Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform
<p>Flowchart of the object-oriented classification methodology.</p> "> Figure 2
<p>Location of study area in Canarana municipality, Mato Grosso state, presented by using the normalized difference vegetation index (NDVI).</p> "> Figure 3
<p>Land-use and land-cover sample’s location at Canarana-MT.</p> "> Figure 4
<p>PC analysis mosaicking for (<b>A</b>) OLI/Landsat-8, (<b>B</b>) MODIS Terra, (<b>C</b>) Planet NICFI, and (<b>D</b>) MSI/Sentinel-2.</p> "> Figure 5
<p>Accuracy test with different quantities of decision trees in the random forest classification process in each imagery system considered: (<b>A</b>) OLI/Landsat-8, (<b>B</b>) MODIS Terra, (<b>C</b>) Planet NICFI, and (<b>D</b>) MSI/Sentinel-2.</p> "> Figure 6
<p>Land-use and land-cover classification based on GEOBIA and random forest for each considered sensor: (<b>A</b>) OLI/Landsat-8, (<b>B</b>) MODIS (<b>C</b>) Planet NICFI, and (<b>D</b>) MSI/Sentinel-2.</p> "> Figure 7
<p>Classified second-crop maize areas clip: (<b>A</b>) OLI/Landsat-8, (<b>B</b>) MODIS, (<b>C</b>) Planet NICFI, and (<b>D</b>) MSI/Sentinel-2.</p> "> Figure 8
<p>Confusion matrix for OLI/Landsat-8 imagery.</p> "> Figure 9
<p>Confusion matrix for MODIS imagery.</p> "> Figure 10
<p>Confusion matrix for Planet NICFI imagery.</p> "> Figure 11
<p>Confusion matrix for MSI/Sentinel-2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pre-Processing
2.3. Segmentation and Classification
2.4. Segmentation and Classification
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conab-Boletim Da Safra de Grãos. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 30 October 2022).
- Comexstat Exportação e Importação Geral. Available online: http://comexstat.mdic.gov.br/pt/geral/37761 (accessed on 5 July 2021).
- CONAB Acompanhamento Da Safra Brasileira. Cia. Nac. Abast. Acompan. Safra Bras. 2022, 7, 1–89.
- Bertolin, N.d.O.; Filgueiras, R.; Venancio, L.P.; Mantovani, E.C. Predição da produtividade de milho irrigado com auxílio de imagens de satélite. Rev. Bras. Agric. Irrig. 2017, 11, 1627–1638. [Google Scholar] [CrossRef]
- Oldoni, L.V. Mapeamento de Soja e Milho Com Mineração de Dados e Imagens Sintéticas Landsat e MODIS. Dissertação; Universidade Estadual do Oeste do Paraná—Campus de Cascavel: Cascavel, Brazil, 2018. [Google Scholar]
- Pino, F.A. IEA-Instituto de Economia Agrícola-Informações Econômicas; IEA: São Paulo, Brazil, 2001; Volume 31, pp. 55–58. [Google Scholar]
- Oldoni, L.V.; Sanches, I.D.; Picoli, M.C.A.; Covre, R.M.; Fronza, J.G. LEM+ Dataset: For Agricultural Remote Sensing Applications. Data Brief 2020, 33, 106553. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; Silva, N.R.d.F.; Adami, M.; Sanches, I.D.A. Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America. Remote Sens. Appl. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Khadim, F.K.; Su, H.; Xu, L.; Tian, J. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques and Vegetation Salt Tolerance. Phys. Chem. Earth 2019, 110, 31–50. [Google Scholar] [CrossRef]
- Speranza, E.A.; Grego, C.R.; Gebler, L. Analysis of Pest Incidence on Apple Trees Validated by Unsupervised Machine Learning Algorithms. Rev. Eng. Na Agric. Reveng 2022, 30, 63–74. [Google Scholar] [CrossRef]
- de Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Seixas, H.T.; da Cardozo, F.S.; Shimabukuro, Y.E.; He, L.; Stark, S.C.; dos Santos, C.A.C. Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests 2020, 11, 829. [Google Scholar] [CrossRef]
- Mollick, T.; Azam, M.G.; Karim, S. Geospatial-Based Machine Learning Techniques for Land Use and Land Cover Mapping Using a High-Resolution Unmanned Aerial Vehicle Image. Remote Sens. Appl. 2023, 29, 100859. [Google Scholar] [CrossRef]
- Liu, B.; Song, W. Mapping Abandoned Cropland Using Within-Year Sentinel-2 Time Series. Catena 2023, 223, 106924. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Google Earth Engine Google Earth Engine Platform. Available online: https://earthengine.google.com/platform/ (accessed on 21 January 2023).
