Detecting Trend Turning Points in PS-InSAR Time Series: Slow-Moving Landslides in Province of Frosinone, Italy †
<p>The study region. (<b>a</b>) A map of Italy showing the study region in red, (<b>b</b>) a Google map of province of Frosinone, and (<b>c</b>) the CORINE land cover/use map of the study region (100 m).</p> "> Figure 2
<p>Spatiotemporal maps of STPD results for both ascending and descending PS-InSAR time series of EGMS.</p> "> Figure 3
<p>The STPD trend results of two pairs of PS-InSAR time series whose TPs in calendar month (see blue arrows) are shown in <a href="#engproc-68-00012-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>The bar charts of TPs whose locations are within 20 km of the towns of Cassino (<b>a</b>), Sora (<b>b</b>), Frosinone (<b>c</b>), and Ausonia (<b>d</b>), classified based on the CORINE land use/cover map. Panel (<b>e</b>) shows the bar chart of TPs for all polygons susceptible to landslides.</p> "> Figure 5
<p>Monthly precipitation bar charts and their accumulated precipitation time series with STPD linear trend results for Cassino (<b>a</b>), Sora (<b>b</b>), Frosinone (<b>c</b>), and Ausonia (<b>d</b>).</p> ">
Abstract
:1. Introduction
- (1)
- The application of STPD to PS-InSAR time series of ascending and descending orbits, pre-processed and provided by EGMS, for landslide-prone areas in the province of Frosinone, Italy.
- (2)
- The classification of the TPs according to the land cover/use for the landslide-prone areas in the entire province and four towns in the province with their surroundings, namely, Cassino, Sora, Frosinone, and Ausonia.
- (3)
- The application of STPD to the local accumulated precipitation time series for the four towns and a discussion of the potential impacts of their rate change on the detected TPs in the PS-InSAR time series based on their land cover types.
2. Materials and Methods
2.1. Study Region and Datasets
2.2. Sequential Turning Point Detection (STPD) Revisited
3. Results
3.1. Spatiotemporal Maps of STPD Results
3.2. Classification of Turning Points and Precipitation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordoni, M.; Vivaldi, V.; Bonì, R.; Spanò, S.; Tararbra, M.; Lanteri, L.; Parnigoni, M.; Grossi, A.; Figini, S.; Meisina, C. A methodology for the analysis of continuous time-series of automatic inclinometers for slow-moving landslides monitoring in Piemonte region, northern Italy. Nat. Hazards 2023, 115, 1115–1142. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Nappo, N.; Peduto, D.; Mavrouli, O.; van Westen, C.J.; Gullà, G. Slow-moving landslides interacting with the road network: Analysis of damage using ancillary data, in situ surveys and multi-source monitoring data. Eng. Geol. 2019, 260, 105244. [Google Scholar] [CrossRef]
- Fiolleau, S.; Uhlemann, S.; Wielandt, S.; Dafflon, B. Understanding slow-moving landslide triggering processes using low-cost passive seismic and inclinometer monitoring. J. Appl. Geophys. 2023, 215, 105090. [Google Scholar] [CrossRef]
- Parenti, C.; Rossi, P.; Mancini, F.; Scorpio, V.; Grassi, F.; Ciccarese, G.; Lugli, F.; Soldati, M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sens. 2023, 15, 3563. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical monitoring of moisture-induced landslides: A review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef]
