The Yangtze River Basin serves as a vital ecological barrier in China, with its water conservation function playing a critical role in maintaining regional ecological balance and water resource security. This study takes the Minjiang River Basin (MRB) as a case study, employing
[...] Read more.
The Yangtze River Basin serves as a vital ecological barrier in China, with its water conservation function playing a critical role in maintaining regional ecological balance and water resource security. This study takes the Minjiang River Basin (MRB) as a case study, employing fractal theory in combination with the InVEST model and the SWAT-BiLSTM model to conduct an in-depth analysis of the spatiotemporal patterns of regional water conservation. The research aims to uncover the relationship between the spatiotemporal dynamics of watershed water conservation capacity and its ecosystem service functions, providing a scientific basis for watershed ecological protection and management. Firstly, fractal theory is introduced to quantify the complexity and spatial heterogeneity of natural factors such as terrain, vegetation, and precipitation in the Minjiang River Basin. Using the InVEST model, the study evaluates the water conservation service functions of the research area, identifying key water conservation zones and their spatiotemporal variations. Additionally, the SWAT-BiLSTM model is employed to simulate the hydrological processes of the basin, particularly the impact of nonlinear meteorological variables on hydrological responses, aiming to enhance the accuracy and reliability of model predictions. At the annual scale, it achieved NSE and R
2 values of 0.85 during calibration and 0.90 during validation. At the seasonal scale, these values increased to 0.91 and 0.93, and at the monthly scale, reached 0.94 and 0.93. The model showed low errors (RMSE, RSR, RB). The findings indicate significant spatial differences in the water conservation capacity of the Minjiang River Basin, with the upper and middle mountainous regions serving as the primary water conservation areas, whereas the downstream plains exhibit relatively lower capacity. Precipitation, terrain slope, and vegetation cover are identified as the main natural factors affecting water conservation functions, with changes in vegetation cover having a notable regulatory effect on water conservation capacity. Fractal dimension analysis reveals a distinct spatial complexity in the ecosystem structure of the study area, which partially explains the geographical distribution characteristics of water conservation functions. Furthermore, simulation results based on the SWAT-BiLSTM model show an increasingly significant impact of climate change and human activities on the water conservation functions of the Minjiang River Basin. The frequent occurrence of extreme climate events, in particular, disrupts the hydrological processes of the basin, posing greater challenges for water resource management. Model validation demonstrates that the SWAT model integrated with BiLSTM achieves high accuracy in capturing complex hydrological processes, thereby better supporting decision-makers in formulating scientific water resource management strategies.
Full article