Development of a Dual-Stage CIM® CDI Reactor with Immobilized Glucuronan Lyases and Laccases for Sustainable Synthesis of Antioxidant Phenolized Oligoglucuronan
<p>Schematic diagram of immobilized glucuronan lyases on the CIM<sup>®</sup> CDI disk system.</p> "> Figure 2
<p>Schematic diagram of the dual stage (immobilized glucuronan lyases and laccases) reactor.</p> "> Figure 3
<p>Saturation curves and Michaelis–Menten model fitting of free (<b>a</b>,<b>b</b>) and immobilized glucuronan lyases (<b>c</b>,<b>d</b>).</p> "> Figure 4
<p>Contour plots of concentration of oligoglucuronan under all pairs of continuous variables.</p> "> Figure 5
<p>Three-dimensional-mesh graphs highlighting the contribution of the three factors, i.e., [glucuronan] (%), flow rate (mL/min), and reaction time (min), on the producing of DP 3 and DP 7 oligoglucuronan.</p> "> Figure 6
<p>Relative activity of immobilized glucuronan lyase regarding (<b>a</b>) the number of column volumes that substrate passed through IMER and (<b>b</b>) the number of days.</p> "> Figure 7
<p>Depolymerization and phenolization of glucuronan, using the dual stage IMER, and the UV spectra of gallic acid at T0 and T6h.</p> "> Figure 8
<p>DPPH radical inhibition of ascorbic acid, gallic acid (GA) glucuronan, and GA–oligoglucuronan conjugates. The standard deviations correspond to three replicates. *** <span class="html-italic">p</span> < 0.001, in comparison to ascorbic acid as the reference. ns: non-significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Production and Purification of Glucuronan Lyase
2.3. Enzymatic Assays of Glucuronan Lyases
2.4. Immobilization of Glucuronan Lyases
2.5. Immobilization Yield of Glucuronan Lyases
2.6. Enzymatic Assays of Immobilized Glucuronan Lyases
2.7. Operating Conditions on Immobilized Glucuronan Lyases Reactor
2.7.1. Experimental Design
2.7.2. Structure Analyses of Oligoglucuronan and Conjugates
High-Performance Anion Exchange Chromatography–Pulsed Amperometric Detection (HPAEC-PAD)
Ultra-High-Pressure Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (UHPLC-HRMS)
Nuclear Magnetic Resonance (NMR)
2.7.3. Statistical Analyses
2.8. Production of Phenolized Oligoglucuronan Using the Dual-Stage CIM® Disks Reactor and First Investigation of Their Biological Activities
2.8.1. Depolymerization and Phenolization of Glucuronan by the Dual-Stage Reactor
2.8.2. DPPH-Radical-Scavenging Ability of GA–Glucuronan and GA–Oligoglucuronan Conjugates
3. Results
3.1. Production of the Glucuronan Lyases from Peteryoungia rosettiformans
3.2. Immobilization Yields of Glucuronan Lyases
3.3. Kinetic Parameters of Free and Immobilized Glucuronan Lyases
3.4. Effects of Operating Conditions on Immobilized Glucuronan Lyases Reactor
3.4.1. Effects of Operating Conditions on the Production of Oligoglucuronan
3.4.2. Effects of Operating Conditions on the Degree of Polymerization of Degraded Glucuronan
3.5. Storage and Operating Stability
3.6. Depolymerization and Phenolization of Glucuronan
3.6.1. Depolymerization and Phenolization of Glucuronan by the Dual-Stage IMER