- SIDRA Levantamento Sistemático Da Produção Agrícola-Setembro. 2020. Available online: https://sidra.ibge.gov.br/home/lspa/mato-grosso (accessed on 25 June 2021).
- IBGE Cidades e Estados-Instituto Brasileiro de Geografia e Estatística. Available online: https://cidades.ibge.gov.br/brasil/mt/canarana/panorama (accessed on 24 June 2021).
- Alves, H.Q.; Rezende, A.C.P.; Sposito, R.d.C. Geoprocessamento Como Ferramenta de Conservação de Recursos Hídricos e de Biodiversidade: Um Estudo de Caso Para o Município de Canarana—MT. An. XIV Simpósio Bras. Sensoriamento Remoto INPE 2009, 14, 3439–3446. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Embrapa. Embrapa Solos Sistema Brasileiro de Classificação de Solos, 3rd ed.; Santos, H.G.d., Jacomine, P.K.T., Anjos, L.H.C.d., Oliveira, V.Á.d., Lumbreras, J.F., Coelho, M.R., Almeida, J.A.d., Cunha, T.J.F., Oliveira, J.B.d., Eds.; Embrapa: Brasília, Brazil, 2013; ISBN 9788570351982. [Google Scholar]
- Ferreira, J.C.V.; de Moura e Silva, J.; Silva, P.P.C.; Alencastro, A. Mato Grosso e Seus Municípios; Editora Buriti: Buriticupú, Brazil, 2001. [Google Scholar]
- MapBiomas Mapas de Referência. Available online: https://mapbiomas.org/mapas-de-referencia (accessed on 10 July 2021).
- Richter, R.; Kellenberger, T.; Kaufmann, H. Comparison of Topographic Correction Methods. Remote Sens. 2009, 1, 184–196. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Belcore, E.; Piras, M.; Wozniak, E. Specific alpine environment land cover classification methodology: Google earth engine processing for sentinel-2 data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2, 663–670. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Dymond, J.R. Correcting Satellite Imagery for the Variance of Reflectance and Illumination with Topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Ngula Niipele, J.; Chen, J. The Usefulness of Alos-Palsar Dem Data for Drainage Extraction in Semi-Arid Environments in The Iishana Sub-Basin. J. Hydrol. Reg. Stud. 2019, 21, 57–67. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Silva, C.A.; Nanni, M.R.; Teodoro, P.E.; Silva, G.F.C. Vegetation Indices for Discrimination of Soybean Areas: A New Approach. Agron. J. 2017, 109, 1331–1343. [Google Scholar] [CrossRef]
- Silva Junior, C.A.d.; Nanni, M.R.; Oliveira-Júnior, J.F.d.; Cezar, E.; Teodoro, P.E.; Delgado, R.C.; Shiratsuchi, L.S.; Shakir, M.; Chicati, M.L. Object-Based Image Analysis Supported by Data Mining to Discriminate Large Areas of Soybean. Int. J. Digit Earth 2019, 12, 270–292. [Google Scholar] [CrossRef]
- Rege, A.; Warnekar, S.B.; Lee, J.S.H. Mapping Cashew Monocultures in the Western Ghats Using Optical and Radar Imagery in Google Earth Engine. Remote Sens. Appl. 2022, 28, 100861. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Silva Junior, C.A. Estimativa e Discriminação de Áreas de Soja [Glycine max L.] No Estado Do Paraná Com Dados Mono e Multitemporais do Sensor MODIS. Dissertação; Universidade Estadual de Maringá: Maringá, Brazil, 2014. [Google Scholar]
- Estornell, J.; Martí-Gavliá, J.M.; Sebastiá, M.T.; Mengual, J. Principal Component Analysis Applied to Remote Sensing. Model. Sci. Educ. Learn. 2013, 6, 83. [Google Scholar] [CrossRef]
- Jia, X.; Richards, J.A. Segmented Principal Components Transformation for Efficient Hyperspectral Remote-Sensing Image Display and Classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 538–542. [Google Scholar] [CrossRef]
- Meneses, P.R.; Almeida, T. Introdução ao Processamento de Imagens de Sensoriamento Remoto. UnB-CNPq. Brasília. 2012. Available online: https://edisciplinas.usp.br/pluginfile.php/5550408/mod_resource/content/3/Livro-SensoriamentoRemoto.pdf (accessed on 30 October 2022).
