An Ensemble Data-Driven Approach for Enhanced Short-Term Water Demand Forecasting in Urban Areas †
Abstract
:1. Introduction
2. Materials and Methods
2.1. NHiTS
2.2. XGBoost
2.3. Multi-Head 1D CNN
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Namdari, H.; Ashrafi, S.M.; Haghighi, A. Deep learning–based short-term water demand forecasting in urban areas: A hybrid multichannel model. AQUA—Water Infrastruct. Ecosyst. Soc. 2024, 73, 380–395. [Google Scholar] [CrossRef]
- Ristow, D.C.M.; Henning, E.; Kalbusch, A.; Petersen, C.E. Models for forecasting water demand using time series analysis: A case study in Southern Brazil. J. Water Sanit. Hyg. Dev. 2021, 11, 231–240. [Google Scholar] [CrossRef]
- Mu, L.; Zheng, F.; Tao, R.; Zhang, Q.; Kapelan, Z. Hourly and Daily Urban Water Demand Predictions Using a Long Short-Term Memory Based Model. J. Water Resour. Plann. Manag. 2020, 146, 05020017. [Google Scholar] [CrossRef]
- Challu, C.; Olivares, K.G.; Oreshkin, B.N.; Garza Ramirez, F.; Mergenthaler Canseco, M.; Dubrawski, A. NHITS: Neural Hi-erarchical Interpolation for Time Series Forecasting. AAAI 2023, 37, 6989–6997. [Google Scholar] [CrossRef]
- Olivares, K.G.; Challú, C.; Garza, F.; Canseco, M.M.; Dubrawski, A. NeuralForecast: User Friendly State-of-the-Art Neural Forecasting Models. 2022. Available online: https://github.com/Nixtla/neuralforecast (accessed on 31 March 2024).
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the KDD ‘16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D., Rastogi, R., Eds.; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
Zone | Model/Criteria | NHITS | XGB | CNN | Ensemble | Zone | Model/Criteria | NHITS | XGB | CNN | Ensemble |
---|---|---|---|---|---|---|---|---|---|---|---|
A | MAE 24 | 0.69 | 0.68 | 0.62 | 0.57 | F | MAE 24 | 0.91 | 0.58 | 0.64 | 0.62 |
Max 24 | 0.56 | 0.55 | 0.66 | 0.45 | Max 24 | 0.80 | 0.63 | 0.70 | 0.62 | ||
Max 144 | 1.79 | 1.82 | 1.71 | 1.65 | Max 144 | 2.10 | 3.09 | 2.53 | 2.67 | ||
B | MAE 24 | 0.20 | 0.16 | 0.23 | 0.17 | G | MAE 24 | 0.69 | 0.69 | 0.79 | 0.62 |
Max 24 | 0.27 | 0.18 | 0.27 | 0.19 | Max 24 | 0.81 | 0.70 | 1.06 | 0.66 | ||
Max 144 | 0.78 | 0.59 | 0.62 | 0.65 | Max 144 | 1.90 | 1.53 | 1.77 | 1.47 | ||
C | MAE 24 | 0.15 | 0.18 | 0.17 | 0.14 | H | MAE 24 | 0.88 | 0.75 | 0.95 | 0.79 |
Max 24 | 0.14 | 0.17 | 0.25 | 0.13 | Max 24 | 0.89 | 0.81 | 1.10 | 0.80 | ||
Max 144 | 0.40 | 0.76 | 0.60 | 0.42 | Max 144 | 2.26 | 2.16 | 3.39 | 2.22 | ||
D | MAE 24 | 1.96 | 1.11 | 1.63 | 1.28 | I | MAE 24 | 1.08 | 0.83 | 1.32 | 0.76 |
Max 24 | 2.30 | 1.59 | 1.93 | 1.67 | Max 24 | 1.24 | 0.95 | 1.18 | 0.95 | ||
Max 144 | 4.78 | 3.04 | 5.19 | 3.99 | Max 144 | 3.04 | 1.74 | 3.49 | 1.49 | ||
E | MAE 24 | 0.70 | 0.88 | 0.89 | 0.76 | J | MAE 24 | 1.62 | 1.28 | 1.85 | 0.82 |
Max 24 | 0.86 | 1.00 | 1.37 | 0.78 | Max 24 | 1.24 | 1.11 | 1.48 | 1.13 | ||
Max 144 | 2.82 | 2.31 | 3.27 | 2.52 | Max 144 | 3.62 | 3.25 | 4.59 | 2.10 |
Criteria/Model | NHITS | XGB | CNN | Ensemble |
---|---|---|---|---|
MAE 24 | 0.89 | 0.71 | 0.91 | 0.65 |
Max 24 | 0.91 | 0.77 | 1.00 | 0.74 |
Max 144 | 2.35 | 2.03 | 2.72 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhshipour, A.E.; Namdari, H.; Koochali, A.; Dittmer, U.; Haghighi, A. An Ensemble Data-Driven Approach for Enhanced Short-Term Water Demand Forecasting in Urban Areas. Eng. Proc. 2024, 69, 69. https://doi.org/10.3390/engproc2024069069
Bakhshipour AE, Namdari H, Koochali A, Dittmer U, Haghighi A. An Ensemble Data-Driven Approach for Enhanced Short-Term Water Demand Forecasting in Urban Areas. Engineering Proceedings. 2024; 69(1):69. https://doi.org/10.3390/engproc2024069069
Chicago/Turabian StyleBakhshipour, Amin E., Hossein Namdari, Alireza Koochali, Ulrich Dittmer, and Ali Haghighi. 2024. "An Ensemble Data-Driven Approach for Enhanced Short-Term Water Demand Forecasting in Urban Areas" Engineering Proceedings 69, no. 1: 69. https://doi.org/10.3390/engproc2024069069
APA StyleBakhshipour, A. E., Namdari, H., Koochali, A., Dittmer, U., & Haghighi, A. (2024). An Ensemble Data-Driven Approach for Enhanced Short-Term Water Demand Forecasting in Urban Areas. Engineering Proceedings, 69(1), 69. https://doi.org/10.3390/engproc2024069069