Nothing Special   »   [go: up one dir, main page]

Next Issue
Volume 9, March
Previous Issue
Volume 9, January
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 

Fractal Fract., Volume 9, Issue 2 (February 2025) – 76 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Cover Story (view full-size image):
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 311 KiB  
Article
Existence of Positive Solutions for a Class of Nabla Fractional Boundary Value Problems
by Nikolay D. Dimitrov and Jagan Mohan Jonnalagadda
Fractal Fract. 2025, 9(2), 131; https://doi.org/10.3390/fractalfract9020131 - 19 Feb 2025
Abstract
In this manuscript, we study a class of equations with two different Riemann–Liouville-type orders of nabla difference operators. We show some new and fundamental properties of the related Green’s function. Depending on the values of the orders of the operators, we split our [...] Read more.
In this manuscript, we study a class of equations with two different Riemann–Liouville-type orders of nabla difference operators. We show some new and fundamental properties of the related Green’s function. Depending on the values of the orders of the operators, we split our research into two main cases, and for each one of them, we obtain suitable conditions under which we prove that the considered problem possesses a positive solution. We consider the latter to be the main novelty in this work. Our main tool in both cases of our study is Guo–Krasnoselskii’s fixed point theorem. In the end, we give particular examples in order to offer a concrete demonstration of our new theoretical findings, as well as some possible future work in this direction. Full article
14 pages, 340 KiB  
Article
Successive Approximation and Stability Analysis of Fractional Stochastic Differential Systems with Non-Gaussian Process and Poisson Jumps
by Nidhi Asthana, Mohd Nadeem and Rajesh Dhayal
Fractal Fract. 2025, 9(2), 130; https://doi.org/10.3390/fractalfract9020130 - 19 Feb 2025
Abstract
This paper investigates a new class of fractional stochastic differential systems with non-Gaussian processes and Poisson jumps. Firstly, we examine the solvability results for the considered system. Furthermore, new stability results for the proposed system are derived. The findings are established through the [...] Read more.
This paper investigates a new class of fractional stochastic differential systems with non-Gaussian processes and Poisson jumps. Firstly, we examine the solvability results for the considered system. Furthermore, new stability results for the proposed system are derived. The findings are established through the application of Grönwall’s inequality, the successive approximation method, and the corollary of the Bihari inequality. Finally, the validity of the results is proved through an example. Full article
Show Figures

Figure 1

Figure 1
<p>Filter system.</p>
Full article ">
15 pages, 331 KiB  
Article
On a Certain Class of GA-Convex Functions and Their Milne-Type Hadamard Fractional-Integral Inequalities
by Abdelkader Moumen, Rabah Debbar, Badreddine Meftah, Khaled Zennir, Hicham Saber, Tariq Alraqad and Etaf Alshawarbeh
Fractal Fract. 2025, 9(2), 129; https://doi.org/10.3390/fractalfract9020129 - 19 Feb 2025
Abstract
In this article, we prove a new Milne-type inequality involving Hadamard fractional integrals for functions with GA-convex first derivatives. The limits of the error estimates involve incomplete gamma and confluent hypergeometric functions. The results of this study open the door to [...] Read more.
In this article, we prove a new Milne-type inequality involving Hadamard fractional integrals for functions with GA-convex first derivatives. The limits of the error estimates involve incomplete gamma and confluent hypergeometric functions. The results of this study open the door to further investigation of this subject, as well as extensions to other forms of generalized convexity, weighted formulas, and higher dimensions. Full article
(This article belongs to the Special Issue Mathematical and Physical Analysis of Fractional Dynamical Systems)
Show Figures

Figure 1

Figure 1
<p>Illustration of inequality (<a href="#FD14-fractalfract-09-00129" class="html-disp-formula">14</a>).</p>
Full article ">
22 pages, 33783 KiB  
Article
Mechanical Response and Damage Characteristics of Frozen–Thawed Sandstone Across Various Temperature Ranges Under Impact Loads
by Dejun Liu, Hai Pu, Kangsheng Xue, Junce Xu and Hongyang Ni
Fractal Fract. 2025, 9(2), 128; https://doi.org/10.3390/fractalfract9020128 - 19 Feb 2025
Abstract
Freeze–thaw action is a key factor in the deterioration of the dynamic mechanical behavior of rocks in cold regions. This study used yellow sandstone, which is prevalent in the seasonally cold region of Xinjiang, China. The yellow sandstone samples were subjected to various [...] Read more.
Freeze–thaw action is a key factor in the deterioration of the dynamic mechanical behavior of rocks in cold regions. This study used yellow sandstone, which is prevalent in the seasonally cold region of Xinjiang, China. The yellow sandstone samples were subjected to various temperatures and a range of freeze–thaw cycles. Impact mechanical tests were performed using a Split Hopkinson Pressure Bar (SHPB) system on the treated samples. The effects of freezing temperature and changes in impact load on the mechanical properties of frozen–thawed sandstone were examined. Additionally, the damage fractal characteristics of the sandstone were analyzed using fractal theory. The results indicate that as the freezing temperature decreases, the stress–strain curves of frozen–thawed specimens exhibit a clear initial compaction stage. The dynamic strength of the specimens decreases with lower freezing temperatures and shows a logarithmic relationship with the loading strain rate; however, the dynamic deformation modulus exhibits no significant correlation with the strain rate. The fractal dimension is positively correlated with the strain rate, indicating that lower freezing temperatures correspond to a higher rate of increase in the fractal dimension. These findings offer valuable insights into the damage deterioration characteristics of frozen–thawed rocks under varying temperature conditions. Full article
Show Figures

Figure 1

Figure 1
<p>Freeze–thaw cycle test program. (<b>a</b>) Results of X-ray diffraction test. (<b>b</b>) Drying oven (DHG-9240A, Shanghai Jinghong Testing Instruments Co., Shanghai, China). (<b>c</b>) Longitudinal Wave Velocimeter. (<b>d</b>) Saturation Device. (<b>e</b>) Freeze–thaw chamber (XY-QDR-50, Instrument Factory of Liaoning Fushun Xinyuan, Fushun, China). (<b>f</b>) Determination of impact air pressure. (<b>g</b>) Freeze–thaw temperature range.</p>
Full article ">Figure 2
<p>(<b>a</b>) SHPB testing system; (<b>b</b>) equipment schematic; (<b>c</b>) Stress uniformity verification.</p>
Full article ">Figure 3
<p>(<b>a</b>) Dynamic stress–strain curves of non-frozen–thawed samples; (<b>b</b>) typical characteristics of stress–strain curves.</p>
Full article ">Figure 4
<p>Dynamic stress–strain curves of frozen–thawed rock samples at −0~20 °C.</p>
Full article ">Figure 5
<p>Dynamic stress–strain curves of frozen–thawed rock samples at −3~20 °C.</p>
Full article ">Figure 6
<p>Dynamic stress–strain curves of frozen–thawed rock samples at −5~20 °C.</p>
Full article ">Figure 7
<p>Dynamic stress–strain curves of frozen–thawed rock samples at −20~20 °C.</p>
Full article ">Figure 8
<p>Dynamic strength and strain rate relationships of frozen–thawed rock samples at different temperature ranges: (<b>a</b>) −0~20 °C; (<b>b</b>) −5~20 °C.</p>
Full article ">Figure 9
<p>Change in dynamic strength of samples with freezing temperature.</p>
Full article ">Figure 10
<p>Dynamic deformation modulus of frozen–thawed sandstone at different freezing temperatures.</p>
Full article ">Figure 10 Cont.
<p>Dynamic deformation modulus of frozen–thawed sandstone at different freezing temperatures.</p>
Full article ">Figure 11
<p>Variation in deformation modulus with freeze–thaw cycles at different freezing temperatures.</p>
Full article ">Figure 12
<p>Particle size distribution of crushed rock after sieving.</p>
Full article ">Figure 13
<p>The double-logarithmic relationship diagram of the dynamic crushing particle size of frozen–thawed samples at different freezing temperatures.</p>
Full article ">Figure 14
<p>Variation in fractal dimension with cycle number at different freezing temperatures.</p>
Full article ">Figure 15
<p>Micro-morphology characteristics of samples under different test conditions.</p>
Full article ">
15 pages, 422 KiB  
Article
New Results on the Stability and Existence of Langevin Fractional Differential Equations with Boundary Conditions
by Rahman Ullah Khan, Maria Samreen, Gohar Ali and Ioan-Lucian Popa
Fractal Fract. 2025, 9(2), 127; https://doi.org/10.3390/fractalfract9020127 - 18 Feb 2025
Abstract
This manuscript aims to establish the existence, uniqueness, and stability of solutions for Langevin fractional differential equations involving the generalized Liouville-Caputo derivative. Using a novel approach, we derive existence and uniqueness results through fixed-point theorems, extending and generalizing several existing findings in the [...] Read more.
This manuscript aims to establish the existence, uniqueness, and stability of solutions for Langevin fractional differential equations involving the generalized Liouville-Caputo derivative. Using a novel approach, we derive existence and uniqueness results through fixed-point theorems, extending and generalizing several existing findings in the literature. To demonstrate the applicability of our results, we provide a practical example that validates the theoretical framework. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

Figure 1
<p><math display="inline"><semantics> <mrow> <mi>ω</mi> <mrow> <mo>(</mo> <mi mathvariant="fraktur">r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac bevelled="false"> <msup> <mi mathvariant="fraktur">r</mi> <mn>4</mn> </msup> <mn>5</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mrow> <mi>ω</mi> <mrow> <mo>(</mo> <mi mathvariant="fraktur">r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac bevelled="false"> <msup> <mi mathvariant="fraktur">r</mi> <mn>2</mn> </msup> <mn>4</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graph represents the dynamical behavior of the solutions to the fractional differential equation.</p>
Full article ">
22 pages, 8099 KiB  
Article
Experimental Study on the Mechanical Properties and Fractal Characteristics of Gas-Containing Coal Under Cyclic Loading
by Peng Zou, Lei Wang, Anying Yuan, Hao Fan and Huaiqian Liu
Fractal Fract. 2025, 9(2), 126; https://doi.org/10.3390/fractalfract9020126 - 18 Feb 2025
Abstract
As mining progresses, complexities arise, leading to potential coal-rock gas dynamic disasters triggered by mining disturbances. These dynamic phenomena are influenced by factors such as loading mode, coal properties, and the presence of gas. To gain a comprehensive understanding of the mechanical properties, [...] Read more.
As mining progresses, complexities arise, leading to potential coal-rock gas dynamic disasters triggered by mining disturbances. These dynamic phenomena are influenced by factors such as loading mode, coal properties, and the presence of gas. To gain a comprehensive understanding of the mechanical properties, deformation, and failure characteristics of gas-containing coal under cyclic loading, we conducted uniaxial compression tests. These tests varied in loading frequencies, amplitudes, and durations. By analyzing the peak stress variation of gas-containing coal and utilizing digital image correlation (DIC) technology, we captured the deformation characteristics of the loaded coal surface. Following the tests, we examined the fragmentation degree of gas-containing coal under different cyclic loading using fractal theory. This involved screening and crushing samples to assess the impact of varying loading on coal fragmentation. The results showed that peak stress is positively correlated with loading frequency and negatively correlated with loading amplitude and the number of cycles. Cyclic loading significantly affects the surface deformation morphology of gas-containing coal, and there is a correlation between the stress level of the coal sample and its surface deformation, with the formation and development of cracks corresponding to the stress level. Fractal theory can analyze the crushing characteristics of materials and quantitatively characterize their degree of crushing, and the fractal dimension is closely related to the mode of cyclic loading and comprehensively reflects various experimental factors. The results of our study aim to provide insights that can guide the prevention and control of coal mine dynamic disasters. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Rock Engineering)
Show Figures

