Design, Synthesis, and Evaluation of EA-Sulfonamides and Indazole-Sulfonamides as Promising Anticancer Agents: Molecular Docking, ADME Prediction, and Molecular Dynamics Simulations
"> Figure 1
<p>Selectivity index of <b>9</b>, <b>10</b>, <b>13</b>, and <b>18</b>.</p> "> Figure 2
<p>Molecular redocking of co-crystallized ligands within the kinases concerned: original (red) and re-docked (blue).</p> "> Figure 3
<p>RMSD plots for (<b>a</b>) 4Z16, free and complexed with <b>9</b>; and (<b>b</b>) 6E9W, free and complexed with <b>9</b>.</p> "> Figure 4
<p>RMSF plots for (<b>a</b>) 4Z16, free and complexed with <b>9</b>; and (<b>b</b>) 6E9W, free and complexed with <b>9</b>.</p> "> Figure 5
<p>Histogram of interactions between ligand <b>9</b> and JAK3 (4Z16) and ROCK1 (6E9W) kinases for 100 ns: (<b>a</b>) <b>9</b> with 4Z16, and (<b>b</b>) <b>9</b> with 6E9W.</p> "> Scheme 1
<p><b>EA</b> and indazole derivatives bearing a sulfonamide moiety.</p> "> Scheme 2
<p>Synthesis of new indazole-sulfonamide derivatives <b>1</b>, <b>2</b>, and <b>4</b>–<b>8</b>.</p> "> Scheme 3
<p>Synthesis of new <b>EA</b>-sulfonamide derivatives <b>9</b>, <b>10</b>, <b>13</b>, and <b>18</b>–<b>20</b>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.1.1. General Process for the Sulfonylation Reaction 1 (1–2)
2.1.2. General Process for the Sulfonylation Reaction 2 (4–6)
2.1.3. General Method for the Preparation of the Sulfonyl Indazole-Amines 7 and 8
2.1.4. General Method for the Preparation of Intermediates 12, 15–17
2.1.5. General Method of Amidification Reaction: Preparation of 9, 10, 13 and 18–20
2.2. Biology
2.3. Molecular Docking
2.4. Drug Likeness and ADMET Proprieties
2.5. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Chemistry
3.2. Biological Study
3.3. Molecular Docking Study
3.4. In Silico Study of Drug-Likeness Properties
3.5. In Silico Study of ADMET Properties
3.6. Molecular Dynamics Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, H.-C.; Qi, R.Z.; Paudel, H.; Zhu, H.-J. Regulation and Function of Protein Kinases and Phosphatases. Enzyme Res. 2011, 2011, 794089. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M. Physiological Relevance of Cell Cycle Kinases. Physiol. Rev. 2011, 91, 973–1007. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Wang, X.J.; Cheng, A.S.L.; Luo, M.X.M.; Ng, S.S.M.; To, K.F.; Chan, F.K.L.; Cho, C.H.; Sung, J.J.Y.; Yu, J. Dysregulation and Crosstalk of Cellular Signaling Pathways in Colon Carcinogenesis. Crit. Rev. Oncol. Hematol. 2013, 86, 251–277. [Google Scholar] [CrossRef]
- Wu, W.K.K.; Cho, C.H.; Lee, C.W.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J.Y. Dysregulation of Cellular Signaling in Gastric Cancer. Cancer Lett. 2010, 295, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, S.; Caraglia, M.; Abbruzzese, A.; Chiosi, E.; Di Gesto, D.; Marra, M.; Romano, M.; Sorrentino, A.; Sorvillo, L.; Spina, A.; et al. Protein Kinase A as a Biological Target in Cancer Therapy. Expert Opin. Ther. Targets 2009, 13, 83–92. [Google Scholar] [CrossRef]
- Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev. Anticancer Ther. 2018, 18, 1249–1270. [Google Scholar] [CrossRef]