- Cosentino, A.; Marmoni, G.M.; Fiorucci, M.; Mazzanti, P.; Scarascia Mugnozza, G.; Esposito, C. Optical and Thermal Image Processing for Monitoring Rainfall Triggered Shallow Landslides: Insights from Analogue Laboratory Experiments. Remote Sens. 2023, 15, 5577. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Masciulli, C.; Zocchi, M.; Marini, R.; Mastrantoni, G.; Reame, F.; Pantozzi, G.; Belcecchi, N.; Scarascia Mugnozza, G.; Mazzanti, P. Least-Squares Wavelet Analysis of Rainfalls and Landslide Displacement Time Series Derived by PS-InSAR. In Theory and Applications of Time Series Analysis; Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I., Eds.; ITISE 2022; Contributions to Statistics; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Balbi, E.; Terrone, M.; Faccini, F.; Scafidi, D.; Barani, S.; Tosi, S.; Crispini, L.; Cianfarra, P.; Poggi, F.; Ferretti, G. Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy). Remote Sens. 2021, 13, 3348. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Antonielli, B.; Bozzano, F.; Scarascia Mugnozza, G.; Mazzanti, P. A Fast and Robust Method for Detecting Trend Turning Points in InSAR Displacement Time Series. Comput. Geosci. 2024, 185, 105546. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A Survey on Change Detection and Time Series Analysis with Applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Dadkhah, H.; Dabiri, H.; Bozzano, F.; Scarascia Mugnozza, G.; Mazzanti, P. Precipitation Time Series Analysis and Forecasting for Italian Regions. Eng. Proc. 2023, 39, 23. [Google Scholar] [CrossRef]
- Massimo, A.; Dell’Isola, M.; Frattolillo, A.; Ficco, G. Development of a Geographical Information System (GIS) for the Integration of Solar Energy in the Energy Planning of a Wide Area. Sustainability 2014, 6, 5730–5744. [Google Scholar] [CrossRef]
- Urgilez Vinueza, A.; Handwerger, A.; Bakker, M.; Bogaard, T. A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides 2022, 19, 2233–2247. [Google Scholar] [CrossRef]
- Tichavský, R.; Ballesteros-Cánovas, J.A.; Šilhán, K.; Tolasz, R.; Stoffel, M. Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Sci. Rep. 2019, 9, 14560. [Google Scholar] [CrossRef] [PubMed]
Dataset | Spatial Resolution | Date | Description | Source |
---|---|---|---|---|
PS-InSAR | 20 m in azimuth by 5 m in ground-range | 2015–2021 (6-day) | Ascending and descending PS-InSAR time series for period 02/2015–12/2021 | https://egms.land.copernicus.eu/ (EGMS) (accessed on 1 May 2024) |
Land cover/use | 100 m | 2018 | CORINE (Coordination of Information on the Environment) has 44 classes | https://land.copernicus.eu/paneuropean/corine-land-cover (accessed on 1 May 2024) |
Precipitation | 4 weather stations | 2015–2021 (monthly) | Time Series for Cassino, Sora, Frosinone, and Ausonia | https://www.3bmeteo.com (accessed on 1 May 2024) |
Geometry | Number of Landslide-Prone Polygons | Number of PS | Number of PS with TPs | Number of TS with TPs after THDs | Number of Non-Decreasing or Non-Increasing PS with TPs after THDs |
---|---|---|---|---|---|
Ascending | 641 | 20,290 | 16,707 (82%) | 12,386 (61%) | 3560 (18%) |
Descending | 704 | 9605 | 7775 (81%) | 5836 (61%) | 2045 (21%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaderpour, E.; Antonielli, B.; Bozzano, F.; Scarascia Mugnozza, G.; Mazzanti, P. Detecting Trend Turning Points in PS-InSAR Time Series: Slow-Moving Landslides in Province of Frosinone, Italy. Eng. Proc. 2024, 68, 12. https://doi.org/10.3390/engproc2024068012
Ghaderpour E, Antonielli B, Bozzano F, Scarascia Mugnozza G, Mazzanti P. Detecting Trend Turning Points in PS-InSAR Time Series: Slow-Moving Landslides in Province of Frosinone, Italy. Engineering Proceedings. 2024; 68(1):12. https://doi.org/10.3390/engproc2024068012
Chicago/Turabian StyleGhaderpour, Ebrahim, Benedetta Antonielli, Francesca Bozzano, Gabriele Scarascia Mugnozza, and Paolo Mazzanti. 2024. "Detecting Trend Turning Points in PS-InSAR Time Series: Slow-Moving Landslides in Province of Frosinone, Italy" Engineering Proceedings 68, no. 1: 12. https://doi.org/10.3390/engproc2024068012