Figure 1

Figure 1
<p>Visual gas–solid coupling rock mechanics test system.</p>
Full article ">Figure 2
<p>Stress paths in the uniaxial compression of gas-containing coal under cyclic loading.</p>
Full article ">Figure 3
<p>Stress–Strain curves of gas-containing coal under different loading frequencies.</p>
Full article ">Figure 4
<p>Relationship between peak stress and its rate of change with loading frequency.</p>
Full article ">Figure 5
<p>Stress–Strain curves of gas-containing coal under different loading amplitudes.</p>
Full article ">Figure 6
<p>Relationship between peak stress and its rate of change with loading amplitude.</p>
Full article ">Figure 7
<p>Stress–Strain curves of gas-containing coal under different numbers of cycles.</p>
Full article ">Figure 8
<p>Relationship between peak stress and its rate of change with the cycle number.</p>
Full article ">Figure 9
<p>Schematic representation of monitoring points.</p>
Full article ">Figure 10
<p>Crack evolution distribution characteristics of gas-containing coal under different loading frequencies.</p>
Full article ">Figure 11
<p>Crack evolution distribution characteristics of gas-containing coal under different loading amplitudes.</p>
Full article ">Figure 11 Cont.
<p>Crack evolution distribution characteristics of gas-containing coal under different loading amplitudes.</p>
Full article ">Figure 12
<p>Crack evolution distribution characteristics of gas-containing coal under cycle numbers.</p>
Full article ">Figure 12 Cont.
<p>Crack evolution distribution characteristics of gas-containing coal under cycle numbers.</p>
Full article ">Figure 13
<p>Fractal characteristics of gas-containing coal under cyclic loading.</p>
Full article ">Figure 14
<p>Loading frequency of 8 Hz.</p>
Full article ">Figure 15
<p>Loading amplitude of 2 MPa.</p>
Full article ">Figure 16
<p>Cycles numbering 800.</p>
Full article ">Figure 17
<p>Stress–Strain curves of coal under different gas pressure.</p>
Full article ">Figure 18
<p>Stress analysis of cracks in gas-containing coal.</p>
Full article ">Figure 19
<p>Schematic diagram of the forces on gas-containing coal under the action of mining activities.</p>
Full article ">
18 pages, 1992 KiB  
Article
AI-Based Data Analysis of Contaminant Transportation with Regression of Oxygen and Nutrients Measurement
by Hasib Khan, Jehad Alzabut, Mohamed Tounsi and Dalal Khalid Almutairi
Fractal Fract. 2025, 9(2), 125; https://doi.org/10.3390/fractalfract9020125 - 17 Feb 2025
Abstract
This research is based on the artificial intelligence approach for the error and regression analysis of contaminants, nutrients, and oxygen level in water bodies using a Caputo’s difference model. The model is composed of four subgroups including contaminant concentration (which is denoted by [...] Read more.
This research is based on the artificial intelligence approach for the error and regression analysis of contaminants, nutrients, and oxygen level in water bodies using a Caputo’s difference model. The model is composed of four subgroups including contaminant concentration (which is denoted by C), the temperature of the fluid T, oxygen concentration O, and nutrients N. ξC,ξT,ξO,ξN are assumed as diffusion constants for the respective classes. The fractional-order difference model is investigated for the existence and uniqueness of solutions as well as Hyers–Ulam stability, subjected to certain assumptions. The computational results demonstrate that the maximum contaminant concentrations reach 0.01046 mg/L for ξC=0.1 and WR = 0.1, resulting in nutrient levels as low as 4.9969 mg/L. The model predicts that increased pollutant loads increase local temperatures to 20.009 C. Furthermore, an inverse correlation between reaction rates and contaminant concentrations is also observed, whereby an increase in WR from 0.1 to 0.2 reduces concentrations to 0.0038327 mg/L. Full article
Show Figures

Figure 1

Figure 1
<p>Computational results for the contaminant-transportation DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for different parametric impacts while keeping the fractional order of the derivative as 0.98. (<b>a</b>) Simulations for the DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for variant <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>b</b>) Simulations for the DC’s difference contaminant-transportation model in water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for variant <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.10</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.12</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.14</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.16</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.20</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.22</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.24</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.12</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.23</mn> </mrow> </semantics></math>, for the fractional oder <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>c</b>) simulations for the effects of <math display="inline"><semantics> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> </semantics></math> on contaminant concentration in DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for variant <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.13</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.16</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.19</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.21</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.23</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.27</mn> </mrow> </semantics></math>, and fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>d</b>) Simulations for the nutrients level on the length with the effects of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, in the DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>), for fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Simulations for the values of oxygen and temperature on the length with the effects of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>T</mi> </msub> <mo>=</mo> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, in the DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>), for fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>a</b>) Simulations for the oxygen level on the length with the effects of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, in the DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>), for fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>b</b>) Simulations for the values of temperature on the length with the effects of <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>R</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>, in the DC’s difference contaminant-transportation model for water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>), for fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Computational results for the temperature distributions under the influence of different values of <math display="inline"><semantics> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> </semantics></math>, and contaminant concentration for the variant <math display="inline"><semantics> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>T</mi> </msub> </semantics></math>. (<b>a</b>) Temperature distribution in the contaminant transportation in the water bodies model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> for the variant paramters <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.10</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.11</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>. (<b>b</b>) Temperature distribution in the contaminant transportation in the water bodies model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> for the variant values of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.11</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics></math>. (<b>c</b>) Contaminant concentration highlighted by in the contaminant transportation in the water bodies model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> for the variant <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.13</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.16</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="4pt"/> <mn>0.19</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.21</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.23</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.27</mn> </mrow> </semantics></math>. (<b>d</b>) Contaminant concentration highlighted by in the contaminant transportation in the water bodies model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> with the effects of variant <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.13</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.16</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="4pt"/> <mn>0.19</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.21</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.23</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.27</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.055</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.15</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>T</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>C</mi> </msub> </semantics></math> impact the temperature and contaminant distributions over the length of the presumed volume. (<b>a</b>) The impact of the <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>T</mi> </msub> </semantics></math> on the temperature distribution for the variant <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.055</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.10</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.15</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.25</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>C</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.20</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> </mrow> </semantics></math> in the water contaminant-transportation model in DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>b</b>) The role of <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>C</mi> </msub> </semantics></math> on the contaminant concentration of the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.10</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.12</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.14</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.16</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.22</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mn>0.24</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>PCA analysis of the data of the DC’s model for the contaminant clustering, oxygen-level clustering, temperature distribution clustering over the length of the volume of the study, and nutrient clustering for the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>a</b>) PCA of contaminant data clustering of the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math>. (<b>b</b>) PCA of the oxygen-level clustering of the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>c</b>) PCA of temperature clustering over the length of the volume of the study in the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>d</b>) PCA of nutrients clustering over the length of the volume of the study in the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>).</p>
Full article ">Figure 6
<p>NN-Clustering of contaminant transportation in the water bodies described by the DC’s mathematical structure (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>a</b>) Clustering of contaminants in the DC’s contamination model for transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> with three different levels. (<b>b</b>) Clustering of the temperature in the DC’s contamination model for transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> with three different levels. (<b>c</b>) Clustering of oxygen in the DC’s contamination model for transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> with three different levels. (<b>d</b>) Clustering of oxygen in the DC’s contamination model for transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional order <math display="inline"><semantics> <mrow> <mn>0.98</mn> </mrow> </semantics></math> with three different levels.</p>
Full article ">Figure 7
<p>A mathematical fractional difference model showing the NN-Clustering of the water contaminant transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>a</b>) Best validation performance of the data from the contaminant-transportation model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) with the best result at epoch 14. (<b>b</b>) An error histogram with left deviation, showing the accuracy of the results between the actual and predicted values of the DC’s contaminant-transportation model for the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional derivative in the DC’s version.</p>
Full article ">Figure 8
<p>A mathematical fractional difference model depicting the NN-Clustering of the water contaminant transportation in the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>a</b>) Regression for the data of the contaminant-transportation model for the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) for the fractional derivative in the DC’s version, with values higher than <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.99934</mn> </mrow> </semantics></math> in the statistical analysis. (<b>b</b>) Error histogram in the training, validation, and testing data of the DC’s contaminant-transportation model for the water bodies (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>) of 20 bins between targets and outputs of the model. (<b>c</b>) The predicted concentration of the contaminant in the water bodies of the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>). (<b>d</b>) The training of the data with a gradient of 0.00042999 at epoch 15 and a validation check of 0 for the DC’s model (<a href="#FD1-fractalfract-09-00125" class="html-disp-formula">1</a>).</p>
Full article ">
23 pages, 800 KiB  
Article
Overview and Research Prospects on Fractional Co-Evolution Modeling of “Epidemic–Opinion” System
by Dongnv Ding, Kecai Cao, Yangquan Chen, Juping Gu and Qingmin Meng
Fractal Fract. 2025, 9(2), 124; https://doi.org/10.3390/fractalfract9020124 - 17 Feb 2025
Abstract
The co-evolutionary research of complex network propagation dynamics systems has gradually become a hot topic in domestic and international research in recent years. This article reviews the research progress of epidemic dynamics systems and public opinion dynamics systems, providing a theoretical basis and [...] Read more.
The co-evolutionary research of complex network propagation dynamics systems has gradually become a hot topic in domestic and international research in recent years. This article reviews the research progress of epidemic dynamics systems and public opinion dynamics systems, providing a theoretical basis and knowledge reserve for the co-evolutionary research of the “epidemic–opinion” system. Firstly, following the path of process complexity, this article points out the similarities in mathematical modeling between the two types of systems from a dynamic perspective, as well as the latest research progress. Based on this, the article fully considers the common complex network attributes of these two types of systems, and from the perspective of the increasing complexity of networks, it sorts out the relevant research progress of the “epidemic–opinion” system and the necessity of its co-evolutionary research. Finally, from the perspective of complex engineering systems, the article looks forward to the difficulties and problems that may be encountered in the co-evolutionary research process. From the two dimensions of process complexity and network complexity, the latest research progress is summarized, while key issues and potential difficulties in the next step of co-evolutionary research for the “epidemic–opinion” system are pointed out, providing a reference and inspiration for relevant researchers. Full article
(This article belongs to the Special Issue Analysis and Modeling of Fractional-Order Dynamical Networks)
Show Figures