- López-Lázaro, M. The Stem Cell Division Theory of Cancer. Crit. Rev. Oncol. Hematol. 2018, 123, 95–113. [Google Scholar] [CrossRef]
- Edelman, E.J.; Guinney, J.; Chi, J.-T.; Febbo, P.G.; Mukherjee, S. Modeling Cancer Progression via Pathway Dependencies. PLoS Comput. Biol. 2008, 4, e28. [Google Scholar] [CrossRef]
- Nacher, J.C.; Schwartz, J.-M. A Global View of Drug-Therapy Interactions. BMC Pharmacol. 2008, 8, 5. [Google Scholar] [CrossRef]
- Fisher, R.; Pusztai, L.; Swanton, C. Cancer Heterogeneity: Implications for Targeted Therapeutics. Br. J. Cancer 2013, 108, 479–485. [Google Scholar] [CrossRef]
- Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Vinals, F.; Capella, G. Recent Advances in Cancer Therapy: An Overview. Curr. Pharm. Des. 2010, 16, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Begg, A.C.; Stewart, F.A.; Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 2011, 11, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Habito, C.M.; Roh, E.K. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer. J. Am. Acad. Dermatol. 2014, 71, 203.e1–203.e12. [Google Scholar] [CrossRef]
- Luo, Y.; Zeng, Z.; Liu, Y.; Liu, A. Reflecting on the Cardiac Toxicity in Non-Small Cell Lung Cancer in the Era of Immune Checkpoint Inhibitors Therapy Combined with Thoracic Radiotherapy. Biochim. Biophys. Acta BBA—Rev. Cancer 2023, 1878, 189008. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.; McCurdy, D.K.; Foltz, E.L.; Bluemle, L.W. Effects of Ethacrynic Acid (a New Saluretic Agent) on Renal Diluting and Concentrating Mechanisms: Evidence for Site of Action in the Loop of Henle. J. Clin. Investig. 1964, 43, 201–216. [Google Scholar] [CrossRef]
- Awasthi, S.; Srivastava, S.K.; Ahmad, F.; Ahmad, H.; Ansari, G.A.S. Interactions of Glutathione S-Transferase-π with Ethacrynic Acid and Its Glutathione Conjugate. Biochim. Biophys. Acta BBA—Protein Struct. Mol. Enzymol. 1993, 1164, 173–178. [Google Scholar] [CrossRef]
- Păunescu, E.; Soudani, M.; Clavel, C.M.; Dyson, P.J. Varying the Metal to Ethacrynic Acid Ratio in Ruthenium(Ii)/Osmium(Ii)-p-Cymene Conjugates. J. Inorg. Biochem. 2017, 175, 198–207. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Z.; Wu, X.; Gan, C.; Su, X.; Liu, H.; Que, H.; Zhang, Q.; Xue, Q.; Yue, L.; et al. Synthesis and Biological Evaluation of Indazole Derivatives as Anti-Cancer Agents. RSC Adv. 2021, 11, 15675–15687. [Google Scholar] [CrossRef]
- Chu, Y.; Cheng, H.; Tian, Z.; Zhao, J.; Li, G.; Chu, Y.; Sun, C.; Li, W. Rational Drug Design of Indazole-based Diarylurea Derivatives as Anticancer Agents. Chem. Biol. Drug Des. 2017, 90, 609–617. [Google Scholar] [CrossRef]
- Zhao, C.-R.; Wang, R.-Q.; Li, G.; Xue, X.-X.; Sun, C.-J.; Qu, X.-J.; Li, W.-B. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg. Med. Chem. Lett. 2013, 23, 1989–1992. [Google Scholar] [CrossRef]
- Shang, C.; Hou, Y.; Meng, T.; Shi, M.; Cui, G. The anticancer activity of Indazole Compounds: A Mini Review. Curr. Top. Med. Chem. 2021, 21, 363–376. [Google Scholar] [CrossRef]
