-gene sequencing. Commun. Earth Environ. 2023, 4, 24. [Google Scholar] [CrossRef]
- Xue, H.; Piao, C.-G.; Wang, X.-Z.; Lin, C.-L.; Guo, M.-W.; Li, Y. Sphingomonas aeria sp. nov., isolated from air. Int. J. Syst. Evol. Microbiol. 2018, 68, 2866–2871. [Google Scholar] [CrossRef]
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015, 9, 1269–1279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dueker, M.E.; Lansbury, B.; Perron, G.G. Connecting Riparian Phyllospheres to Aquatic Microbial Communities in a Freshwater Stream System. Aerobiology 2024, 2, 59-71. https://doi.org/10.3390/aerobiology2030005
Dueker ME, Lansbury B, Perron GG. Connecting Riparian Phyllospheres to Aquatic Microbial Communities in a Freshwater Stream System. Aerobiology. 2024; 2(3):59-71. https://doi.org/10.3390/aerobiology2030005
Chicago/Turabian StyleDueker, M. Elias, Beckett Lansbury, and Gabriel G. Perron. 2024. "Connecting Riparian Phyllospheres to Aquatic Microbial Communities in a Freshwater Stream System" Aerobiology 2, no. 3: 59-71. https://doi.org/10.3390/aerobiology2030005
APA StyleDueker, M. E., Lansbury, B., & Perron, G. G. (2024). Connecting Riparian Phyllospheres to Aquatic Microbial Communities in a Freshwater Stream System. Aerobiology, 2(3), 59-71. https://doi.org/10.3390/aerobiology2030005