Figure 1

Figure 1
<p>Literature distribution.</p>
Full article ">Figure 2
<p>Citation relationships.</p>
Full article ">Figure 3
<p>Hysteresis phenomenon.</p>
Full article ">Figure 4
<p>Characterization of diffusion processes on complex networks.</p>
Full article ">Figure 5
<p>Cascaded interaction between “infodemic” and epidemic.</p>
Full article ">Figure 6
<p>Conceptual model of coupled-diffusion processes through two networks from [<a href="#B63-fractalfract-09-00124" class="html-bibr">63</a>].</p>
Full article ">Figure 7
<p>“Epidemic–opinion” system based on coupling of two layers of networks from [<a href="#B61-fractalfract-09-00124" class="html-bibr">61</a>].</p>
Full article ">Figure 8
<p>Cascaded schemes vs. feedback schemes.</p>
Full article ">
14 pages, 4502 KiB  
Article
Fractal Geometry: Surface Characterization of Printing Paper
by Yong Ju Lee, Geon-Woo Kim, Tai-Ju Lee and Hyoung Jin Kim
Fractal Fract. 2025, 9(2), 123; https://doi.org/10.3390/fractalfract9020123 - 17 Feb 2025
Abstract
This study investigates the surface characteristics of printing papers using fractal geometry, focusing on surface roughness and surface friction as independent properties. The fractal dimension (FD) was analyzed using the power spectral density method, which provided a more distinct characterization of paper surfaces [...] Read more.
This study investigates the surface characteristics of printing papers using fractal geometry, focusing on surface roughness and surface friction as independent properties. The fractal dimension (FD) was analyzed using the power spectral density method, which provided a more distinct characterization of paper surfaces compared to the variogram method. Surface roughness and friction were measured using a stylus-based contact profilometer, and mean absolute deviation (MAD) parameters, such as the mean absolute deviation of surface roughness (RMAD) and friction, were calculated to capture surface variability. The results revealed that while conventional parameters, such as roughness average (Ra) and the average coefficient of friction, are highly sensitive to measurement conditions, MAD-based parameters demonstrate greater robustness and stability. For instance, the regression equation for RMAD vs. Ra showed a strong correlation, with an R² value close to 1.0. However, the slopes were significantly less than one. Furthermore, FD exhibited weak correlations with surface roughness and friction, with R² values of 0.342 and 0.016, respectively, highlighting its unique ability to characterize autocorrelation or complexity of surface. Additionally, the effects of coating on paper surfaces were evaluated, revealing reduced flocculation of surface profiles but a 5% increase in FD, indicating enhanced surface complexity. These findings underscore the complementary role of FD in providing a comprehensive understanding of surface properties, with potential applications in quality control and the design of paper products. Full article
Show Figures

Figure 1

Figure 1
<p>Surface roughness vs. FD.</p>
Full article ">Figure 2
<p>Configuration of surface tester and conical stylus.</p>
Full article ">Figure 3
<p>Surface roughness profile of P&amp;W1.</p>
Full article ">Figure 4
<p>Graphical representations of <span class="html-italic">Ra</span>, <span class="html-italic">Rq</span>, and <span class="html-italic">RMAD.</span></p>
Full article ">Figure 5
<p>Surface friction profile of P&amp;W1.</p>
Full article ">Figure 6
<p>Spectral density of P&amp;W1 on log–log scale.</p>
Full article ">Figure 7
<p>Comparison of <span class="html-italic">RMAD</span> with <span class="html-italic">Ra</span> (<b>a</b>) and <span class="html-italic">RMAD</span> with <span class="html-italic">Rq</span> (<b>b</b>).</p>
Full article ">Figure 8
<p>Comparison of <span class="html-italic">FMAD</span> and <span class="html-italic">MIU</span>.</p>
Full article ">Figure 9
<p>Comparison of MIU with RMAD (<b>a</b>) and FMAD with RMAD (<b>b</b>).</p>
Full article ">Figure 10
<p>Surfaces with identical roughness but distinct contours.</p>
Full article ">Figure 11
<p>Comparison of FD with RMAD.</p>
Full article ">Figure 12
<p>Comparison of FD with <span class="html-italic">MIU</span> (<b>a</b>) and FD with <span class="html-italic">FMAD</span> (<b>b</b>).</p>
Full article ">Figure 13
<p>Effects of coating on surface roughness (<b>a</b>) and friction profiles (<b>b</b>).</p>
Full article ">Figure 14
<p>Difference in surface profiles between P&amp;W11 (uncoated) and P&amp;W12 (coated) in the same scan length.</p>
Full article ">
20 pages, 346 KiB  
Article
Finite-Approximate Controllability for Fractional Composite Relaxation Equations with Different Nonlocal Conditions
by Yixing Liang, Zhenbin Fan and Gang Li
Fractal Fract. 2025, 9(2), 122; https://doi.org/10.3390/fractalfract9020122 - 16 Feb 2025
Abstract
In this paper, the finite-approximate controllability for a class of fractional composite relaxation equations with different nonlocal conditions is discussed. Firstly, under the condition that the nonlocal term is compact, the existence of mild solutions to the equations is obtained by employing resolvent [...] Read more.
In this paper, the finite-approximate controllability for a class of fractional composite relaxation equations with different nonlocal conditions is discussed. Firstly, under the condition that the nonlocal term is compact, the existence of mild solutions to the equations is obtained by employing resolvent theory, the variational method, and Schauder’s fixed-point theorem. Moreover, under the assumption that the corresponding linear equation is approximately controllable, the fractional composite relaxation equation with the nonlocal condition is derived to be finite-approximately controllable. Furthermore, the existence of mild solutions and the finite-approximate controllability to the equations are considered for the weaker nonlocal problem. Finally, the example of nonlocal problem is provided to verify the feasibility of the results in this paper. Full article
20 pages, 9964 KiB  
Article
Damage Behaviour and Fractal Characteristics of Underground Openings Under True Triaxial Loading
by Yunfeng Wu, Peng Li, Xiaolou Chi, Baokun Zhou, Erhui Zhang, Youdong Zhu and Changhong Li
Fractal Fract. 2025, 9(2), 121; https://doi.org/10.3390/fractalfract9020121 - 15 Feb 2025
Abstract
In the context of advancements in deep resource development and underground space utilisation, deep underground engineering faces the challenge of investigating the mechanical behaviour of rocks under high-stress conditions. The present study is based on a gold mine, and the bulk ore taken [...] Read more.
In the context of advancements in deep resource development and underground space utilisation, deep underground engineering faces the challenge of investigating the mechanical behaviour of rocks under high-stress conditions. The present study is based on a gold mine, and the bulk ore taken from the mine perimeter rock was processed into two sets of specimens containing semicircular arched roadways with half and full penetrations. The tests were carried out using a true triaxial rock test system. The results indicate that the true triaxial stress–strain curve included stages such as compression density, linear elasticity, yielding, and destructive destabilisation following the peak; the yield point was more pronounced than that in uniaxial and conventional triaxial tests; and the peak stress and strain of the semi-excavation were higher than those of the full excavation. Furthermore, full excavation led to greater deformation along the σ3 direction. The acoustic emission energy showed a sudden increase during the unloading stage, then fluctuated and increased with increasing stress until significant destabilisation occurred. Additionally, increased burial stress in the half-excavation decreased the proportion of tension cracks and shear cracks. Conversely, in semi-excavation, the proportion of tensile cracks decreased, while that of shear cracks increased. However, the opposite was observed in full excavation. In terms of fractal dimension, semi-excavation fragmentation due to stress concentration followed a power distribution, while the mass fragmentation in full excavation followed a random distribution due to uniform stress release. Furthermore, the specimen strength was positively correlated with fragmentation degree, and primary defects also influenced this degree. This study provides a crucial foundation for predicting and preventing rock explosions in deep underground engineering. Full article
Show Figures