- Apaydın, S.; Török, M. Sulfonamide Derivatives as Multi-Target Agents for Complex Diseases. Bioorg. Med. Chem. Lett. 2019, 29, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C. Special Issue: Sulfonamides. Molecules 2017, 22, 1642. [Google Scholar] [CrossRef] [PubMed]
- Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Anticancer and Antiviral Sulfonamides. Curr. Med. Chem. 2003, 10, 925–953. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem. 2019, 165, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Kakutani, S.; Sato, Y.; Hanashi, A.; Kinoshita, Y.; Ishikawa, A. Drug Review: Pazopanib. Jpn. J. Clin. Oncol. 2018, 48, 503–513. [Google Scholar] [CrossRef]
- El Brahmi, N.; El Abbouchi, A.; El Kazzouli, S. An Overview on the Synthesis and Anticancer Properties of Ethacrynic Acid and Their Analogues. Results Chem. 2023, 6, 101117. [Google Scholar] [CrossRef]
- El Abbouchi, A.; Mkhayar, K.; Elkhattabi, S.; El Brahmi, N.; Hiebel, M.-A.; Bignon, J.; Guillaumet, G.; Suzenet, F.; El Kazzouli, S. Design, Synthesis, Computational Studies, and Anti-Proliferative Evaluation of Novel Ethacrynic Acid Derivatives Containing Nitrogen Heterocycle, Urea, and Thiourea Moieties as Anticancer Agents. Molecules 2024, 29, 1437. [Google Scholar] [CrossRef]
- El Abbouchi, A.; El Brahmi, N.; Hiebel, M.-A.; Bignon, J.; Guillaumet, G.; Suzenet, F.; El Kazzouli, S. Synthesis and biological evaluation of ethacrynic acid derivatives bearing sulfonamides as potent anti-cancer agents. Bioorganic Med. Chem. Lett. 2020, 30, 127426. [Google Scholar] [CrossRef]
- El Abbouchi, A.; El Brahmi, N.; Hiebel, M.-A.; Bignon, J.; Guillaumet, G.; Suzenet, F.; El Kazzouli, S. Synthesis and evaluation of a novel class of ethacrynic acid derivatives containing triazoles as potent anticancer agents. Bioorganic Chem. 2021, 115, 105293. [Google Scholar] [CrossRef]
- Boujdi, K.; El Brahmi, N.; Graton, J.; Dubreuil, D.; Collet, S.; Mathé-Allainmat, M.; Akssira, M.; Lebreton, J.; El Kazzouli, S. A regioselective C7 bromination and C7 palladium-catalyzed Suzuki–Miyaura cross-coupling arylation of 4-substituted NH-free indazoles. RSC Adv. 2021, 11, 7107–7114. [Google Scholar] [CrossRef] [PubMed]
- Gambouz, K.; El Abbouchi, A.; Nassiri, S.; Suzenet, F.; Bousmina, M.; Akssira, M.; Guillaumet, G.; El Kazzouli, S. “On Water” Palladium Catalyzed Direct Arylation of 1H-Indazole and 1H-7-Azaindazole. Molecules 2020, 25, 2820. [Google Scholar] [CrossRef] [PubMed]
- Saghdani, N.; Chihab, A.; El Brahmi, N.; El Kazzouli, S. Synthesis and Characterization of Novel Indazole–Sulfonamide Compounds with Potential MAPK1 Inhibitory Activity for Cancer Treatment. Molbank 2024, 2024, M1858. [Google Scholar] [CrossRef]
- RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 12 March 2024).
- Namitha, K.N.; Velmurugan, V. Review of Bioinformatic Tools Used in Computer Aided Drug Design (CADD). World J. Adv. Res. Rev. 2022, 14, 453–465. [Google Scholar] [CrossRef]
- Allouche, A. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef]
- Certara Enhances SYBYL-X Drug Design and Discovery Software Suite|Certara. Available online: https://www.certara.com/pressrelease/certara-enhances-sybyl-x-drug-design-and-discovery-software-suite/ (accessed on 21 April 2022).