- Achanta, R.; Susstrunk, S. Superpixels and Polygons Using Simple Non-Iterative Clustering. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA; pp. 4895–4904. [Google Scholar]
- Amani, M.; Kakooei, M.; Moghimi, A.; Ghorbanian, A.; Ranjgar, B.; Mahdavi, S.; Davidson, A.; Fisette, T.; Rollin, P.; Brisco, B.; et al. Application of Google Earth Engine Cloud Computing Platform, Sentinel Imagery, and Neural Networks for Crop Mapping in Canada. Remote Sens. 2020, 12, 3561. [Google Scholar] [CrossRef]
- Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine. Remote Sens. 2021, 13, 561. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, W.; Zhou, J.; Wang, Z.; Zhang, S.; Liao, S. Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization. Agronomy 2022, 12, 1948. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Wessels, K.J.; Bergh, F.V.D.; Roy, D.P.; Salmon, B.P.; Steenkamp, K.C.; MacAlister, B.; Swanepoel, D.; Jewitt, D. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote Sens. 2016, 8, 888. [Google Scholar] [CrossRef]
- Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; de la Orden, M.S.; González-Audicana, M. Object- and Pixel-Based Analysis for Mapping Crops and Their Agro-Environmental Associated Measures Using QuickBird Imagery. Comput. Electron. Agric. 2009, 68, 207–215. [Google Scholar] [CrossRef]
- Xu, R. Mapping Rural Settlements from Landsat and Sentinel Time Series by Integrating Pixel-and Object-Based Methods. Land 2021, 10, 244. [Google Scholar] [CrossRef]
- da Silva Junior, C.A.; Moreira, E.P.; Frank, T.; Moreira, M.A.; Barcellos, D. Comparação de Áreas de Soja (Glycinemax (L.) Merr.) Obtidas Por Meio Da Interpretação de Imagens TM/Landsat e MODIS/Terra No Município de Maracaju (MS) = Comparison of Areas of Soybean (Glycine Max (L) Merr.) Obtained through the Interpretation. Biosci. J. 2014, 30, 707–716. [Google Scholar]
- Silva, C.O. Da Geoprocessamento Aplicado ao Zoneamento Agrícola Para cana-de-Açúcar Irrigada do Estado do Piau; Faculdade de Ciências Agronômicas da UNESP: Botucatu, Brazil, 2016. [Google Scholar]
- Manzatto, C.V.; Assad, E.D.; Bacca, J.F.M.; Zaroni, M.J.; Pereira, N.R. Zoneamento Agroecológico da Cana-de-Açúcar: Expandir a produção, preservar a vida, garantir o futuro. Embrapa Solos. 2009. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPS-2010/14408/1/ZonCana.pdf (accessed on 30 October 2022).
- Garcia, Y.M.; Campos, S.; Tagliarini, F.S.N.; Campos, M.; Rodrigues, B.T. Declividade e potencial para mecanização agrícola da bacia hidrográfica do ribeirão pederneiras-pederneiras/sp. Rev. Bras. Eng. Biossistemas 2020, 14, 62–72. [Google Scholar] [CrossRef]
- Aneece, I.; Thenkabail, P. Accuracies Achieved in Classifying Five Leading World Crop Types and Their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral Narrowbands on Google Earth Engine. Remote Sens. 2018, 10, 2027. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Wu, M.; Qin, W.; Zhang, J. Object-Oriented Classification of Land Cover Based on Landsat 8 OLI Image Data in the Kunyu Mountain. Sci. Geogr. Sin. 2018, 38, 1904–1913. [Google Scholar]
- Ruiz, L.F.C.; Guasselli, L.A.; Simioni, J.P.D.; Belloli, T.F.; Barros Fernandes, P.C. Object-Based Classification of Vegetation Species in a Subtropical Wetland Using Sentinel-1 and Sentinel-2A Images. Sci. Remote Sens. 2021, 3, 100017. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Ramezan, C.A.; Morgan, A.N.; Pauley, C.E. Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sens. 2019, 11, 1409. [Google Scholar] [CrossRef]
- El Imanni, H.S.; El Harti, A.; Hssaisoune, M.; Velastegui-Montoya, A.; Elbouzidi, A.; Addi, M.; El Iysaouy, L.; El Hachimi, J. Rapid and Automated Approach for Early Crop Mapping Using Sentinel-1 and Sentinel-2 on Google Earth Engine; A Case of a Highly Heterogeneous and Fragmented Agricultural Region. J. Imaging 2022, 8, 316. [Google Scholar] [CrossRef]