Figure 1

Figure 1
<p>Testing of physical parameters of specimens: (<b>a</b>) sample preparation, (<b>b</b>) specimen quality testing, (<b>c</b>) specimen P-wave velocity test.</p>
Full article ">Figure 2
<p>Microstructural characterisation of the materials: (<b>a</b>) polarising microscope micrographs Pl (plagioclase), K (K-feldspar), Bi (black mica), and Q (quartz); (<b>b</b>) results of XRD test analyses.</p>
Full article ">Figure 3
<p>True triaxial test systems: (<b>a</b>) overview of the test loading system, (<b>b</b>) three-way loading unit, (<b>c</b>) control interface of the operating system, (<b>d</b>,<b>e</b>) acoustic emission, (<b>f</b>) equipment hydraulics.</p>
Full article ">Figure 4
<p>Experimental loading path designed at different burial depths: (<b>a</b>) <span class="html-italic">H</span> = 600 m, (<b>b</b>) <span class="html-italic">H</span> = 800 m, (<b>c</b>) <span class="html-italic">H</span> = 1000 m.</p>
Full article ">Figure 5
<p>Stress–strain curves: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 6
<p>Trends in peak strain and strength of two specimens: (<b>a</b>) peak stress variation of <span class="html-italic">σ</span><sub>1</sub>, (<b>b</b>) peak strain variation of <span class="html-italic">σ</span><sub>1</sub>.</p>
Full article ">Figure 7
<p>Acoustic emission characterisation: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 7 Cont.
<p>Acoustic emission characterisation: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 8
<p>Schematic of an average frequency (AF) vs. rise angle (RA) plot showing rock microcrack types.</p>
Full article ">Figure 9
<p>Classification of acoustic emission crack characteristics: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 9 Cont.
<p>Classification of acoustic emission crack characteristics: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 10
<p>Specimen destruction modes: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 11
<p>Granite destructive debris screening results: (<b>a</b>) specimen B1, (<b>b</b>) specimen B2, (<b>c</b>) specimen B3, (<b>d</b>) specimen Q1, (<b>e</b>) specimen Q2, (<b>f</b>) specimen Q3.</p>
Full article ">Figure 12
<p>Mass distribution of rockburst fragments in granite specimens: (<b>a</b>) semi-excavated, (<b>b</b>) fully-excavated.</p>
Full article ">Figure 13
<p>The ln[<span class="html-italic">M</span>(<span class="html-italic">r</span>)/<span class="html-italic">M</span>]-ln[<span class="html-italic">r</span>/<span class="html-italic">R</span>] curves for granite specimens with different excavation schedules: (<b>a</b>) semi-excavated, (<b>b</b>) fully-excavated.</p>
Full article ">
29 pages, 1678 KiB  
Article
A Novel Grey Prediction Model: A Hybrid Approach Based on Extension of the Fractional Order Discrete Grey Power Model with the Polynomial-Driven and PSO-GWO Algorithm
by Baohua Yang, Xiangyu Zeng and Jinshuai Zhao
Fractal Fract. 2025, 9(2), 120; https://doi.org/10.3390/fractalfract9020120 - 15 Feb 2025
Abstract
Background: This study addresses the challenge of predicting data sequences characterized by a mix of partial linearity and partial nonlinearity. Traditional forecasting models often struggle to accurately capture the complex patterns of change within the data. Methods: To this end, this study introduces [...] Read more.
Background: This study addresses the challenge of predicting data sequences characterized by a mix of partial linearity and partial nonlinearity. Traditional forecasting models often struggle to accurately capture the complex patterns of change within the data. Methods: To this end, this study introduces a novel polynomial-driven discrete grey power model (PFDPGM(1,1)) that includes time perturbation parameters, enabling a flexible representation of complex variation patterns in the data. The model aims to determine the accumulation order, nonlinear power exponent, time perturbation parameter, and polynomial degree to minimize the fitting error under various criteria. The estimation of unknown parameters is carried out by leveraging a hybrid optimization algorithm, which integrates Particle Swarm Optimization (PSO) and the Grey Wolf Optimization (GWO) algorithm. Results: To validate the effectiveness of the proposed model, the annual total renewable energy consumption in the BRICS countries is used as a case study. The results demonstrate that the newly constructed polynomial-driven discrete grey power model can adaptively fit and accurately predict data series with diverse trend change characteristics. Conclusions: This study has achieved a significant breakthrough by successfully developing a new forecasting model. This model is capable of handling data sequences with mixed trends effectively. As a result, it provides a new tool for predicting complex data change patterns. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Grey Models)
Show Figures

Figure 1

Figure 1
<p>The transformation relationships between the <span class="html-italic">PFDPGM</span>(1,1) model and the other grey models.</p>
Full article ">Figure 2
<p>Flowchart of the proposed hybrid PSO-GWO algorithm.</p>
Full article ">Figure 3
<p>Renewable energy consumption (excluding hydropower) and growth rate of China from 2013 to 2023 (EJ).</p>
Full article ">Figure 4
<p>The time series of rand generation and noise series with different SNR values.</p>
Full article ">Figure 5
<p>The MAPE of the fitting test in the <span class="html-italic">PFDPGM</span>(1,1) model based on synthetic data under different noise levels.</p>
Full article ">Figure 6
<p>Forecast error of the <span class="html-italic">PFDPGM</span>(1,1) model based on synthetic data under different noise levels.</p>
Full article ">Figure 7
<p>The <span class="html-italic">MAPE</span> of different grey prediction models based on synthetic data under different noise levels.</p>
Full article ">Figure 8
<p>Forecast error of different grey prediction models based on synthetic data under different noise levels.</p>
Full article ">Figure 9
<p>The fitting error of the sixth data by different grey prediction models.</p>
Full article ">
25 pages, 380 KiB  
Article
Existence of Solutions for a Hadamard Fractional Boundary Value Problem at Resonance
by Rodica Luca and Alexandru Tudorache
Fractal Fract. 2025, 9(2), 119; https://doi.org/10.3390/fractalfract9020119 - 14 Feb 2025
Abstract
We explore the existence of solutions for a Hadamard fractional differential equation, subject to nonlocal boundary conditions, which contain Hadamard fractional derivatives and Riemann–Stieltjes integrals. This problem is a resonant one in the sense that the corresponding homogeneous boundary-value problem has nontrivial solutions. [...] Read more.
We explore the existence of solutions for a Hadamard fractional differential equation, subject to nonlocal boundary conditions, which contain Hadamard fractional derivatives and Riemann–Stieltjes integrals. This problem is a resonant one in the sense that the corresponding homogeneous boundary-value problem has nontrivial solutions. In the proof of the main result, we use the Mawhin continuation theorem. Full article
(This article belongs to the Section General Mathematics, Analysis)
25 pages, 4948 KiB  
Article
Fractional Moore–Gibson–Thompson Heat Conduction for Vibration Analysis of Non-Local Thermoelastic Micro-Beams on a Viscoelastic Pasternak Foundation
by Yahya Ahmed, Adam Zakria, Osman Abdalla Adam Osman, Muntasir Suhail and Mohammed Nour A. Rabih
Fractal Fract. 2025, 9(2), 118; https://doi.org/10.3390/fractalfract9020118 - 13 Feb 2025
Abstract
This study aims to investigate the behavior of viscoelastic materials exhibiting complex mechanical behavior characterized by both elastic and viscous properties. They are widely used in various engineering applications, such as structural components, transportation systems, energy storage devices, microelectromechanical systems (MEMS), and earthquake [...] Read more.
This study aims to investigate the behavior of viscoelastic materials exhibiting complex mechanical behavior characterized by both elastic and viscous properties. They are widely used in various engineering applications, such as structural components, transportation systems, energy storage devices, microelectromechanical systems (MEMS), and earthquake research and detection. Accurate modeling of viscoelastic behavior is crucial for predicting its performance under dynamic loading conditions. In this study, we modify the equations governing the thermoelastic resistance to describe the thermal variables of a thermoelastic micro-beam supported by a two-parameter Pasternak viscoelastic foundation by using a fractional Moore–Gibson–Thompson (MGT) model in the context of non-locality. The temperature, bending displacement, and moment were computed and graphically displayed using the Laplace transform method. Different theoretical approaches have been compared in order to explain how the phase delay affects physical phenomena. Numerical results show that the wave fluctuations of variables in thermoelastic micro-beams are slightly smaller for the studied model and that the speed of these plane waves depends on fractional and non-local parameters. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic of the micro-beam supported by two elastic foundations.</p>
Full article ">Figure 2
<p>The temperature <math display="inline"><semantics> <mi>θ</mi> </semantics></math> in different thermoelastic models.</p>
Full article ">Figure 3
<p>The displacement <math display="inline"><semantics> <mi>u</mi> </semantics></math> in different thermoelastic models.</p>
Full article ">Figure 4
<p>The deflection <span class="html-italic">w</span> in different thermoelastic models.</p>
Full article ">Figure 5
<p>The moment <math display="inline"><semantics> <mi>M</mi> </semantics></math> in different thermoelastic models.</p>
Full article ">Figure 6
<p>The temperature change <math display="inline"><semantics> <mi>θ</mi> </semantics></math> under different values of the foundation parameters <span class="html-italic">K</span><sub>1</sub> and <span class="html-italic">K</span><sub>2</sub>.</p>
Full article ">Figure 7
<p>The displacement <span class="html-italic">u</span> under different values of the foundation parameters <span class="html-italic">K</span><sub>1</sub> and <span class="html-italic">K</span><sub>2</sub>.</p>
Full article ">Figure 8
<p>The deflection <span class="html-italic">w</span> under different values of the foundation parameters <span class="html-italic">K</span><sub>1</sub> and <span class="html-italic">K</span><sub>2</sub>.</p>
Full article ">Figure 9
<p>The moment <span class="html-italic">M</span> under different values of the foundation parameters <span class="html-italic">K</span><sub>1</sub> and <span class="html-italic">K</span><sub>2</sub>.</p>
Full article ">Figure 10
<p>The temperature <span class="html-italic">θ</span> with different values of scale parameter <span class="html-italic">ξ</span><sub>1</sub>.</p>
Full article ">Figure 11
<p>The displacement <span class="html-italic">u</span> with different values of scale parameter <span class="html-italic">ξ</span><sub>1</sub>.</p>
Full article ">Figure 12
<p>The deflection <span class="html-italic">w</span> with different values of scale parameter <b><span class="html-italic">ξ</span><sub>1</sub></b>.</p>
Full article ">Figure 13
<p>The moment (<span class="html-italic">M</span>) with different values of scale parameter <b><span class="html-italic">ξ</span><sub>1</sub></b>.</p>
Full article ">Figure 14
<p>The temperature <span class="html-italic">θ</span> with different values of Fraction scale parameter <span class="html-italic">α</span>.</p>
Full article ">Figure 15
<p>The displacement <span class="html-italic">u</span> with different values of Fraction scale parameter <span class="html-italic">α</span>.</p>
Full article ">Figure 16
<p>The deflection <span class="html-italic">w</span> with different values of Fraction scale parameter <span class="html-italic">α</span>.</p>
Full article ">Figure 17
<p>The moment <span class="html-italic">M</span> with different values of Fraction scale parameter <span class="html-italic">α</span>.</p>
Full article ">
25 pages, 2097 KiB  
Article
A Discrete Grey Seasonal Model with Fractional Order Accumulation and Its Application in Forecasting the Groundwater Depth
by Kai Zhang, Lifeng Wu, Kedong Yin, Wendong Yang and Chong Huang
Fractal Fract. 2025, 9(2), 117; https://doi.org/10.3390/fractalfract9020117 - 13 Feb 2025
Abstract
Influenced by the hydrogeological structure and other factors, the change in groundwater depth shows seasonal fluctuation characteristics. Human activities have disrupted the long-term stable pattern of groundwater change, which makes the short-term prediction of groundwater depth important. To cope with the emergence of [...] Read more.
Influenced by the hydrogeological structure and other factors, the change in groundwater depth shows seasonal fluctuation characteristics. Human activities have disrupted the long-term stable pattern of groundwater change, which makes the short-term prediction of groundwater depth important. To cope with the emergence of short-term groundwater prediction scenarios, for the first time, a discrete grey seasonal model with fractional order accumulation is proposed in this paper (FDGSM(1,1)). First, the DGM(1,1) model, which has a relative advantage over fluctuating data, was chosen as the basis for the transformation of the proposed model. Then, the fractional order accumulation operator is used to reduce the seasonal fluctuations in the data series. Finally, grey seasonal variables are introduced to construct the time response function. The proposed model has the basic properties of the traditional grey forecasting model, which is proven to be stable and seasonal. Additionally, the prediction performance of the proposed model is verified in a real scenario of Handan groundwater. This paper expands the seasonal prediction field of the grey prediction model, enriches the research system of the grey system theory and fractional order, and has a positive influence on the short-term prediction of groundwater depth. Full article
Show Figures

