Solvent-Mediated Rate Deceleration of Diels–Alder Reactions for Enhanced Selectivity: Quantum Mechanical Insights
"> Figure 1
<p>Energy schemes (kJ/mol) for reactions of <b>1</b> with <b>2a–d</b>, as shown in panels (<b>a</b>–<b>d</b>), calculated at the M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d) level of theory.</p> "> Figure 2
<p>Activation barriers for formation of products <b>3d</b> and <b>3d’</b> (<b>top</b>) and predicted yield of product <b>3d</b> (<b>bottom</b>) presented as a function of the dielectric constant for the solvents DMSO (dimethylsulfoxide), acetone, DCM (dichloromethane), ether (diethyl ether), toluene and n-hexane.</p> "> Figure 3
<p>Difference in the activation energies computed for pairs of isomeric products in gas phase and solvents.</p> "> Figure 4
<p>Molecular electrostatic potential plots of reactants and products. Positive regions are shown in blue, and negative regions in red. The other colors, i.e., light blue, green, and yellow indicate slightly positive, neutral, and slightly negative regions, respectively.</p> "> Figure 5
<p>Interactions between the frontier molecular orbitals of reactants in the gas phase (NED and IED represent normal and inverse electron demand, respectively).</p> "> Figure 6
<p>Electrophilicity indices of reactants in gas phase, acetone and toluene.</p> "> Figure 7
<p>Condensed-to-atom Fukui functions for reacting molecules in gas phase (<math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>w</mi> <mo>−</mo> </msubsup> </semantics></math> for <b>1</b> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>w</mi> <mo>+</mo> </msubsup> </semantics></math> for <b>2a</b> and <b>2d</b>).</p> "> Scheme 1
<p>Cycloaddition reactions of the diene 9-methylanthracene (<b>1</b>) with different dienophiles (<b>2a–d</b>) (note: <b>3a</b> and <b>3a’</b> are the same products).</p> ">
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Reaction Thermodynamics
3.2. Geometries
3.3. Molecular Electrostatic Potential Analysis
3.4. Frontier Molecular Orbital (FMO) Analysis
3.5. Global Reactivity Indices (GRI)
3.6. Natural Bond Orbital (NBO) Analysis and Fukui Functions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ketkaew, R.; Creazzo, F.; Luber, S. Closer Look at Inverse Electron Demand Diels-Alder and Nucleophilic Addition Reactions on s-Tetrazines Using Enhanced Sampling Methods. Top. Catal. 2022, 65, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Isamura, B.K.; Lobb, K.A. AMADAR: A python-based package for large scale prediction of Diels-Alder transition state geometries and IRC path analysis. J. Cheminform. 2022, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Perez, P. Lithium Cation-Catalyzed Benzene Diels-Alder Reaction: Insights on the Molecular Mechanism within the Molecular Electron Density Theory. J. Org. Chem. 2020, 85, 13121–13132. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, A.; Khasanov, A.F.; Kopchuk, D.S.; Gunasekar, D.; Zyryanov, G.V.; Chupakhin, O.N. Assessment on facile Diels-Alder approach of alpha-pyrone and terpenoquinone for the expedient synthesis of various natural scaffolds. Nat. Prod. Bioprospect. 2022, 12, 12. [Google Scholar] [CrossRef]
- Donkor, B.; Umar, A.R.; Opoku, E. Mechanistic elucidation of the tandem Diels-Alder/(3 + 2) cycloadditions in the design and syntheses of heterosteroids. J. Mol. Model. 2022, 28, 70. [Google Scholar] [CrossRef]
- Sharipov, B.T.; Davydova, A.N.; Valeev, F.A. Synthesis of 3,9-Dialkyl-1,8-cineole Derivatives Based on Diels–Alder Adducts of Levoglucosenone with Isoprene and Butadiene. Russ. J. Org. Chem. 2022, 58, 295–305. [Google Scholar] [CrossRef]
- Funel, J.A.; Abele, S. Industrial applications of the Diels-Alder reaction. Angew. Chem. Int. Ed. 2013, 52, 3822–3863. [Google Scholar] [CrossRef]
