A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning †
Abstract
:1. Introduction
2. Context and Data
3. Methods
3.1. Gradient Boosting Models
3.2. Wavenet
3.3. Ensemble Reconciliation Strategies
4. Experimental Settings
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- House-Peters, L.A.; Chang, H. Urban Water Demand Modeling: Review of Concepts, Methods, and Organizing Principles. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Zanutto, D.; Michalopoulos, C.; Samartzis, P.; Hermes, L.; Vaquet, J.; Vaquet, V.; Eliades, D. WaterFutures/BoN2024: BWDF Code, Models and Dashboard, Version v5.0.0; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio 2016. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ditzler, G.; Roveri, M.; Alippi, C.; Polikar, R. Learning in Nonstationary Environments: A Survey. IEEE Comput. Intell. Mag. 2015, 10, 12–25. [Google Scholar] [CrossRef]
- Bifet, A.; Holmes, G.; Pfahringer, B.; Gavaldà, R. Improving Adaptive Bagging Methods for Evolving Data Streams. In Advances in Machine Learning; Zhou, Z.-H., Washio, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–37. [Google Scholar]
- Zanutto, D.; Michalopoulos, C.; Samartzis, P.; Hermes, L.; Vaquet, J.; Vaquet, V.; Eliades, D. WaterFutures/BoN2024: BWDF Input Data and Results, Version v4.0.0; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
PI | Rolling Average | LGBM Robust | LGBM Simple | LGBM SimpleV2 | XGBOOST | WAVENET | ERS |
---|---|---|---|---|---|---|---|
Mean AE-24h | 1.286 | 1.080 | 1.078 | 1.099 | 1.102 | 1.226 | 1.044 |
Max AE-24h2 | 4.040 | 3.550 | 3.530 | 3.596 | 3.639 | 3.912 | 3.460 |
Mean AE | 1.163 | 1.069 | 1.067 | 1.073 | 1.083 | 1.197 | 1.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanutto, D.; Michalopoulos, C.; Chatzistefanou, G.-A.; Vamvakeridou-Lyroudia, L.; Tsiami, L.; Glynis, K.; Samartzis, P.; Hermes, L.; Hinder, F.; Vaquet, J.; et al. A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning. Eng. Proc. 2024, 69, 60. https://doi.org/10.3390/engproc2024069060
Zanutto D, Michalopoulos C, Chatzistefanou G-A, Vamvakeridou-Lyroudia L, Tsiami L, Glynis K, Samartzis P, Hermes L, Hinder F, Vaquet J, et al. A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning. Engineering Proceedings. 2024; 69(1):60. https://doi.org/10.3390/engproc2024069060
Chicago/Turabian StyleZanutto, Dennis, Christos Michalopoulos, Georgios-Alexandros Chatzistefanou, Lydia Vamvakeridou-Lyroudia, Lydia Tsiami, Konstantinos Glynis, Panagiotis Samartzis, Luca Hermes, Fabian Hinder, Jonas Vaquet, and et al. 2024. "A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning" Engineering Proceedings 69, no. 1: 60. https://doi.org/10.3390/engproc2024069060
APA StyleZanutto, D., Michalopoulos, C., Chatzistefanou, G.-A., Vamvakeridou-Lyroudia, L., Tsiami, L., Glynis, K., Samartzis, P., Hermes, L., Hinder, F., Vaquet, J., Vaquet, V., Eliades, D., Polycarpou, M., Koundouri, P., Hammer, B., & Savić, D. (2024). A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning. Engineering Proceedings, 69(1), 60. https://doi.org/10.3390/engproc2024069060