Figure 1

Figure 1
<p>Administrative district map of Handan.</p>
Full article ">Figure 2
<p>Flowchart of the FDGSM(1,1) model based on particle swarm optimization algorithm.</p>
Full article ">Figure 3
<p>Shallow groundwater depth in various areas of Handan.</p>
Full article ">Figure 4
<p>Prediction results of shallow groundwater depth in Handan.</p>
Full article ">Figure 5
<p>Deep groundwater depth in Handan.</p>
Full article ">Figure 5 Cont.
<p>Deep groundwater depth in Handan.</p>
Full article ">Figure 6
<p>Forecasted results of deep groundwater depth in Handan.</p>
Full article ">
27 pages, 6767 KiB  
Article
Analysis of the Spatiotemporal Patterns of Water Conservation in the Yangtze River Ecological Barrier Zone Based on the InVEST Model and SWAT-BiLSTM Model Using Fractal Theory: A Case Study of the Minjiang River Basin
by Xianqi Zhang, Jiawen Liu, Jie Zhu, Wanhui Cheng and Yuehan Zhang
Fractal Fract. 2025, 9(2), 116; https://doi.org/10.3390/fractalfract9020116 - 13 Feb 2025
Abstract
The Yangtze River Basin serves as a vital ecological barrier in China, with its water conservation function playing a critical role in maintaining regional ecological balance and water resource security. This study takes the Minjiang River Basin (MRB) as a case study, employing [...] Read more.
The Yangtze River Basin serves as a vital ecological barrier in China, with its water conservation function playing a critical role in maintaining regional ecological balance and water resource security. This study takes the Minjiang River Basin (MRB) as a case study, employing fractal theory in combination with the InVEST model and the SWAT-BiLSTM model to conduct an in-depth analysis of the spatiotemporal patterns of regional water conservation. The research aims to uncover the relationship between the spatiotemporal dynamics of watershed water conservation capacity and its ecosystem service functions, providing a scientific basis for watershed ecological protection and management. Firstly, fractal theory is introduced to quantify the complexity and spatial heterogeneity of natural factors such as terrain, vegetation, and precipitation in the Minjiang River Basin. Using the InVEST model, the study evaluates the water conservation service functions of the research area, identifying key water conservation zones and their spatiotemporal variations. Additionally, the SWAT-BiLSTM model is employed to simulate the hydrological processes of the basin, particularly the impact of nonlinear meteorological variables on hydrological responses, aiming to enhance the accuracy and reliability of model predictions. At the annual scale, it achieved NSE and R2 values of 0.85 during calibration and 0.90 during validation. At the seasonal scale, these values increased to 0.91 and 0.93, and at the monthly scale, reached 0.94 and 0.93. The model showed low errors (RMSE, RSR, RB). The findings indicate significant spatial differences in the water conservation capacity of the Minjiang River Basin, with the upper and middle mountainous regions serving as the primary water conservation areas, whereas the downstream plains exhibit relatively lower capacity. Precipitation, terrain slope, and vegetation cover are identified as the main natural factors affecting water conservation functions, with changes in vegetation cover having a notable regulatory effect on water conservation capacity. Fractal dimension analysis reveals a distinct spatial complexity in the ecosystem structure of the study area, which partially explains the geographical distribution characteristics of water conservation functions. Furthermore, simulation results based on the SWAT-BiLSTM model show an increasingly significant impact of climate change and human activities on the water conservation functions of the Minjiang River Basin. The frequent occurrence of extreme climate events, in particular, disrupts the hydrological processes of the basin, posing greater challenges for water resource management. Model validation demonstrates that the SWAT model integrated with BiLSTM achieves high accuracy in capturing complex hydrological processes, thereby better supporting decision-makers in formulating scientific water resource management strategies. Full article
Show Figures

Figure 1

Figure 1
<p>Location of the study area.</p>
Full article ">Figure 2
<p>LSTM model.</p>
Full article ">Figure 3
<p>Technical flow chart.</p>
Full article ">Figure 4
<p>Increases or decreases in land use by type.</p>
Full article ">Figure 5
<p>Land use transfer chord map.</p>
Full article ">Figure 6
<p>Space segmentation (Numbers are subbasin subdivision serial numbers).</p>
Full article ">Figure 7
<p>Module mechanism diagram.</p>
Full article ">Figure 8
<p>Fractal dimension calculation results.</p>
Full article ">Figure 9
<p>Results of the regional water yield and water conservation analysis.</p>
Full article ">Figure 10
<p>Comparison of runoff volume during the calibration and validation periods with the results from different model simulations: red line is the actual value, blue line is the SWAT-BiLSTM simulation, green line is the SWAT simulation, black line is the calibration period on the left, and black line is the validation period on the right.</p>
Full article ">
20 pages, 7717 KiB  
Article
Dynamic Analysis and Implementation of FPGA for a New 4D Fractional-Order Memristive Hopfield Neural Network
by Fei Yu, Shankou Zhang, Dan Su, Yiya Wu, Yumba Musoya Gracia and Huige Yin
Fractal Fract. 2025, 9(2), 115; https://doi.org/10.3390/fractalfract9020115 - 13 Feb 2025
Abstract
Memristor-based fractional-order chaotic systems can record information from the past, present, and future, and describe the real world more accurately than integer-order systems. This paper proposes a novel memristor model and verifies its characteristics through the pinched loop (PHL) method. Subsequently, a new [...] Read more.
Memristor-based fractional-order chaotic systems can record information from the past, present, and future, and describe the real world more accurately than integer-order systems. This paper proposes a novel memristor model and verifies its characteristics through the pinched loop (PHL) method. Subsequently, a new fractional-order memristive Hopfield neural network (4D-FOMHNN) is introduced to simulate induced current, accompanied by Caputo’s definition of fractional order. An Adomian decomposition method (ADM) is employed for system solution. By varying the parameters and order of the 4D-FOMHNN, rich dynamic behaviors including transient chaos, chaos, and coexistence attractors are observed using methods such as bifurcation diagrams and Lyapunov exponent analysis. Finally, the proposed FOMHNN system is implemented on a field-programmable gate array (FPGA), and the oscilloscope observation results are consistent with the MATLAB numerical simulation results, which further validate the theoretical analysis of the FOMHNN system and provide a theoretical basis for its application in the field of encryption. Full article
(This article belongs to the Special Issue Analysis and Modeling of Fractional-Order Dynamical Networks)
Show Figures

Figure 1

Figure 1
<p>The voltage–current trajectory diagram of Equation (<a href="#FD9-fractalfract-09-00115" class="html-disp-formula">9</a>).</p>
Full article ">Figure 2
<p>The topology of the HNN model based on memristors.</p>
Full article ">Figure 3
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>0.59</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The periodic time-domain waveform of transient chaos and phase diagram of transient chaos and coexisting attractors.</p>
Full article ">Figure 5
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>0.61</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The periodic time-domain waveform of transient chaos and phase diagram of transient chaos and coexisting attractors.</p>
Full article ">Figure 7
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>1.74</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The phase diagram of attractors.</p>
Full article ">Figure 9
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>2.05</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Lyapunov exponent spectrum and bifurcation diagram of <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Lyapunov exponent spectrum and bifurcation diagram of <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 12 Cont.
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 13
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 13 Cont.
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">
32 pages, 9056 KiB  
Article
Fractal Dimension Time Series and Interaction Between Entropic Surfaces of Urban Meteorology and Pollutants in a Geographic Basin: Dynamic Effects, Thermal Flows and Anomalous Diffusion
by Patricio Pacheco Hernández, Eduardo Mera Garrido and Gustavo Navarro Ahumada
Fractal Fract. 2025, 9(2), 114; https://doi.org/10.3390/fractalfract9020114 - 13 Feb 2025
Abstract
In three periods of 3.25 years each, and at the same six different heights of a basin geomorphology, measurements were made, in the form of a time series, of urban meteorological variables (MV) (temperature, relative humidity, wind speed magnitude) and pollutants (P) (PM [...] Read more.
In three periods of 3.25 years each, and at the same six different heights of a basin geomorphology, measurements were made, in the form of a time series, of urban meteorological variables (MV) (temperature, relative humidity, wind speed magnitude) and pollutants (P) (PM10, PM2.5, and CO). It is verified that each time series has a fractal dimension, and the value of its maximum Kolmogorov entropy is determined. These values generate two entropic surfaces according to measurement periods: one for urban meteorology and another for pollutants. The calculation of the gradient to each entropic surface multiplied by the average temperature of the period according to the measurement location gives, approximately, the average entropic force for each location. Combining these results with an analysis of the ratio between urban meteorological entropies and pollutant entropies, it is shown that in a basin morphology the entropic forces associated with pollutants are dominant, a source of heat, and there is a high probability that they produce extreme events. This condition also favors anomalous subdiffusion. Full article
Show Figures

