Characterizing the Impact of Hydrants on Transients †
<p>Modelled pipeline.</p> "> Figure 2
<p>(<b>a</b>) ‘Measured’ pressure signal with noise; (<b>b</b>) noiseless correlation results; (<b>c</b>) correlation confidence with noise.</p> "> Figure 3
<p>Connector calibration results. (<b>a</b>) Length and wavespeed, (<b>b</b>) diameter and wavespeed, (<b>c</b>) diameter and length.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impact of Hydrant and Ancillary Features
2.2. Determining Connector Properties
3. Results and Discussion
3.1. Impact of Hydrant and Ancillary Feature
3.2. Determining Connector Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Che, T.C.; Duan, H.F.; Lee, P.J. Transient wave-based methods for anomaly detection in fluid pipes: A review. Mech. Syst. Signal Process. 2021, 160, 107874. [Google Scholar] [CrossRef]
- Zeng, W.; Gong, J.; Simpson, A.R.; Cazzolato, B.S.; Zecchin, A.C.; Lambert, M.F. Paired-IRF Method for Detecting Leaks in Pipe Networks. J. Water Resour. Plan. Manag. 2020, 146, 04020021. [Google Scholar] [CrossRef]
- Brunone, B.; Maietta, F.; Capponi, C.; Keramat, A.; Meniconi, S. A review of physical experiments for leak detection in water pipes through transient tests for addressing future research. J. Hydraul. Res. 2022, 60, 894–906. [Google Scholar] [CrossRef]
- Xing, L.; Sela, L. Transient simulations in water distribution networks: TSNet python package. Adv. Eng. Softw. 2020, 149, 102884. [Google Scholar] [CrossRef]
- Stephens, M.L.; Lambert, M.F.; Simpson, A.R. Determining the Internal Wall Condition of a Water Pipeline in the Field Using an Inverse Transient. J. Hydraul. Eng. 2013, 139, 310–324. [Google Scholar] [CrossRef]
Pipe | Length (m) | Diameter (m) | Wavespeed (m/s) |
---|---|---|---|
1 | 75 | 0.05 | 400 |
2 | 15 | 0.05 | 400 |
3 | 40 | 0.05 | 400 |
4 | 2 | 0.05 | 400/700/1000/1400 |
5 | 0.3 | 0.12 | 1000 |
6 | 1 | 0.08 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitelegg, C.; Collins, R.; Boxall, J.; Young, S. Characterizing the Impact of Hydrants on Transients. Eng. Proc. 2024, 69, 208. https://doi.org/10.3390/engproc2024069208
Whitelegg C, Collins R, Boxall J, Young S. Characterizing the Impact of Hydrants on Transients. Engineering Proceedings. 2024; 69(1):208. https://doi.org/10.3390/engproc2024069208
Chicago/Turabian StyleWhitelegg, Charlie, Richard Collins, Joby Boxall, and Scott Young. 2024. "Characterizing the Impact of Hydrants on Transients" Engineering Proceedings 69, no. 1: 208. https://doi.org/10.3390/engproc2024069208
APA StyleWhitelegg, C., Collins, R., Boxall, J., & Young, S. (2024). Characterizing the Impact of Hydrants on Transients. Engineering Proceedings, 69(1), 208. https://doi.org/10.3390/engproc2024069208