- Thangavel, N.; Albratty, M. Pharmacophore Model-Aided Virtual Screening Combined with Comparative Molecular Docking and Molecular Dynamics for Identification of Marine Natural Products as SARS-CoV-2 Papain-like Protease Inhibitors. Arab. J. Chem. 2022, 15, 104334. [Google Scholar] [CrossRef]
- Luo, D.; Tong, J.B.; Zhang, X.; Xiao, X.C.; Bian, S. Computational Strategies towards Developing Novel SARS-CoV-2 Mpro Inhibitors against COVID-19. J. Mol. Struct. 2022, 1247, 131378. [Google Scholar] [CrossRef]
- Haloui, R.; Daoui, O.; Mkhayar, K.; El Yaqoubi, M.; Elkhattabi, S.; Haoudi, A.; Rodi, Y.K.; Ouazzani, F.C.; Chtita, S. 3D-QSAR, Drug-Likeness, ADMET Prediction, and Molecular Docking Studies in Silico of Novel 5-Oxo-1-Thioxo-4,5-Dihydro-1H-Thiazolo [3,4-a]Quinazoline Derivatives as MALT1 Protease Inhibitors for the Treatment of B Cell Lymphoma. Chem. Pap. 2022, 77, 2255–2274. [Google Scholar] [CrossRef]
- Haloui, R.; Elkhattabi, K.; Mkhayar, K.; Daoui, O. Design of Novel Small Molecules Derived from Styrylpyridine as Potent HDAC1 Inhibitors for the Treatment of Gastric Cancer Using 3D-QSAR, Drug Similarity, ADMET Prediction, Molecular Docking, and Molecular Dynamics Studies. Sci. Afr. 2024, 23, e01990. [Google Scholar] [CrossRef]
- Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the Novel Heterocyclic Derivatives as Lead Molecules for Design and Development of Potent Anticancer Agents. J. Mol. Graph. Model. 2018, 81, 211–228. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lazim, R. Application of Conventional Molecular Dynamics Simulation in Evaluating the Stability of Apomyoglobin in Urea Solution. Sci. Rep. 2017, 7, 44651. [Google Scholar] [CrossRef] [PubMed]
- Desmond|Schrödinger. Available online: https://www.schrodinger.com/products/desmond (accessed on 8 June 2023).
- Gopinath, P.; Kathiravan, M.K. Docking Studies and Molecular Dynamics Simulation of Triazole Benzene Sulfonamide Derivatives with Human Carbonic Anhydrase IX Inhibition Activity. RSC Adv. 2021, 11, 38079–38093. [Google Scholar] [CrossRef]
- Zielkiewicz, J. Structural Properties of Water: Comparison of the SPC, SPCE, TIP4P, and TIP5P Models of Water. J. Chem. Phys. 2005, 123, 104501. [Google Scholar] [CrossRef]
- Rajagopal, K.; Varakumar, P.; Aparna, B.; Byran, G.; Jupudi, S. Identification of Some Novel Oxazine Substituted 9-Anilinoacridines as SARS-CoV-2 Inhibitors for COVID-19 by Molecular Docking, Free Energy Calculation and Molecular Dynamics Studies. J. Biomol. Struct. Dyn. 2021, 39, 5551–5562. [Google Scholar] [CrossRef]
- Cheng, A.; Merz, K.M. Application of the Nosé−Hoover Chain Algorithm to the Study of Protein Dynamics. J. Phys. Chem. 1996, 100, 1927–1937. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Notarangelo, L.D.; Mella, P.; Jones, A.; de Basile, G.S.; Savoldi, G.; Cranston, T.; Vihinen, M.; Schumacher, R.F. Mutations in Severe Combined Immune Deficiency (SCID) Due to JAK3 Deficiency. Hum. Mutat. 2001, 18, 255–263. [Google Scholar] [CrossRef]
- Russell, S.M.; Tayebi, N.; Nakajima, H.; Riedy, M.C.; Roberts, J.L.; Aman, M.J.; Migone, T.-S.; Noguchi, M.; Markert, M.L.; Buckley, R.H.; et al. Mutation of Jak3 in a Patient with SCID: Essential Role of Jak3 in Lymphoid Development. Science 1995, 270, 797–800. [Google Scholar] [CrossRef]
- Kiyoi, H.; Yamaji, S.; Kojima, S.; Naoe, T. JAK3 Mutations Occur in Acute Megakaryoblastic Leukemia Both in Down Syndrome Children and Non-Down Syndrome Adults. Leukemia 2007, 21, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Bains, T.; Heinrich, M.C.; Loriaux, M.M.; Beadling, C.; Nelson, D.; Warrick, A.; Neff, T.L.; Tyner, J.W.; Dunlap, J.; Corless, C.L.; et al. Newly Described Activating JAK3 Mutations in T-Cell Acute Lymphoblastic Leukemia. Leukemia 2012, 26, 2144–2146. [Google Scholar] [CrossRef] [PubMed]
- Tibbitts, J.; Canter, D.; Graff, R.; Smith, A.; Khawli, L.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2016, 8, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Haloui, R.; Mkhayar, K.; Daoui, O.; El Khattabi, K.; El Abbouchi, A.; Chtita, S.; Elkhattabi, S. Design of New Small Molecules Derived from Indolin-2-One as Potent TRKs Inhibitors Using a Computer-Aided Drug Design Approach. J. Biomol. Struct. Dyn. 2024, 1–18. [Google Scholar] [CrossRef]
- pkCSM. Available online: https://biosig.lab.uq.edu.au/pkcsm/ (accessed on 6 March 2024).
- Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The Role of ABC Transporters in Drug Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox). Drug Discov. Today 2008, 13, 379–393. [Google Scholar] [CrossRef]
- Fatima, S.; Gupta, P.; Sharma, S.; Sharma, A.; Agarwal, S.M. ADMET Profiling of Geographically Diverse Phytochemical Using Chemoinformatic Tools. Future Med. Chem. 2019, 12, 69–87. [Google Scholar] [CrossRef]
Compound | A-549 | MCF-7 |
---|---|---|
1 | >100 | >100 |
2 | >100 | >100 |
4 | 34.2 ± 15.1 | >100 |
5 | >100 | >100 |
6 | >50 | >50 |
7 | >50 | >100 |
8 | >100 | >100 |
9 | >100 | 0.83 ± 0.1 |
10 | 1.01 ± 0.2 | 23.7 ± 1.8 |
13 | 15.8 ± 2.9 | 0.9 ± 0.4 |
18 | 8.2 ± 1.4 | 0.9 ± 0.2 |
19 | 4.9 ± 2.7 | 2.7 ± 0.8 |
20 | 7.9 ± 3.3 | 2.5 ± 1.3 |
5-Fluorouracil | 8.88 ± 3.5 | 4.83 ± 1.06 |
Etoposide | 1.63 ± 0.3 | 3.89 ± 1.09 |
Compound | A-549 | MCF-7 | HS683 | SK-MEL-28 | HaCaT |
---|---|---|---|---|---|
9 | >100 | 0.83 ± 0.1 | >50 | >100 | 47.6 ± 4.1 |
10 | 1.01 ± 0.2 | 23.7 ± 1.8 | >50 | >100 | 3.76 ± 1.7 |
13 | 15.8 ± 2.9 | 0.9 ± 0.4 | 28.8 ± 18.5 | >100 | 4.2 ± 1.4 |
18 | 8.2 ± 1.4 | 0.9 ± 0.2 | >100 | >100 | 35.2 ± 16.2 |
5-Fluorouracil | 8.88 ± 3.5 | 4.83 ± 1.06 | 36.97 ± 7.2 | 6.57 ± 1.3 | 0.38 ± 0.08 |
Etoposide | 1.63 ± 0.3 | 3.89 ± 1.09 | 1.57 ± 0.2 | 3.89 ± 1.1 | 0.52 ± 0.06 |
Kinases | MAPK1 | JAK2 | MET | JAK3 | ROCK1 |
---|---|---|---|---|---|
PDB code | 2OJI | 3KRR | 3DKG | 4Z16 | 6E9W |
RMSD (Å) | 0.176 | 0.139 | 0.204 | 0.721 | 0.150 |
Compounds | MAPK1 | JAK2 | MET | JAK3 | ROCK1 |
---|---|---|---|---|---|
Binding Affinity (kcal/mol) | |||||
9 | −7.3 | −7.9 | −7.2 | −9.4 | −9.0 |
10 | −7.7 | −7.7 | −7.8 | −9.1 | −7.3 |
18 | −7.0 | −8.0 | −6.3 | −8.8 | −7.7 |
5-Fluorouracil | −4.7 | −5.3 | −4.5 | −4.8 | −4.8 |
Etoposide | −9.2 | −9.7 | −8.0 | −9.8 | −8.2 |
Compounds | TPSA (Å2) | MW (g/mol) | LogP | H-Bond Acceptor | H-Bond Donor | Rotatable Bonds | Lipinski Violation | Veber Violation |
---|---|---|---|---|---|---|---|---|
Rule | --- | <500 | ≤5 | <10 | <5 | --- | ≤1 | ≤1 |
9 | 124.97 | 622.90 | 4.32 | 7 | 1 | 11 | 2 | 1 |
10 | 134.20 | 618.48 | 3.56 | 8 | 1 | 12 | 1 | 1 |
18 | 119.62 | 585.50 | 1.85 | 8 | 1 | 12 | 1 | 1 |
5-Fluorouracil | 65.72 | 130.08 | 0.13 | 3 | 2 | 0 | 0 | 0 |
Etoposide | 160.83 | 588.56 | 1.17 | 13 | 3 | 5 | 2 | 1 |