3.6.2. DPPH-Radical-Scavenging Ability of GA–Oligoglucuronan Conjugates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gericke, M.; Amaral, A.J.R.; Budtova, T.; De Wever, P.; Groth, T.; Heinze, T.; Höfte, H.; Huber, A.; Ikkala, O.; Kapuśniak, J.; et al. The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydr. Polym. 2024, 326, 121633. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as potential anti-tumor biomacromolecules—A Review. Front. Nutr. 2022, 9, 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Lu, Y.; Hao, H.; Liu, J.; Huang, R. Structural features, interaction with the gut microbiota and anti-tumor activity of oligosaccharides. RSC Adv. 2020, 10, 16339–16348. [Google Scholar] [CrossRef]
- Krishna Perumal, P.; Huang, C.-Y.; Chen, C.-W.; Anisha, G.S.; Singhania, R.R.; Dong, C.-D.; Patel, A.K. Advances in oligosaccharides production from brown seaweeds: Extraction, characterization, antimetabolic syndrome, and other potential applications. Bioengineered 2023, 14, 2252659. [Google Scholar] [CrossRef]
- Narisetty, V.; Parhi, P.; Mohan, B.; Hakkim Hazeena, S.; Naresh Kumar, A.; Gullón, B.; Srivastava, A.; Nair, L.M.; Paul Alphy, M.; Sindhu, R.; et al. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. Bioresour. Technol. 2022, 346, 126590. [Google Scholar] [CrossRef]
- Delattre, C.; Vijayalakshmi, M.A. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J. Mol. Catal. B Enzym. 2009, 60, 97–105. [Google Scholar] [CrossRef]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular modification of polysaccharides and resulting bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef]
- Bäumgen, M.; Dutschei, T.; Bornscheuer, U.T. Marine polysaccharides: Occurrence, enzymatic degradation and utilization. ChemBioChem 2021, 22, 2247–2256. [Google Scholar] [CrossRef]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Sirisha, V.L.; Jain, A.; Jain, A. Chapter Nine—Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. In Advances in Food and Nutrition Research, Marine Enzymes Biotechnology: Production and Industrial Applications, Part II—Marine Organisms Producing Enzymes; Kim, S.-K., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 179–211. [Google Scholar]
- Vlakh, E.G.; Tennikova, T.B. Flow-through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts. J. Sep. Sci. 2013, 36, 110–127. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Tennikova, T.B. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J. Sep. Sci. 2013, 36, 1149–1167. [Google Scholar] [CrossRef]
- Chalane, S.; Delattre, C.; Michaud, P.; Lebert, A.; Gardarin, C.; Kothari, D.; Creuly, C.; Goyal, A.; Štrancar, A.; Pierre, G. Optimized endodextranase-epoxy CIM® disk reactor for the continuous production of molecular weight-controlled prebiotic isomalto-oligosaccharides. Process Biochem. 2017, 58, 105–113. [Google Scholar] [CrossRef]
- Hou, X.; Ramakrishnan, S.; Audonnet, F.; Štrancar, A.; Christophe, G.; Traikia, M.; Delattre, C.; Michaud, P.; Dubessay, P.; Pierre, G. Development of an immobilized laccases-CDI CIMmultus® monolithic reactor for ecofriendly producing gallic acid-dextran conjugate. Process Biochem. 2024, 144, 256–265. [Google Scholar] [CrossRef]
