Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values
<p>Schematic of the architecture of the MLP. The figure shows three layers of neurons: input, hidden and output layers.</p> "> Figure 2
<p>Scheme of the architecture of self-organizing maps. This model consists of a single layer of neurons in a discrete lattice called a map. The SOM projects the high-dimensional data into a discrete low-dimensional map.</p> "> Figure 3
<p>Proposed self-organized topological multilayer percepton. In the first stage (<b>a</b>), time series are collected from the monitoring stations. In the second stage (<b>b</b>), the self-organizing maps find similar topologies in each monitoring station (complemented by other clustering methods, such as elbow, Calinski–Harabasz, and gap). In the third stage (<b>c</b>), the SOM projects the time segments, and this generates the formation of clusters. An MLP is trained to predict each unit’s extreme values for the next day. In the fourth stage (<b>d</b>), a combiner of the best results of the previous stage is evaluated.</p> "> Figure 4
<p>Map with the Metropolitan area of Santiago, Chile (SCL), together with the location of the nine pollutant and weather monitoring stations that belong to SINCA.</p> "> Figure 5
<p>Histograms of PM<math display="inline"><semantics> <msub> <mrow/> <mrow> <mn>2.5</mn> </mrow> </msub> </semantics></math> for each monitoring station.</p> "> Figure 6
<p>Boxplot of PM<math display="inline"><semantics> <msub> <mrow/> <mrow> <mn>2.5</mn> </mrow> </msub> </semantics></math> for each monitoring station.</p> "> Figure 7
<p>(<b>a</b>) Elbow method, (<b>b</b>) Calinski-Harabasz index and (<b>c</b>) Gap method to determine the optimal number of clusters. It is observed that the three methods converge in determining that the optimal number of centroids is nine.</p> "> Figure 8
<p>Performance of the models to forecast the 75th percentile. The SOFTMAX gate shows the best performance.</p> "> