New Algorithm for Detecting Weak Changes in the Mean in a Class of CHARN Models with Application to Welding Electrical Signals †
Abstract
:1. Introduction
2. Model, Problematic, and Main Results of Salman et al. [13]
- represent the true nuisance parameter and represent the level of significance,
- is the -quantile of the standard Gaussian distribution with cumulative distribution function ,
- is a real function defined in , where its expression is given in Salman et al. [13].
3. New Algorithm for Weak-Changes Detection and Their Locations Estimation
Algorithm 1: Automatic algorithm for weak changes detection. |
|
4. Simulation Experiment
Data Presenting One Single False Alarm
5. Welding Electrical Signals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, E.S. Continuous inspection schemes. Biometrika. 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Perron, P. Dealing with structural breaks. In Palgrave Handbook of Econometrics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1, pp. 278–352. [Google Scholar]
- Reeves, J.; Chen, J.; Wang, X.L.; Lund, R.; Lu, Q.Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 2007, 46, 900–915. [Google Scholar] [CrossRef]
- Beaulieu, C.; Chen, J.; Sarmiento, J.L. Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1228–1249. [Google Scholar] [CrossRef] [PubMed]
- Andreou, E.; Ghysels, E. Structural breaks in financial time series. In Handbook of Financial Time Series; Springer: Berlin/Heidelberg, Germany, 2009; pp. 839–870. [Google Scholar]
- Stoumbos, Z.G.; Reynolds, M.R., Jr.; Ryan, T.P.; Woodall, W.H. The state of statistical process control as we proceed into the 21st century. J. Am. Stat. Assoc. 2000, 95, 992–998. [Google Scholar] [CrossRef]
- Brown, R.L.; Durbin, J.; Evans, J.M. Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B. 1975, 37, 149–163. [Google Scholar] [CrossRef]
- Zeileis, A. p Values and Alternative Boundaries for CUSUM Tests; Technical Report; Universitätsbibliothek Dortmund: Dortmund, Germany, 2001. [Google Scholar]
- Zeileis, A. Alternative boundaries for CUSUM tests. Stat. Pap. 2004, 45, 123–131. [Google Scholar] [CrossRef]
- Aue, A.; Horváth, L. Structural breaks in time series. J. Time Ser. Anal. 2013, 34, 1–16. [Google Scholar] [CrossRef]
- Ltaifa, M. Tests optimaux pour détecter les signaux faibles dans les séries chronologiques. Ph.D. Thesis, Université de Lorraine, Lorraine, France, Université de Sousse, Sousse, Tunisia, 2021. [Google Scholar]
- Ngatchou-Wandji, J.; Ltaifa, M. On detecting weak changes in the mean of CHARN models. arXiv 2021, arXiv:2101.08597. [Google Scholar]
- Salman, Y.; Ngatchou-Wandji, J.; Khraibani, Z. Testing a Class of Piece-Wise CHARN Models with Application to Change-Point Study. Mathematics 2024, 12, 2092. [Google Scholar] [CrossRef]
- Härdle, W.; Tsybakov, A.; Yang, L. Nonparametric vector autoregression. J. Stat. Plan. Inference 1998, 68, 221–245. [Google Scholar] [CrossRef]
- Yau, C.Y.; Zhao, Z. Inference for multiple change points in time series via likelihood ratio scan statistics. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2016, 78, 895–916. [Google Scholar] [CrossRef]
- Chen, G.y.; Gan, M.; Chen, G.l. Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications. Inf. Sci. 2018, 438, 46–57. [Google Scholar] [CrossRef]
- Le Cam, L. The central limit theorem around 1935. Stat. Sci. 1986, 1, 78–91. [Google Scholar]
- Droesbeke, J.J.; Fine, J. Inférence non Paramétrique: Les Statistiques de Rangs; de l’Université de Bruxelles: Brussels, Belgium, 1996. [Google Scholar]
- Brockwell, P.; Davis, R.; Salehi, H. A state-space approach to transfer-function modeling. Stat. Inference Stoch. Process. 1990, 6, 233. [Google Scholar]
- Cheung, Y.W.; Lai, K.S. Lag order and critical values of the augmented Dickey–Fuller test. J. Bus. Econ. Stat. 1995, 13, 277–280. [Google Scholar]
- Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; D. Reidel: Dordrecht, The Netherlands, 1986; Volume 81, p. 26853. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
and Power | ||||
102 | 101 | 111 | 91 | |
0.050541 | 0.050713 | 0.050811 | 0.050972 | |
0.052418 | 0.053712 | 0.054612 | 0.057321 | |
0.052503 | 0.053515 | 0.054874 | 0.057819 | |
0.052315 | 0.053821 | 0.054731 | 0.057643 | |
0.052517 | 0.053644 | 0.054912 | 0.057967 | |
0.052421 | 0.053553 | 0.054826 | 0.058042 | |
200 | 250 | 280 | 295 | |
0.050912 | 0.050626 | 0.050963 | 0.050121 | |
0.052915 | 0.054261 | 0.053987 | 0.061092 | |
0.051981 | 0.051725 | 0.516471 | 0.051681 | |
0.051734 | 0.051628 | 0.051811 | 0.051874 | |
0.051413 | 0.051632 | 0.051736 | 0.051642 | |
0.051386 | 0.051589 | 0.051481 | 0.051328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, Y.; Hoayek, A.; Batton-Hubert, M. New Algorithm for Detecting Weak Changes in the Mean in a Class of CHARN Models with Application to Welding Electrical Signals. Eng. Proc. 2024, 68, 42. https://doi.org/10.3390/engproc2024068042
Salman Y, Hoayek A, Batton-Hubert M. New Algorithm for Detecting Weak Changes in the Mean in a Class of CHARN Models with Application to Welding Electrical Signals. Engineering Proceedings. 2024; 68(1):42. https://doi.org/10.3390/engproc2024068042
Chicago/Turabian StyleSalman, Youssef, Anis Hoayek, and Mireille Batton-Hubert. 2024. "New Algorithm for Detecting Weak Changes in the Mean in a Class of CHARN Models with Application to Welding Electrical Signals" Engineering Proceedings 68, no. 1: 42. https://doi.org/10.3390/engproc2024068042