- Christophe, G.; Hou, X.; Petit, E.; Traikia, M.; Le Cerf, D.; Rihouey, C.; Gardarin, C.; Delattre, C.; Michaud, P.; Pierre, G.; et al. Description of the wild strain Rhizobium rosettiformans DSM26376, Reclassified under Peteryoungia rosettiformans comb.nov.; for producing glucuronan. Polymers 2023, 15, 2177. [Google Scholar] [CrossRef] [PubMed]
- Dubessay, P.; Andhare, P.; Kavitake, D.; Shetty, P.H.; Ursu, A.V.; Delattre, C.; Pierre, G.; Michaud, P. Microbial glucuronans and succinoglycans. In Polysaccharides of Microbial Origin: Biomedical Applications; Oliveira, J., Radhouani, H., Reis, R.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–23. [Google Scholar]
- Elboutachfaiti, R.; Delattre, C.; Petit, E.; Michaud, P. Polyglucuronic acids: Structures, functions and degrading enzymes. Carbohydr. Polym. 2011, 84, 1–13. [Google Scholar] [CrossRef]
- Da Costa, A.; Michaud, P.; Petit, E.; Heyraud, A.; Colin-Morel, P.; Courtois, B.; Courtois, J. Purification and properties of a glucuronan lyase from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Appl. Environ. Microbiol. 2001, 67, 5197–5203. [Google Scholar] [CrossRef]
- Delattre, C.; Michaud, P.; Keller, C.; Elboutachfaiti, R.; Beven, L.; Courtois, B.; Courtois, J. Purification and characterization of a novel glucuronan lyase from Trichoderma sp. GL2. Appl. Microbiol. Biotechnol. 2006, 70, 437–443. [Google Scholar] [CrossRef]
- Pilgaard, B.; Vuillemin, M.; Munk, L.; Holck, J.; Meier, S.; Wilkens, C.; Meyer, A.S. Discovery of a novel glucuronan lyase system in Trichoderma parareesei. Appl. Environ. Microbiol. 2022, 88, e01819-21. [Google Scholar] [CrossRef]
- Vuillemin, M.; Pilgaard, B.; Kiehn, E.; Fredslund, F.; Welner, D.H.; Meyer, A.S.; Aachmann, F.L.; Wilkens, C. Glucuronan lyases from family PL7 use a Tyr/Tyr syn β-elimination catalytic mechanism for glucuronan breakdown. Chem. Commun. 2024, 60, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Konno, N.; Suzuki, T.; Fujii, Y.; Kodama, Y.; Isogai, A.; Habu, N. A bacterial endo-β-1,4-glucuronan lyase, CUL-I from Brevundimonas sp. SH203, belonging to a novel polysaccharide lyase family. Protein Expr. Purif. 2020, 166, 105502. [Google Scholar] [CrossRef]
- Abouraïcha, E.F.; El Alaoui-Talibi, Z.; Tadlaoui-Ouafi, A.; El Boutachfaiti, R.; Petit, E.; Douira, A.; Courtois, B.; Courtois, J.; El Modafar, C. Glucuronan and oligoglucuronans isolated from green algae activate natural defense responses in apple fruit and reduce postharvest blue and gray mold decay. J. Appl. Phycol. 2017, 29, 471–480. [Google Scholar] [CrossRef]
- Da Costa, A.; Michaud, P.; Heyraud, A.; Colin-Morel, P.; Courtois, B.; Courtois, J. Acetyl substitution of glucuronan influences glucuronan cleavage by GlyA from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Carbohydr. Polym. 2003, 51, 223–228. [Google Scholar] [CrossRef]
- Delattre, C.; Michaud, P.; Lion, J.M.; Courtois, B.; Courtois, J. Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain. J. Biotechnol. 2005, 118, 448–457. [Google Scholar] [CrossRef]
- Tavernier, M.L.; Petit, E.; Delattre, C.; Courtois, B.; Courtois, J.; Strancar, A.; Michaud, P. Production of oligoglucuronans using a monolithic enzymatic microreactor. Carbohydr. Res. 2008, 343, 2687–2691. [Google Scholar] [CrossRef]