- Briou, B.; Ameduri, B.; Boutevin, B. Trends in the Diels-Alder reaction in polymer chemistry. Chem. Soc. Rev. 2021, 50, 11055–11097. [Google Scholar] [CrossRef]
- Haghdadi, M.; Norouzi, K.; Hamzehloueian, M. Evaluation of the mechanism, regio-, and diastereoselectivity of aza-Diels–Alder reactions of 2H-azirine under a Lewis acid catalyst. Struct. Chem. 2022, 33, 445–456. [Google Scholar] [CrossRef]
- Ji, X.; Zhou, C.; Ji, K.; Aghoghovbia, R.E.; Pan, Z.; Chittavong, V.; Ke, B.; Wang, B. Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction. Angew. Chem. Int. Ed. 2016, 55, 15846–15851. [Google Scholar] [CrossRef]
- Subhani, M.; Zhou, J.; Sui, Y.; Zou, H.; Frunzi, M.; Cross, J.; Saunders, M.; Shuai, C.; Liang, W.; Xu, H. Reversible Diels-Alder Addition to Fullerenes: A Study of Dimethylanthracene with H2@C60. Nanomaterials 2022, 12, 1667. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Sato, M.; Osada, H. Recent advances in the chemo-biological characterization of decalin natural products and unraveling of the workings of Diels-Alderases. Fungal Biol. Biotechnol. 2022, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Marullo, S.; Meli, A.; D’Anna, F. A Joint Action of Deep Eutectic Solvents and Ultrasound to Promote Diels–Alder Reaction in a Sustainable Way. ACS Sustain. Chem. Eng. 2020, 8, 4889–4899. [Google Scholar] [CrossRef]
- Cioc, R.C.; Smak, T.J.; Crockatt, M.; van der Waal, J.C.; Bruijnincx, P.C.A. Furoic acid and derivatives as atypical dienes in Diels-Alder reactions. Green Chem. 2021, 23, 5503–5510. [Google Scholar] [CrossRef]
- Kotha, S.; Banerjee, S.; Shaikh, M. Correlation between carbon–carbon bond length and the ease of retro Diels–Alder reaction. J. Chem. Sci. 2014, 126, 1369–1371. [Google Scholar] [CrossRef]
- Vauthier, M.; Jierry, L.; Oliveira, J.C.; Hassouna, L.; Roucoules, V.; Bally-Le Gall, F. Interfacial Thermoreversible Chemistry on Functional Coatings: A Focus on the Diels–Alder Reaction. Adv. Funct. Mater. 2019, 29, 1806765. [Google Scholar] [CrossRef]
- Juhl, M.; Tanner, D. Recent applications of intramolecular Diels–Alder reactions to natural product synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. [Google Scholar] [CrossRef]
- Gregoritza, M.; Brandl, F.P. The Diels–Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [Google Scholar] [CrossRef]
- Chellegui, M.; Champagne, B.; Trabelsi, M. Lewis acid-catalyzed Diels–Alder cycloaddition of 2,5-dimethylfuran and ethylene: A density functional theory investigation. Theor. Chem. Acc. 2022, 141, 21. [Google Scholar] [CrossRef]
- Eschenbrenner-Lux, V.; Kumar, K.; Waldmann, H. The asymmetric hetero-Diels-Alder reaction in the syntheses of biologically relevant compounds. Angew. Chem. Int. Ed. 2014, 53, 11146–11157. [Google Scholar] [CrossRef]
- Jeanmairet, G.; Levesque, M.; Borgis, D. Tackling Solvent Effects by Coupling Electronic and Molecular Density Functional Theory. J. Chem. Theory Comput. 2020, 16, 7123–7134. [Google Scholar] [CrossRef] [PubMed]
- Temur Ergan, B.; Bayramoğlu, M. Investigation of the Microwave Effect: A New Approach for the Solvent Effect on the Microwave-Assisted Decomposition Reaction of 2,2’-Azobis(isobutyronitrile). Ind. Eng. Chem. Res. 2014, 53, 13016–13022. [Google Scholar] [CrossRef]
- Mehranfar, A.; Izadyar, M.; Khavani, M.; Housaindokht, M.R. Understanding the role of noncovalent interactions on the rate of some Diels-Alder reactions in different solvents. Int. J. Quantum Chem. 2018, 119, e25878. [Google Scholar] [CrossRef]
- Morris, W.; Lorance, E.D.; Gould, I.R. Understanding the Solvent Contribution to Chemical Reaction Barriers. J. Phys. Chem. A 2019, 123, 10490–10499. [Google Scholar] [CrossRef]
- Zhou, T.; Qi, Z.; Sundmacher, K. Model-based method for the screening of solvents for chemical reactions. Chem. Eng. Sci. 2014, 115, 177–185. [Google Scholar] [CrossRef]