Figure 1

Figure 1
<p>Temperature profile according to height in Santiago of Chile [<a href="#B11-fractalfract-09-00114" class="html-bibr">11</a>], day (3 h) and night (7 h) data recording. Various measurement sources were considered.</p>
Full article ">Figure 2
<p>Surface of maximum entropies, S (x, y, z), of time series for a period of measurements at different locations and associated entropic forces, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">F</mi> </mrow> <mo>→</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">C</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The city of Santiago de Chile is in a basin geomorphology. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 4
<p>Distribution of the 28,463 hourly wind speed (WS) magnitudes for the period 2019–2022 for the Pudahuel commune. The Figure exhibits a decay in wind speed magnitude. It is observed that the 0 on the horizontal axis corresponds to 1 January 2019 and the last data 28,463 on the horizontal axis corresponds to 31 March 2022.</p>
Full article ">Figure 5
<p>Representation in a volume element of heat dissipation through <math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi mathvariant="normal">∅</mi> </mrow> <mrow> <mi mathvariant="sans-serif">ρ</mi> <msub> <mrow> <mi mathvariant="normal">c</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> <mo> </mo> </mrow> </semantics></math> (the heat dissipation through shear stress), S<sub>c</sub> (energy variation of chemical reactions (black and white circles)) and R (thermal radiation(red arrows)).</p>
Full article ">Figure 6
<p>Differential entropic layer volume and flux, <math display="inline"><semantics> <mrow> <mover> <mi mathvariant="normal">S</mi> <mn>.</mn> </mover> </mrow> </semantics></math>, from pollutants to urban meteorology.</p>
Full article ">Figure 7
<p>Each trend curve of the discriminant Δ is characterized by the measurement periods, x: 2010/2013; Δ: 2017/2020; □: 2019/2022. The maximum values of series 2 and 3 would indicate the emergence of extreme events in the most recent periods.</p>
Full article ">Figure 8
<p>Represents the entropic surface due to urban meteorology for the period 2010–2013, with maximum entropic thickness of 0.255. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 9
<p>Represents the entropic surface due to urban meteorology for the period 2017–2020, with a maximum entropic thickness of 0.291. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 10
<p>Represents the entropic surface due to urban meteorology for the period 2019–2022, with a maximum entropic thickness of 0.076. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 11
<p>Represents the entropic surface due to pollutants for the period 2010–2013, with maximum entropic thickness of 0.332. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 12
<p>Represents the entropic surface due to pollutants for the period 2017–2020, with a maximum entropic thickness of 0.482. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 13
<p>Represents the entropic surface due to pollutants for the period 2019–2022, with a maximum entropic thickness of 0.187. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 14
<p>Represents, for the period 2010/2013, the effect of the S<sub>K</sub>,<sub>P</sub> on the S<sub>K</sub>,<sub>MV</sub>. The coloring covers a spectrum ranging from green, with a lower effect of pollutants, to deep red, with a higher effect of pollutants. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 15
<p>For the period 2017/2020, the effect of the S<sub>K</sub>,<sub>P</sub> on the S<sub>K</sub>,<sub>MV</sub> is represented. The coloring covers a spectrum ranging from green, with a lower effect of pollutants, to deep red, with a greater effect of pollutants. The latter case shows a shift of pollution to the south, which is consistent with areas that increased their population from 500,000 to more than one million inhabitants (EMS) with intensive urban densification in a very short period. The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 16
<p>For the period 2019/2022, the effect of the S<sub>K</sub>,<sub>P</sub> on the S<sub>K</sub>,<sub>MV</sub> is represented. As in the previous figures, the coloring covers a spectrum ranging from green, with a lower effect of pollutants, to deep red, with a greater effect of pollutants. This last period shows the continuity, dynamics, and transfer of the pollution process to new areas. The red color shows the spread of pollution to areas that have intensified urban densification, high-rise buildings (in EMN, EML) and have seen an increase in population in a very short period (EMS). The red lines represent the main roads that run through the city. The blue lines represent natural water tributaries.</p>
Full article ">Figure 17
<p>Data record according to x: 2010/2013; Δ: 2017/2020; □: 2019/2022 for C<sub>K</sub> with the height (can be compared with <a href="#fractalfract-09-00114-f001" class="html-fig">Figure 1</a>).</p>
Full article ">Figure 18
<p>Shows the trend towards higher probability according to more extreme polluting events, towards the left of the figure, for the periods x: 2010/2013; Δ: 2017/2020; □: 2019/2022.</p>
Full article ">Figure A1
<p>(<b>a</b>) EML (h = 784 msln = constant), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.044</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.081</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>0.828</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) EMM (h = 709 msln = constant), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.0485</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.065</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>0.920</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure A2
<p>(<b>a</b>) EMN (h = 570 msln = constant) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.0945</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.2335</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>0.685</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) EMO (h = 469 msln = constant), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mn>0.1845</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.9335</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>1.738</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math></p>
Full article ">Figure A3
<p>(<b>a</b>) EMS (h = 698 msln = constant), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mn>0.0285</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>−</mo> <mn>0.287</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>1.195</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) EMV (h = 485 msln = constant), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">K</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.0805</mn> <msup> <mrow> <mi mathvariant="normal">p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.2225</mn> <mi mathvariant="normal">p</mi> <mo>+</mo> <mn>0.692</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math></p>
Full article ">
14 pages, 317 KiB  
Article
The Stability and Global Attractivity of Fractional Differential Equations with the Ψ-Hilfer Derivative in the Context of an Economic Recession
by Mdi Begum Jeelani, Farva Hafeez and Nouf Abdulrahman Alqahtani
Fractal Fract. 2025, 9(2), 113; https://doi.org/10.3390/fractalfract9020113 - 13 Feb 2025
Abstract
Fractional differential equations (FDEs) are employed to describe the physical universe. This article investigates the attractivity of solutions for FDEs and Ulam–Hyers–Rassias stability, involving the Ψ-Hilfer fractional derivative. Important results are presented using Krasnoselskii’s fixed point theorem, which provides a framework for [...] Read more.
Fractional differential equations (FDEs) are employed to describe the physical universe. This article investigates the attractivity of solutions for FDEs and Ulam–Hyers–Rassias stability, involving the Ψ-Hilfer fractional derivative. Important results are presented using Krasnoselskii’s fixed point theorem, which provides a framework for analyzing the stability and attractivity of solutions. Novel results on the attractiveness of solutions to nonlinear FDEs in Banach spaces are derived, and the existence of solutions, stability properties, and behavior of system equilibria are examined. The application of Ψ-Hilfer fractional derivatives in modeling financial crises is explored, and a financial crisis model using Ψ-Hilfer fractional derivatives is proposed, providing more general and global results. Furthermore, we also perform a numerical analysis to validate our theoretical findings. Full article
(This article belongs to the Special Issue Fractional Calculus and Nonlinear Analysis: Theory and Applications)
13 pages, 3663 KiB  
Article
Scale-Free Dynamics of Resting-State fMRI Microstates
by Nurhan Erbil and Gopikrishna Deshpande
Fractal Fract. 2025, 9(2), 112; https://doi.org/10.3390/fractalfract9020112 - 12 Feb 2025
Abstract
The functional significance of RSNs is examined via simultaneous EEG-fMRI studies on the basis of the relation of RSNs with different frequency bands of EEG and EEG-based microstate analysis. In this study, we try to identify RSNs from microstates of cortical surface maps [...] Read more.
The functional significance of RSNs is examined via simultaneous EEG-fMRI studies on the basis of the relation of RSNs with different frequency bands of EEG and EEG-based microstate analysis. In this study, we try to identify RSNs from microstates of cortical surface maps of the BOLD signal. In addition, the scale-free dynamics of these map sequences were also examined. The structural and resting state functional MRI images were acquired on a 3T scanner with three different fMRI acquisition protocols from seven subjects. Microstate segmentations from EEG, fMRI, and simulated data were evaluated. Wavelet-based fractal analysis was performed on map sequence time series and the Hurst exponent (H) was calculated. By using HRF-deconvolved fMRI time series, the effect of the HRF (hemodynamic response function) on fMRI-derived microstates was tested. The fMRI map sequence has a system with a memory system smaller than 16 s. When the HRF was deconvolved, the duration of the memory of the system was reduced to 4 s. On the other hand, the results of simulation data indicated that these systems are specific to the resting state BOLD signal. Similar to EEG microstates, fMRI also has microstates and both of them have scale-free dynamics. fMRI microstate dynamics have two different components, one is related to the HRF and the other is independent of the HRF. The significance of fMRI microstates and their relation with RSNs need to be further studied. Full article
Show Figures

Figure 1

Figure 1
<p>EEG microstate maps of a representative subject for ‘eyes closed’ (<b>a</b>) and ‘eyes open’ (<b>b</b>) conditions.</p>
Full article ">Figure 2
<p>fMRI microstate maps of a representative subject for TR = 1 s, TR = 0.6 s, and TR = 0.2 s for the ‘eyes open’ condition.</p>
Full article ">Figure 3
<p>Random walk embedding curves of EEG (<b>a</b>) and fMRI (TR = 1) (<b>b</b>) microstate sequences of a representative subject. X-axis represents time in seconds. Each colored line represents a different bipartioning combination.</p>
Full article ">Figure 4
<p>The scaling diagram (scale versus wavelet coefficients in log scale) of EEG (<b>a</b>) and fMRI (<b>b</b>) time series. The different lines represent different subjects. The red line represents the fitted line representing the group. The slope of the red line represents the Hurst exponent of the corresponding data set at the group level.</p>
Full article ">Figure 5
<p>Scale (in seconds) versus H curves of Gaussian noise convolved and deconvolved with HRF. Each point represents the median of H (calculated across subjects) at any given scale whereas vertical lines (error bars) show the upper and the lower 5th percentiles for TR = 1 s (<b>a</b>), TR = 0.6 s (<b>b</b>) and TR = 0.2 s (<b>c</b>).</p>
Full article ">Figure 6
<p>Scale versus H curves of EEG (millisecond), deconvolved fMRI, and fMRI data (seconds). The results shown were estimated by combining data from eyes open and closed conditions. Each point represents the median of H (calculated across subjects) at any given scale, whereas vertical lines (error bars) show the upper and the lower 5th percentiles for TR = 1 s (<b>a</b>), TR = 0.6 s (<b>b</b>), and TR = 0.2 s (<b>c</b>).</p>
Full article ">
17 pages, 13169 KiB  
Article
Research on Nonlinear Dynamic Characteristics of Fractional Order Resonant DC-DC Converter Based on Sigmoid Function
by Lingling Xie and Guangwei Xu
Fractal Fract. 2025, 9(2), 111; https://doi.org/10.3390/fractalfract9020111 - 12 Feb 2025
Abstract
Resonant DC-DC converters are a class of strongly nonlinear systems with rich nonlinear phenomena. In order to describe the dynamic behavior of resonant DC-DC converters more accurately, the nonlinear dynamic behavior of fractional order (FO) resonant DC-DC converters is studied deeply, based on [...] Read more.
Resonant DC-DC converters are a class of strongly nonlinear systems with rich nonlinear phenomena. In order to describe the dynamic behavior of resonant DC-DC converters more accurately, the nonlinear dynamic behavior of fractional order (FO) resonant DC-DC converters is studied deeply, based on the fractional order nature of inductance and capacitance. Firstly, a Sigmoid function state model of the fractional order resonant converter is established and integrated with phase shift control. A discrete model of the converter is established by using an estimation correction algorithm. Secondly, the mathematical and equivalent circuit models of the fractional order converter are constructed in MATLAB. The circuit simulations and the experimental results verified the correctness of the Sigmoid function model. Thirdly, the effect of circuit parameters on the converter’s nonlinear dynamics is analyzed using bifurcation diagrams, time-domain waveforms, and phase diagrams. Finally, an experimental platform is established to validate the theoretical analysis. The results demonstrate that increasing the proportional coefficient and load resistance destabilizes the system, leading to rich nonlinear phenomena such as bifurcation and chaos. Compared to integer order converters, fractional order converters offer a broader stable operating range. Fractional order models can more accurately reflect the nonlinear dynamic characteristics of resonant DC-DC converters. Full article
Show Figures