- Hou, X.; Enderlin, Q.; Garron, M.; Nauton, L.; Thery, V.; Christophe, G.; Audonnet, F.; Petit, E.; Maugard, T.; Bridiau, N.; et al. Structural and biochemical characterization of a novel glucuronan lyase enzyme with unusual functional activity on acetylated-glucuronan substrates, in Peteryoungia rosettiformans. FEBS J. 2024; under review. [Google Scholar]
- Shehadul Islam, M.; Aryasomayajula, A.; Selvaganapathy, P.R. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines 2017, 8, 83. [Google Scholar] [CrossRef]
- Skorupskaite, V.; Makareviciene, V.; Sendzikiene, E.; Gumbyte, M. Microalgae Chlorella sp. cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods. J. Appl. Phycol. 2019, 31, 2349–2354. [Google Scholar] [CrossRef]
- Ceroni, A.; Dell, A.; Haslam, S.M. The GlycanBuilder: A fast, intuitive and flexible software tool for building and displaying glycan structures. Source Code Biol. Med. 2007, 2, 3. [Google Scholar] [CrossRef]
- Bartolini, M.; Cavrini, V.; Andrisano, V. Monolithic micro-immobilized-enzyme reactor with human recombinant acetylcholinesterase for on-line inhibition studies. J. Chromatogr. A 2004, 1031, 27–34. [Google Scholar] [CrossRef]
- Vodopivec, M.; Podgornik, A.; Berovič, M.; Štrancar, A. Characterization of CIM monoliths as enzyme reactors. J. Chromatogr. B 2003, 795, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of enzymes: A literature survey. In Immobilization of Enzymes and Cells, 3rd ed.; Guisan, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 15–31. [Google Scholar]
- Fernandes-Negreiros, M.M.; Batista, L.A.N.C.; Silva Viana, R.L.; Araujo Sabry, D.; Paiva, A.A.O.; Paiva, W.S.; Machado, R.I.A.; Sousa Junior, F.L.d.; de Lima Pontes, D.; Vitoriano, J.d.O.; et al. Gallic Acid-Laminarin Conjugate Is a Better Antioxidant than Sulfated or Carboxylated Laminarin. Antioxidants 2020, 9, 1192. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Xiao, X.; Lu, L.; Ai, L.; Xu, M.; Liu, Y.; Goff, H.D. Polyphenol–polysaccharide complex: Preparation, characterization, and potential utilization in food and health. Annu. Rev. Food Sci. Technol. 2022, 13, 59–87. [Google Scholar] [CrossRef] [PubMed]
Number of Experiments | c of Glucuronan (%) | Flow Rate (mL∙min−1) | Time (min) |
---|---|---|---|
1 | 0.015 | 0.2 | 60.0 |
2 | 0.05 | 0.1 | 30.0 |
3 | 0.05 | 0.1 | 90.0 |
4 | 0.05 | 0.3 | 30.0 |
5 | 0.05 | 0.3 | 90.0 |
6 | 0.1 | 0.03 | 60.0 |
7 | 0.1 | 0.2 | 9.5 |
8 | 0.1 | 0.2 | 60.0 |
9 | 0.1 | 0.2 | 60.0 |
10 | 0.1 | 0.2 | 60.0 |
11 | 0.1 | 0.2 | 110.5 |
12 | 0.1 | 0.36 | 60.0 |
13 | 0.15 | 0.1 | 30.0 |
14 | 0.15 | 0.1 | 90.0 |
15 | 0.15 | 0.3 | 30.0 |
16 | 0.15 | 0.3 | 90.0 |
17 | 0.18 | 0.2 | 60.0 |
Samples | T0 | Td | Ts | W1 | W2 |
---|---|---|---|---|---|
Protein mass (μg) | 1259.0 | 386.9 | 324.6 | 93.8 | 39.7 |
Yield of dynamic immobilization (%) | 69.3 | ||||
Yield of static immobilization (%) | 0.07 | ||||
Loss of buffer washing (%) a | 10.8 | ||||
Loss of water washing (%) b | 0.05 | ||||
Final immobilized mass (μg) | 800.92 | ||||
Final Yield (%) | 63.61 |