- Li, Y.; Hartke, B. Assessing solvation effects on chemical reactions with globally optimized solvent clusters. ChemPhysChem 2013, 14, 2678–2686. [Google Scholar] [CrossRef]
- Fukazawa, Y.; Vaganov, V.Y.; Burykina, J.V.; Fakhrutdinov, A.N.; Safiullin, R.I.; Plasser, F.; Rubtsov, A.E.; Ananikov, V.P.; Malkov, A.V. Mechanistic Insight into Palladium-Catalyzed Asymmetric Alkylation of Indoles with Diazoesters Employing Bipyridine-N,N’-dioxides as Chiral Controllers. Adv. Synth. Catal. 2024, 366, 121–133. [Google Scholar] [CrossRef]
- Pliego, J.R. The role of intermolecular forces in ionic reactions: The solvent effect, ion-pairing, aggregates and structured environment. Org. Biomol. Chem. 2021, 19, 1900–1914. [Google Scholar] [CrossRef]
- Varghese, J.J.; Mushrif, S.H. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: A review. React. Chem. Eng. 2019, 4, 165–206. [Google Scholar] [CrossRef]
- Schutter, C.; Husch, T.; Korth, M.; Balducci, A. Toward new solvents for EDLCs: From computational screening to electrochemical validation. J. Phys. Chem. C 2015, 119, 13413–13424. [Google Scholar] [CrossRef]
- Dalessandro, E.V.; Pliego Jr, J.R. Solvent selection for chemical reactions: Automated computational screening of solvents using the SMD model. Química Nova 2018, 41, 628–633. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; Van Der Spoel, D. Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Fehér, P.P.; Stirling, A. Assessment of reactivities with explicit and implicit solvent models: QM/MM and gas-phase evaluation of three different Ag-catalysed furan ring formation routes. New J. Chem. 2019, 43, 15706–15713. [Google Scholar] [CrossRef]
- Tuvi-Arad, I.; Avnir, D. Symmetry-Enthalpy Correlations in Diels–Alder Reactions. Chem. A Eur. J. 2012, 18, 10014–10020. [Google Scholar] [CrossRef]
- Mandal, N.; Datta, A. Gold (I)-catalyzed intramolecular diels–alder reaction: Evolution of trappable intermediates via asynchronous transition states. J. Org. Chem. 2018, 83, 11167–11177. [Google Scholar] [CrossRef]
- Borisova, K.K.; Nikitina, E.V.; Novikov, R.A.; Khrustalev, V.N.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Kuznetsov, M.L.; Zaytsev, V.P.; Varlamov, A.V.; Zubkov, F.I. Diels–Alder reactions between hexafluoro-2-butyne and bis-furyl dienes: Kinetic versus thermodynamic control. Chem. Commun. 2018, 54, 2850–2853. [Google Scholar] [CrossRef]
- Dieckmann, A.; Breugst, M.; Houk, K.N. Zwitterions and Unobserved Intermediates in Organocatalytic Diels–Alder Reactions of Linear and Cross-Conjugated Trienamines. J. Am. Chem. Soc. 2013, 135, 3237–3242. [Google Scholar] [CrossRef]
- Yadav, S.; Misra, N.; Mansi; Khanna, P.; Jain, M.; Khanna, L. A DFT study on substituents, solvent, and temperature effect and mechanism of Diels–Alder reaction of hexafluoro-2-butyne with furan. J. Mol. Model. 2023, 29, 387. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023, 28, 5289. [Google Scholar] [CrossRef]
- Li, P.; Liu, F.; Shao, Y.; Mei, Y. Computational Insights into Endo/Exo Selectivity of the Diels-Alder Reaction in Explicit Solvent at Ab Initio Quantum Mechanical/Molecular Mechanical Level. J. Phys. Chem. B 2019, 123, 5131–5138. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Yepes, D.; Valenzuela, J.; Martínez-Araya, J.I.; Pérez, P.; Jaque, P. Effect of the exchange–correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels–Alder reactions: A reaction force constant analysis. Phys. Chem. Chem. Phys. 2019, 21, 7412–7428. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.; Brinck, T. On the method-dependence of transition state asynchronicity in Diels–Alder reactions. Phys. Chem. Chem. Phys. 2013, 15, 5108–5114. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 2019, 15, 2847–2862. [Google Scholar] [CrossRef]