Compounds | Absorption | Distribution | Metabolism | Excretion | Toxicity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intestinal Absorption (Human) | BBB Permeability | CNS Permeability | 2D6 | 3A4 | 1A2 | 2C19 | 2C9 | 2D6 | 3A4 | Total Clearance | AMES Toxicity | |
Substrate | Inhibition | |||||||||||
Unity | Numeric (% Absorbed) | Numeric (logBB) | Numeric (LogPS) | Categorical (Yes/No) | Categorical (Yes/No) | Numeric (Log mL/min/kg) | Categorical (Yes/No) | |||||
9 | 88.078 | −1.575 | −3.07 | No | Yes | No | Yes | Yes | No | Yes | 0.161 | No |
10 | 89.846 | −1.618 | −3.305 | No | Yes | No | Yes | Yes | No | Yes | 0.268 | No |
18 | 81.861 | −1.654 | −3.171 | No | Yes | No | Yes | Yes | No | Yes | 0.307 | No |
5-Fluorouracil | 91.698 | −0.388 | −3.039 | No | No | No | No | No | No | No | 0.639 | No |
Etoposide | 75.614 | −1.567 | −4.115 | No | Yes | No | No | No | No | No | −0.068 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saghdani, N.; El Brahmi, N.; El Abbouchi, A.; Haloui, R.; Elkhattabi, S.; Guillaumet, G.; El Kazzouli, S. Design, Synthesis, and Evaluation of EA-Sulfonamides and Indazole-Sulfonamides as Promising Anticancer Agents: Molecular Docking, ADME Prediction, and Molecular Dynamics Simulations. Chemistry 2024, 6, 1396-1414. https://doi.org/10.3390/chemistry6060083
Saghdani N, El Brahmi N, El Abbouchi A, Haloui R, Elkhattabi S, Guillaumet G, El Kazzouli S. Design, Synthesis, and Evaluation of EA-Sulfonamides and Indazole-Sulfonamides as Promising Anticancer Agents: Molecular Docking, ADME Prediction, and Molecular Dynamics Simulations. Chemistry. 2024; 6(6):1396-1414. https://doi.org/10.3390/chemistry6060083
Chicago/Turabian StyleSaghdani, Nassima, Nabil El Brahmi, Abdelmoula El Abbouchi, Rachid Haloui, Souad Elkhattabi, Gérald Guillaumet, and Saïd El Kazzouli. 2024. "Design, Synthesis, and Evaluation of EA-Sulfonamides and Indazole-Sulfonamides as Promising Anticancer Agents: Molecular Docking, ADME Prediction, and Molecular Dynamics Simulations" Chemistry 6, no. 6: 1396-1414. https://doi.org/10.3390/chemistry6060083
APA StyleSaghdani, N., El Brahmi, N., El Abbouchi, A., Haloui, R., Elkhattabi, S., Guillaumet, G., & El Kazzouli, S. (2024). Design, Synthesis, and Evaluation of EA-Sulfonamides and Indazole-Sulfonamides as Promising Anticancer Agents: Molecular Docking, ADME Prediction, and Molecular Dynamics Simulations. Chemistry, 6(6), 1396-1414. https://doi.org/10.3390/chemistry6060083