Figure 1

Figure 1
<p>y = tanh(bx) curve.</p>
Full article ">Figure 2
<p>y = tanh[bsin(ωt)] curve.</p>
Full article ">Figure 3
<p>Topology of FO resonant DC-DC converter.</p>
Full article ">Figure 4
<p>Operating mode of FO resonant converter. (<b>a</b>) Model 1; (<b>b</b>) Model 2; (<b>c</b>) Model 3; (<b>d</b>) Model 4.</p>
Full article ">Figure 5
<p>Step voltage waveform.</p>
Full article ">Figure 6
<p>Simulation model of FO resonant DC-DC converter. (<b>a</b>) Mathematical model; (<b>b</b>) circuit model.</p>
Full article ">Figure 7
<p>Simulation waveform of converter. (<b>a</b>) Inductive resonance current; (<b>b</b>) capacitive resonant voltage; (<b>c</b>) output voltage.</p>
Full article ">Figure 8
<p>The bifurcation diagram of FO resonant DC-DC converter with k<sub>p</sub> as the bifurcation parameter.</p>
Full article ">Figure 9
<p>The bifurcation diagram of the IO resonant DC-DC converter transformer with k<sub>p</sub> as the bifurcation parameter.</p>
Full article ">Figure 10
<p>V-I phase diagram at different k<sub>p</sub> values. (<b>a</b>) k<sub>p</sub> = 2.5 × 10<sup>−5</sup>; (<b>b</b>) k<sub>p</sub> = 7.5 × 10<sup>−5</sup>.</p>
Full article ">Figure 11
<p>Time domain waveform at different k<sub>p</sub> values.</p>
Full article ">Figure 12
<p>The bifurcation diagram of the FO resonant DC-DC converter with R as the bifurcation parameter.</p>
Full article ">Figure 13
<p>The bifurcation diagram of IO resonant DC-DC converter with R as the bifurcation parameter.</p>
Full article ">Figure 14
<p>V-I phase diagram at R = 80 Ω.</p>
Full article ">Figure 15
<p>Time domain waveform at R = 80 Ω.</p>
Full article ">Figure 16
<p>The bifurcation diagram of the FO resonant DC-DC converter with the same fractional order as the bifurcation parameter.</p>
Full article ">Figure 17
<p>Approximate diagram of fractional order components. (<b>a</b>) Fractional order inductor; (<b>b</b>) fractional order capacitor.</p>
Full article ">Figure 18
<p>Experimental platform.</p>
Full article ">Figure 19
<p>Time domain waveform and V-I phase diagram of the system at k<sub>p</sub> = 2.5 × 10<sup>−5</sup>. (<b>a</b>) Time domain waveform diagram; (<b>b</b>) V-I phase diagram.</p>
Full article ">Figure 20
<p>Time domain waveform and V-I phase diagram of the system at k<sub>p</sub> = 7.5 × 10<sup>−5</sup>. (<b>a</b>) Time domain waveform diagram; (<b>b</b>) V-I phase diagram.</p>
Full article ">Figure 21
<p>Time domain waveform and V-I phase diagram of the system at R = 80 Ω. (<b>a</b>) Time domain waveform diagram; (<b>b</b>) V-I phase diagram.</p>
Full article ">
17 pages, 300 KiB  
Article
A New Result Regarding Positive Solutions for Semipositone Boundary Value Problems of Fractional Differential Equations
by Yongqing Wang
Fractal Fract. 2025, 9(2), 110; https://doi.org/10.3390/fractalfract9020110 - 12 Feb 2025
Abstract
In this paper, we discuss the positive solutions to a class of semipositone boundary value problems of fractional differential equations. The nonlinearity f(t,x) may be singular at t=0,1 and satisfies [...] Read more.
In this paper, we discuss the positive solutions to a class of semipositone boundary value problems of fractional differential equations. The nonlinearity f(t,x) may be singular at t=0,1 and satisfies f(t,x)a(t)xR(t). We derive some new properties of the Green’s function of the auxiliary problems, and discover the multiplicity and existence of the positive solutions by utilizing the fixed point index theory. Two examples are illustrated to validate the main results. Full article
22 pages, 4476 KiB  
Article
Interspecific Competition of Plant Communities Based on Fractional Order Time Delay Lotka–Volterra Model
by Jun Zhang, Yongzhi Liu, Juhong Liu, Caiqin Zhang and Jingyi Chen
Fractal Fract. 2025, 9(2), 109; https://doi.org/10.3390/fractalfract9020109 - 12 Feb 2025
Abstract
A novel time delay Lotka–Volterra (TDLV) model was developed by extending the concept of time delay from integer order to fractional order. The TDLV model was constructed to simulate the dynamics of aboveground biomass per individual of three dominant herbaceous plant species ( [...] Read more.
A novel time delay Lotka–Volterra (TDLV) model was developed by extending the concept of time delay from integer order to fractional order. The TDLV model was constructed to simulate the dynamics of aboveground biomass per individual of three dominant herbaceous plant species (Leymus chinensis, Agropyron cristatum, and Stipa grandis) in the typical grasslands of Inner Mongolia. Comparative analysis indicated that the TDLV model outperforms candidate models, such as Logistic, GM(1,1), GM(1,N), DGM(2,1), and Lotka–Volterra model, in terms of all fitting criteria. The results demonstrate that interspecies competition exhibits clear feedback and suppression effects, with Leymus chinensis playing a central role in regulating community dynamics. The system is locally stable and eventually converges to an equilibrium point, though Stipa grandis maintains relatively low biomass, requiring further monitoring. Time delays are prevalent in the system, influencing dynamic processes and causing damping oscillations as populations approach equilibrium. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Grey Models)
Show Figures

Figure 1

Figure 1
<p>Single plant biomass of <span class="html-italic">Leymus chinensis</span>, <span class="html-italic">Agropyron cristatum</span>, and <span class="html-italic">Stipa grandis</span> during the growing period.</p>
Full article ">Figure 2
<p>The impact of different time lags between <span class="html-italic">Leymus chinensis</span>, <span class="html-italic">Agropyron cristatum</span>, and <span class="html-italic">Stipa grandis</span> based on MAPE.</p>
Full article ">Figure 3
<p>The impact of different time lags between <span class="html-italic">Agropyron cristatum</span>, <span class="html-italic">Leymus chinensis</span>, and <span class="html-italic">Stipa grandis</span> based on MAPE.</p>
Full article ">Figure 4
<p>The impact of different time lags between <span class="html-italic">Stipa grandis</span>, <span class="html-italic">Leymus chinensis</span>, and <span class="html-italic">Agropyron cristatum</span> based on MAPE.</p>
Full article ">Figure 5
<p>Fitting performance of each model for the single plant biomass of <span class="html-italic">Leymus chinensis</span>.</p>
Full article ">Figure 6
<p>Fitting performance of each model for the single plant biomass of <span class="html-italic">Agropyron cristatum</span>.</p>
Full article ">Figure 7
<p>Fitting performance of each model for the single plant biomass of <span class="html-italic">Stipa grandis</span>.</p>
Full article ">
19 pages, 370 KiB  
Article
On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
by Hasan Barsam, Somayeh Mirzadeh, Yamin Sayyari and Loredana Ciurdariu
Fractal Fract. 2025, 9(2), 108; https://doi.org/10.3390/fractalfract9020108 - 12 Feb 2025
Abstract
The main goal of this study is to provide new q-Fejer and q-Hermite-Hadamard type integral inequalities for uniformly convex functions and functions whose second quantum derivatives in absolute values are uniformly convex. Two basic inequalities as power mean inequality and Holder’s [...] Read more.
The main goal of this study is to provide new q-Fejer and q-Hermite-Hadamard type integral inequalities for uniformly convex functions and functions whose second quantum derivatives in absolute values are uniformly convex. Two basic inequalities as power mean inequality and Holder’s inequality are used in demonstrations. Some particular functions are chosen to illustrate the investigated results by two examples analyzed and the result obtained have been graphically visualized. Full article
Show Figures

Figure 1

Figure 1
<p>An example for the inequality (<a href="#FD3-fractalfract-09-00108" class="html-disp-formula">3</a>) from Theorem 5 for function <span class="html-italic">g</span> with uniformly convex right <span class="html-italic">q</span>-derivative of order two, <math display="inline"><semantics> <mrow> <mmultiscripts> <mi>D</mi> <mi>q</mi> <mn>2</mn> <mprescripts/> <none/> <mn>2</mn> </mmultiscripts> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.277778em"/> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, with modulus <math display="inline"><semantics> <mi mathvariant="sans-serif">Φ</mi> </semantics></math>, when <math display="inline"><semantics> <mi mathvariant="sans-serif">Φ</mi> </semantics></math> is as in Lemma 1 (b). The magenta line in graphic represents the function of the right member of inequality (<a href="#FD3-fractalfract-09-00108" class="html-disp-formula">3</a>) and the green line represents the function of the left member of inequality (<a href="#FD3-fractalfract-09-00108" class="html-disp-formula">3</a>).</p>
Full article ">
21 pages, 1488 KiB  
Article
Exploring Fractional Damped Burgers’ Equation: A Comparative Analysis of Analytical Methods
by Azzh Saad Alshehry and Rasool Shah
Fractal Fract. 2025, 9(2), 107; https://doi.org/10.3390/fractalfract9020107 - 10 Feb 2025
Abstract
This investigation focuses on the study of the fractional damped Burgers’ equation by using the natural residual power series method coupled with the new iteration transform method in the context of the Caputo operator. The equation of Burgers under the damped context is [...] Read more.
This investigation focuses on the study of the fractional damped Burgers’ equation by using the natural residual power series method coupled with the new iteration transform method in the context of the Caputo operator. The equation of Burgers under the damped context is useful when studying one-dimensional nonlinear waves involving damping effect, and is used in fluid dynamics, among other applications. Two new mathematical methods that can be used to obtain an approximate solution to this complex non-linear problem are the natural residual power series method and the new iteration transform method. Therefore, it can be deduced that the Caputo operator aids in modeling of the fractional derivatives, as it provides a better description of the physical realities. Thus, the objective of the present work is to advance the knowledge accumulated on the behavior of solutions to the damped Burgers’ equation, as well as to check the applicability of the proposed approaches to other nonlinear fractional partial differential equations. Full article
(This article belongs to the Special Issue Fractional Systems, Integrals and Derivatives: Theory and Application)
Show Figures