- Choudhary, V.; Bhatt, A.; Dash, D.; Sharma, N. DFT calculations on molecular structures, HOMO-LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin(IV) 2-chloridophenylacetohydroxamate complexes. J. Comput. Chem. 2019, 40, 2354–2363. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Franco-Pérez, M.; Gázquez, J.L. Electronegativities of Pauling and Mulliken in Density Functional Theory. J. Phys. Chem. A 2019, 123, 10065–10071. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Mloston, G.; Kula, K.; Jasinski, R. A DFT Study on the Molecular Mechanism of Additions of Electrophilic and Nucleophilic Carbenes to Non-Enolizable Cycloaliphatic Thioketones. Molecules 2021, 26, 5562. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, D.; Wang, Y.; Li, S.; Liu, J.; Zhu, Y.; Tang, M. DFT study on the reaction mechanisms and stereoselectivities of NHC-catalyzed [2 + 2] cycloaddition between arylalkylketenes and electron-deficient benzaldehydes. Org. Biomol. Chem. 2014, 12, 6374–6383. [Google Scholar] [CrossRef]
- Stefanska, K.; Jedrzejewska, H.; Wierzbicki, M.; Szumna, A.; Iwanek, W. The Inverse Demand Oxa-Diels-Alder Reaction of Resorcinarenes: An Experimental and Theoretical Analysis of Regioselectivity and Diastereoselectivity. J. Org. Chem. 2016, 81, 6018–6025. [Google Scholar] [CrossRef]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An Experimental and Theoretical Study on Essential Oil of Aethionema sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef]
- Meunier, F.C.; Scalbert, J.; Thibault-Starzyk, F. Unraveling the mechanism of chemical reactions through thermodynamic analyses: A short review. Appl. Catal. A Gen. 2015, 504, 220–227. [Google Scholar] [CrossRef]
- Corbett, M.S.; Liu, X.; Sanyal, A.; Snyder, J.K. Cycloadditions of chiral anthracenes: Effect of the trifluoromethyl group. Tetrahedron Lett. 2003, 44, 931–935. [Google Scholar] [CrossRef]
- Gupta, S.; Alam, M.I.; Khan, T.S.; Sinha, N.; Haider, M.A. On the mechanism of retro-Diels–Alder reaction of partially saturated 2-pyrones to produce biorenewable chemicals. RSC Adv. 2016, 6, 60433–60445. [Google Scholar] [CrossRef]
- Priya, A.M.; Senthilkumar, L. Degradation of methyl salicylate through Cl initiated atmospheric oxidation—A theoretical study. RSC Adv. 2014, 4, 23464. [Google Scholar] [CrossRef]
- Atalay, A.; Abbasoglu, R. Theoretical investigation on facial and stereoselectivity in Diels-Alder cycloadditions of maleic anhydride to dissymmetric cage-annulated cyclohexa-1, 3-dienes. J. Phys. Org. Chem. 2019, 32, e3893. [Google Scholar] [CrossRef]
- Domingo, L.R.; Sáez, J.A. Understanding the mechanism of polar Diels–Alder reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef] [PubMed]
- Singleton, D.A.; Schulmeier, B.E.; Hang, C.; Thomas, A.A.; Leung, S.W.; Merrigan, S.R. Isotope effects and the distinction between synchronous, asynchronous, and stepwise Diels–Alder reactions. Tetrahedron 2001, 57, 5149–5160. [Google Scholar] [CrossRef]
- Vermeeren, P.; Hamlin, T.A.; Bickelhaupt, F.M. Origin of asynchronicity in Diels–Alder reactions. Phys. Chem. Chem. Phys. 2021, 23, 20095–20106. [Google Scholar] [CrossRef]
- Janjua, M.R.S.A. How does bridging core modification alter the photovoltaic characteristics of triphenylamine-based hole transport materials? Theoretical understanding and prediction. Chem. A Eur. J. 2021, 27, 4197–4210. [Google Scholar] [CrossRef]
- Rizvi, M.; Tiwari, N.; Mishra, A.; Gupta, R. Kinetic and Computational Study of Degradation of Two Azo Dyes, Metanil Yellow and Orange II, by Iron Oxide Nanoparticles Synthesized Using Hylocereus Undatus. ACS Omega 2022, 7, 31667–31681. [Google Scholar] [CrossRef]