- Della-Silva, J.L.; da Silva Junior, C.A.; Lima, M.; Teodoro, P.E.; Nanni, M.R.; Shiratsuchi, L.S.; Teodoro, L.P.R.; Capristo-Silva, G.F.; Baio, F.H.R.; de Oliveira, G.; et al. CO2Flux Model Assessment and Comparison between an Airborne Hyperspectral Sensor and Orbital Multispectral Imagery in Southern Amazonia. Sustainability 2022, 14, 5458. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Lu, L.; Liu, Z.; Kong, F.; Zhang, X. Monthly Composites from Sentinel-1 and Sentinel-2 Images for Regional Major Crop Mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
PC | OLI/Landsat-8 | MODIS | PlanetScope | MSI/Sentinel-2 |
---|---|---|---|---|
PC01 | 97.02% | 94.52% | 98.22% | 95.28% |
PC02 | 2.65% | 4.31% | 1.52% | 4.51% |
PC03 | 0.29% | 1.08% | 0.18% | 0.15% |
PC04 | 0.03% | 0.04% | 0.04% | 0.03% |
PC05 | 0.01% | 0.03% | 0.03% | 0.02% |
PC06 | 0.00% | 0.02% | 0.01% | 0.01% |
PC07 | 0.00% | 0.00% | 0.00% | 0.00% |
PC08 | 0.00% | 0.00% | 0.00% | 0.00% |
PC09 | 0.00% | 0.00% | 0.00% | 0.00% |
PC10 | 0.00% | 0.00% | 0.00% | 0.00% |
PC11 | 0.00% | 0.00% | 0.00% | 0.00% |
PC12 | 0.00% | −0.00% | 0.00% | 0.00% |
PC13 | 0.00% | −0.00% | 0.00% | 0.00% |
PC14 | −0.00% | −0.00% | 0.00% | −0.00% |
PC15 | −0.00% | −0.00% | 0.00% | −0.00% |
PC16 | −0.00% | −0.00% | −0.00% | −0.00% |
Landsat-8 | MODIS | Planet | Sentinel-2 | |
---|---|---|---|---|
Overall accuracy | 88.65% | 86.83% | 86.79% | 86.41% |
Kappa coefficient | 84.61% | 82.01% | 82.06% | 81.26% |
Second-harvest maize area (ha) | 450,766.60 | 424,715.59 | 329,557.85 | 432,422.91 |
Analysis of Variance | ||||||
---|---|---|---|---|---|---|
Variable | N | Mean | SD | SE | 95% Conf | Interval |
MODIS | 2 | 84.42 | 3.42 | 2.42 | 53.72 | 115.12 |
Landsat-8 | 2 | 86.63 | 2.86 | 2.02 | 60.95 | 112.31 |
Planet | 2 | 84.43 | 3.35 | 2.37 | 54.37 | 114.49 |
Sentinel-2 | 2 | 83.84 | 3.64 | 2.57 | 51.18 | 116.50 |
Tukey’s test HSD | ||||||
Group 1 | Group2 | Meandiff | P-adj | Lower | Upper | Interval |
Landsat-8 | MODIS | −2.2098 | 0.9 | −15.7536 | 11.3339 | False |
Landsat-8 | Planet | −2.2037 | 0.9 | −15.7474 | 11.34 | False |
Landsat-8 | Sentinel-2 | −2.7929 | 0.8225 | −16.3367 | 10.7508 | False |
MODIS | Planet | 0.0061 | 0.9 | −13.5376 | 13.5498 | False |
MODIS | Sentinel-2 | −0.5831 | 0.9 | −14.1268 | 12.9606 | False |
Planet | Sentinel-2 | −0.5892 | 0.9 | −14.1329 | 12.9545 | False |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel Junior, I.C.; Dallacort, R.; Boechat, C.L.; Teodoro, P.E.; Teodoro, L.P.R.; Rossi, F.S.; Oliveira-Júnior, J.F.d.; Della-Silva, J.L.; Baio, F.H.R.; Lima, M.; et al. Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform. AgriEngineering 2024, 6, 491-508. https://doi.org/10.3390/agriengineering6010030
Maciel Junior IC, Dallacort R, Boechat CL, Teodoro PE, Teodoro LPR, Rossi FS, Oliveira-Júnior JFd, Della-Silva JL, Baio FHR, Lima M, et al. Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform. AgriEngineering. 2024; 6(1):491-508. https://doi.org/10.3390/agriengineering6010030
Chicago/Turabian StyleMaciel Junior, Ismael Cavalcante, Rivanildo Dallacort, Cácio Luiz Boechat, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Fernando Saragosa Rossi, José Francisco de Oliveira-Júnior, João Lucas Della-Silva, Fabio Henrique Rojo Baio, Mendelson Lima, and et al. 2024. "Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform" AgriEngineering 6, no. 1: 491-508. https://doi.org/10.3390/agriengineering6010030
APA StyleMaciel Junior, I. C., Dallacort, R., Boechat, C. L., Teodoro, P. E., Teodoro, L. P. R., Rossi, F. S., Oliveira-Júnior, J. F. d., Della-Silva, J. L., Baio, F. H. R., Lima, M., & Silva Junior, C. A. d. (2024). Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform. AgriEngineering, 6(1), 491-508. https://doi.org/10.3390/agriengineering6010030