Figure 1

Figure 1
<p>Different fractional order comparison of NRPSM solution (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 1 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> to 5.</p>
Full article ">Figure 2
<p>Subfigure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Different fractional order comparison (<b>a</b>) with three (<b>b</b>) two dimensional of NRPSM solution of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Different fractional order comparison (<b>a</b>) with three (<b>b</b>) two dimensional of NRPSM solution of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Comparison of various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 1 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> to 5.</p>
Full article ">Figure 7
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Comparison of various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Comparison various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 6533 KiB  
Article
Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network
by Yujie Shen, Zhaowei Li, Xiang Tian, Kai Ji and Xiaofeng Yang
Fractal Fract. 2025, 9(2), 106; https://doi.org/10.3390/fractalfract9020106 - 10 Feb 2025
Abstract
In order to break the bottleneck of the integer-order transfer function in vehicle ISD (inerter-spring-damper) suspension design, a positive real synthesis design method of vehicle mechatronic ISD suspension based on the fractional-order biquadratic transfer function is proposed. The emergence of the fractional-order components [...] Read more.
In order to break the bottleneck of the integer-order transfer function in vehicle ISD (inerter-spring-damper) suspension design, a positive real synthesis design method of vehicle mechatronic ISD suspension based on the fractional-order biquadratic transfer function is proposed. The emergence of the fractional-order components disrupts the equivalence relationship between the passivity of components and the positive realness of integer-order transfer functions in traditional networks. In this paper, the positive real condition of the fractional-order biquadratic transfer function is given. Then, a quarter dynamic model of the vehicle mechatronic ISD suspension is established, and the parameters of the fractional-order biquadratic transfer function and vehicle suspension are obtained by an NSGA-II multi-objective genetic algorithm. Moreover, the structure of the external circuit and the parameters of the electrical components are obtained by the fractional-order passive network synthesis theory. The simulation results show that under the condition of random road input and vehicle speed of 20 m/s, the root-mean-square (RMS) value of the vehicle body acceleration and the dynamic tire load of the fractional-order ISD suspension are reduced by 7.98% and 18.75% compared with the traditional passive suspension, while under the same condition, the integer-order ISD suspension can only reduce by 5.34% and 16.07%, respectively. The results show that employing a fractional-order biquadratic electrical network in the vehicle mechatronic ISD suspension enhances vibration isolation performance compared with the suspension using an integer-order biquadratic electrical network. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Systems to Automatic Control)
Show Figures

Figure 1

Figure 1
<p>Model of vehicle suspension.</p>
Full article ">Figure 2
<p>Schematic diagram of the mechatronic inerter.</p>
Full article ">Figure 3
<p>Flowchart of NSGA-II.</p>
Full article ">Figure 4
<p>Pareto front.</p>
Full article ">Figure 5
<p>Optimal electrical structure.</p>
Full article ">Figure 6
<p>(<b>a</b>) Comparison of RMS values of vehicle body acceleration at speeds ranging from 10 m/s to 30 m/s. (<b>b</b>) Comparison of vehicle body acceleration at the speed of 20 m/s.</p>
Full article ">Figure 7
<p>(<b>a</b>) Comparison of RMS values of suspension working space at speeds ranging from 10 m/s to 30 m/s. (<b>b</b>) Comparison of suspension working space at the speed of 20 m/s.</p>
Full article ">Figure 8
<p>(<b>a</b>) Comparison of RMS values of dynamic tire load at speeds ranging from 10 m/s to 30 m/s. (<b>b</b>) Comparison of dynamic tire load at the speed of 20 m/s.</p>
Full article ">Figure 9
<p>Frequency responses of vehicle body acceleration.</p>
Full article ">Figure 10
<p>Frequency responses of suspension working space.</p>
Full article ">Figure 11
<p>Frequency responses of dynamic tire load.</p>
Full article ">Figure 12
<p>Radar diagram of low and high-frequency peak of suspensions.</p>
Full article ">Figure 13
<p>The impulse response of vehicle body acceleration.</p>
Full article ">Figure 14
<p>The impulse response of suspension working space.</p>
Full article ">Figure 15
<p>The impulse response of dynamic tire load.</p>
Full article ">Figure A1
<p>References.</p>
Full article ">
19 pages, 338 KiB  
Article
Exploring Impulsive and Delay Differential Systems Using Piecewise Fractional Derivatives
by Hicham Saber, Arshad Ali, Khaled Aldwoah, Tariq Alraqad, Abdelkader Moumen, Amer Alsulami and Nidal Eljaneid
Fractal Fract. 2025, 9(2), 105; https://doi.org/10.3390/fractalfract9020105 - 10 Feb 2025
Abstract
This paper investigates a general class of variable-kernel discrete delay differential equations (DDDEs) with integral boundary conditions and impulsive effects, analyzed using Caputo piecewise derivatives. We establish results for the existence and uniqueness of solutions, as well as their stability. The existence of [...] Read more.
This paper investigates a general class of variable-kernel discrete delay differential equations (DDDEs) with integral boundary conditions and impulsive effects, analyzed using Caputo piecewise derivatives. We establish results for the existence and uniqueness of solutions, as well as their stability. The existence of at least one solution is proven using Schaefer’s fixed-point theorem, while uniqueness is established via Banach’s fixed-point theorem. Stability is examined through the lens of Ulam–Hyers (U-H) stability. Finally, we illustrate the application of our theoretical findings with a numerical example. Full article
24 pages, 619 KiB  
Article
Nonlinear Fractional Evolution Control Modeling via Power Non-Local Kernels: A Generalization of Caputo–Fabrizio, Atangana–Baleanu, and Hattaf Derivatives
by F. Gassem, Mohammed Almalahi, Osman Osman, Blgys Muflh, Khaled Aldwoah, Alwaleed Kamel and Nidal Eljaneid
Fractal Fract. 2025, 9(2), 104; https://doi.org/10.3390/fractalfract9020104 - 8 Feb 2025
Abstract
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. [...] Read more.
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. It uniquely features a tunable power parameter “p”, providing enhanced control over the representation of memory effects compared to traditional derivatives with fixed kernels. Utilizing the fixed-point theory, we rigorously establish the existence and uniqueness of solutions for these systems under appropriate conditions. Furthermore, we prove the Hyers–Ulam stability of the system, demonstrating its robustness against small perturbations. We complement this framework with a practical numerical scheme based on Lagrange interpolation polynomials, enabling efficient computation of solutions. Examples illustrating the model’s applicability, including symmetric cases, are supported by graphical representations to highlight the approach’s versatility. These findings address a significant gap in the literature and pave the way for further research in fractional calculus and its diverse applications. Full article
Show Figures

Figure 1

Figure 1
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.75</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Graphical presentations of generalized Hattaf fractional model (<a href="#FD24-fractalfract-09-00104" class="html-disp-formula">24</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> using fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.35</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Graphical presentations of Atangana–Baleanu fractional model (<a href="#FD25-fractalfract-09-00104" class="html-disp-formula">25</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.55</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math>, and weight function <math display="inline"><semantics> <mrow> <mi>w</mi> <mfenced open="(" close=")"> <mi>σ</mi> </mfenced> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 7
<p>Graphical presentations of Caputo–Fabrizio fractional model (<a href="#FD26-fractalfract-09-00104" class="html-disp-formula">26</a>) for <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> <mo>,</mo> </mrow> </semantics></math> with fractional order <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.55</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and weight function <math display="inline"><semantics> <mrow> <mi>w</mi> <mfenced open="(" close=")"> <mi>σ</mi> </mfenced> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">
10 pages, 286 KiB  
Article
A Short Note on Fractal Interpolation in the Space of Convex Lipschitz Functions
by Fatin Gota and Peter Massopust
Fractal Fract. 2025, 9(2), 103; https://doi.org/10.3390/fractalfract9020103 - 6 Feb 2025
Abstract
In this short note, we consider fractal interpolation in the Banach space Vθ(I) of convex Lipschitz functions defined on a compact interval IR. To this end, we define an appropriate iterated function system and exhibit the [...] Read more.
In this short note, we consider fractal interpolation in the Banach space Vθ(I) of convex Lipschitz functions defined on a compact interval IR. To this end, we define an appropriate iterated function system and exhibit the associated Read–Bajraktarević operator T. We derive conditions for which T becomes a Ratkotch contraction on a closed subspace of Vθ(I), thus establishing the existence of fractal functions of class Vθ(I). An example illustrates the theoretical findings. Full article
(This article belongs to the Special Issue Fixed Point Theory and Fractals)
35 pages, 2025 KiB  
Article
Fractional Calculus for Type 2 Interval-Valued Functions
by Mostafijur Rahaman, Dimplekumar Chalishajar, Kamal Hossain Gazi, Shariful Alam, Soheil Salahshour and Sankar Prasad Mondal
Fractal Fract. 2025, 9(2), 102; https://doi.org/10.3390/fractalfract9020102 - 5 Feb 2025
Abstract
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type [...] Read more.
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type 2 interval delineated vague encompassment. The exploration of fractional calculus is continued with the manifestation of Riemann–Liouville and Caputo fractional derivatives in the cited phenomenon. In addition, Type 2 interval Laplace transformation is proposed in this text. Conclusively, a mathematical model regarding economic lot maintenance is analyzed as a conceivable implementation of this theoretical advancement. Full article
(This article belongs to the Special Issue Mathematical and Physical Analysis of Fractional Dynamical Systems)
Show Figures

Figure 1

Figure 1
<p><inline-formula><mml:math id="mm645"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm646"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm647"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p><inline-formula><mml:math id="mm648"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm649"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm650"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p><inline-formula><mml:math id="mm651"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm652"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm653"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 4
<p><inline-formula><mml:math id="mm654"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm655"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm656"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 5
<p><inline-formula><mml:math id="mm657"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm658"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm659"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 6
<p><inline-formula><mml:math id="mm660"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm661"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm662"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 7
<p><inline-formula><mml:math id="mm663"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm664"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm665"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 8
<p><inline-formula><mml:math id="mm666"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm667"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm668"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">
Previous Issue
Next Issue
Back to TopTop