- Janjua, M.R.S.A. Theoretical Understanding and Role of Guest π-Bridges in Triphenylamine-Based Donor Materials for High-Performance Solar Cells. Energy Fuels 2021, 35, 12451–12460. [Google Scholar] [CrossRef]
- Ye, Z.; Xie, S.; Cao, Z.; Wang, L.; Xu, D.; Zhang, H.; Matz, J.; Dong, P.; Fang, H.; Shen, J.; et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 2021, 37, 378–386. [Google Scholar] [CrossRef]
- Hussein, H.A.; Fadhil, G.F. Theoretical Investigation of para Amino-Dichloro Chalcone Isomers. Part II: A DFT Structure-Stability Study of the FMO and NLO Properties. ACS Omega 2023, 8, 4937–4953. [Google Scholar] [CrossRef]
- Odame, F. DFT Study of the Reaction Mechanism of N-(Carbomylcarbamothioyl) Benzamide. Acta Chim. Slov. 2018, 65, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jamieson, C.S.; Zhao, Y.L.; Li, D.; Ohashi, M.; Houk, K.N.; Tang, Y. Enzyme-Catalyzed Inverse-Electron Demand Diels-Alder Reaction in the Biosynthesis of Antifungal Ilicicolin H. J. Am. Chem. Soc. 2019, 141, 5659–5663. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yang, S.; Sanders, J.N.; Li, W.; Yu, P.; Wang, H.; Tang, Z.; Liu, W.; Houk, K. Computational investigation of the mechanism of Diels–Alderase PyrI4. J. Am. Chem. Soc. 2020, 142, 20232–20239. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Sakib, S.A.; Mahmud, S.; Khan, Z.; Islam, M.N.; Sakib, M.A.; Emran, T.B.; Simal-Gandara, J. Identification of potential phytochemicals from Citrus Limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. J. Biomol. Struct. Dyn. 2022, 40, 10741–10752. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Sorour, A.A.; Saha, S.K.; Banerjee, P. Triazole-modified chitosan: A biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Adv. 2019, 9, 14990–15003. [Google Scholar] [CrossRef]
- Khalid, M.; Ali, A.; Abid, S.; Tahir, M.N.; Khan, M.U.; Ashfaq, M.; Imran, M.; Ahmad, A. Facile Ultrasound-Based Synthesis, SC-XRD, DFT Exploration of the Substituted Acyl-Hydrazones: An Experimental and Theoretical Slant towards Supramolecular Chemistry. ChemistrySelect 2020, 5, 14844–14856. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2018, 2019, 267–282. [Google Scholar] [CrossRef]
- Sultan, M.A.; Karama, U.; Almansour, A.I.; Soliman, S.M. Theoretical study on regioselectivity of the Diels-Alder reaction between 1, 8-dichloroanthracene and acrolein. Molecules 2016, 21, 1277. [Google Scholar] [CrossRef]
- Chakraborty, D.; Das, R.; Chattaraj, P.K. Does Confinement Always Lead to Thermodynamically and/or Kinetically Favorable Reactions? A Case Study using Diels-Alder Reactions within ExBox(+4) and CB[7]. ChemPhysChem 2017, 18, 2162–2170. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, D. Mechanisms of Diels-Alder reactions between pyridines and dienophiles: A DFT investigation. J. Phys. Org. Chem. 2021, 34, e4254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, U.; Mansha, A.; Plasser, F. Solvent-Mediated Rate Deceleration of Diels–Alder Reactions for Enhanced Selectivity: Quantum Mechanical Insights. Chemistry 2024, 6, 1312-1325. https://doi.org/10.3390/chemistry6050076
Rehman U, Mansha A, Plasser F. Solvent-Mediated Rate Deceleration of Diels–Alder Reactions for Enhanced Selectivity: Quantum Mechanical Insights. Chemistry. 2024; 6(5):1312-1325. https://doi.org/10.3390/chemistry6050076
Chicago/Turabian StyleRehman, Umatur, Asim Mansha, and Felix Plasser. 2024. "Solvent-Mediated Rate Deceleration of Diels–Alder Reactions for Enhanced Selectivity: Quantum Mechanical Insights" Chemistry 6, no. 5: 1312-1325. https://doi.org/10.3390/chemistry6050076
APA StyleRehman, U., Mansha, A., & Plasser, F. (2024). Solvent-Mediated Rate Deceleration of Diels–Alder Reactions for Enhanced Selectivity: Quantum Mechanical Insights. Chemistry, 6(5), 1312-1325. https://doi.org/10.3390/chemistry6050076