Parameters | Free Glucuronan Lyase | Immobilized Glucuronan Lyase |
---|---|---|
Vmax (μM∙min−1) | 56.2 ± 7.41 | 56.9 ± 4.74 |
Vmax (U) | 0.028 | 0.171 |
Km (g∙L−1) a | 0.122 ± 0.04 | 0.310 ± 0.08 |
Specific activity (U∙mg−1) | 56.2 | 0.21 |
Kcat (s−1) | 5.37 | 2.14 |
Catalytic efficiency (s−1·µM−1) | 30.8 | 4.83 |
R-Square of model | 0.95 | 0.96 |
Coefficients | Regression Coefficients | p-Values |
---|---|---|
β0 | 767.7 | 0.000 |
β1 | 209.1 | 0.000 |
β2 | 132.6 | 0.003 |
β3 | 271.3 | 0.000 |
β11 | −72.7 | 0.058 |
β22 | −36.3 | 0.295 |
β33 | −27.3 | 0.424 |
β12 | 50.8 | 0.225 |
β13 | 120.6 | 0.016 |
β23 | 48.1 | 0.247 |
Source | Degree of Freedom | Sum Square | Mean Square | F-Value | p-Values |
---|---|---|---|---|---|
β0 | 767.7 | 0.000 | |||
Model | 9 | 2,060,444 | 228,938 | 19.7 | 0.000 |
Linear | 3 | 1,842,637 | 614,212 | 52.86 | 0.000 |
x1 | 1 | 596,922 | 596,922 | 51.37 | 0.000 |
x2 | 1 | 240,155 | 240,155 | 20.67 | 0.003 |
x3 | 1 | 1,005,561 | 1,005,561 | 86.53 | 0.000 |
Square | 3 | 62,313 | 20,771 | 1.79 | 0.237 |
x12 | 1 | 59,518 | 59,518 | 5.12 | 0.058 |
x22 | 1 | 14,854 | 14,854 | 1.28 | 0.295 |
x32 | 1 | 8388 | 8388 | 0.72 | 0.424 |
2-Way Interaction | 3 | 155,493 | 51,831 | 4.46 | 0.047 |
x1x2 | 1 | 20,681 | 20,681 | 1.78 | 0.224 |
x1x3 | 1 | 116,304 | 116,304 | 10.01 | 0.016 |
x2x3 | 1 | 18,508 | 18,508 | 1.59 | 0.247 |
Error | 7 | 81,342 | 11,620 | ||
Lack-of-Fit | 5 | 79,530 | 15,906 | 17.55 | 0.055 |
Pure Error | 2 | 1813 | 906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Dubessay, P.; Christophe, G.; Bridiau, N.; Bodet, P.-E.; Traikia, M.; Raja, M.D.; Maugard, T.; Štrancar, A.; Audonnet, F.; et al. Development of a Dual-Stage CIM® CDI Reactor with Immobilized Glucuronan Lyases and Laccases for Sustainable Synthesis of Antioxidant Phenolized Oligoglucuronan. Polysaccharides 2024, 5, 743-760. https://doi.org/10.3390/polysaccharides5040047
Hou X, Dubessay P, Christophe G, Bridiau N, Bodet P-E, Traikia M, Raja MD, Maugard T, Štrancar A, Audonnet F, et al. Development of a Dual-Stage CIM® CDI Reactor with Immobilized Glucuronan Lyases and Laccases for Sustainable Synthesis of Antioxidant Phenolized Oligoglucuronan. Polysaccharides. 2024; 5(4):743-760. https://doi.org/10.3390/polysaccharides5040047
Chicago/Turabian StyleHou, Xiaoyang, Pascal Dubessay, Gwendoline Christophe, Nicolas Bridiau, Pierre-Edouard Bodet, Mounir Traikia, Mugilan Damadoran Raja, Thierry Maugard, Aleš Štrancar, Fabrice Audonnet, and et al. 2024. "Development of a Dual-Stage CIM® CDI Reactor with Immobilized Glucuronan Lyases and Laccases for Sustainable Synthesis of Antioxidant Phenolized Oligoglucuronan" Polysaccharides 5, no. 4: 743-760. https://doi.org/10.3390/polysaccharides5040047
APA StyleHou, X., Dubessay, P., Christophe, G., Bridiau, N., Bodet, P. -E., Traikia, M., Raja, M. D., Maugard, T., Štrancar, A., Audonnet, F., Michaud, P., & Pierre, G. (2024). Development of a Dual-Stage CIM® CDI Reactor with Immobilized Glucuronan Lyases and Laccases for Sustainable Synthesis of Antioxidant Phenolized Oligoglucuronan. Polysaccharides, 5(4), 743-760. https://doi.org/10.3390/polysaccharides5040047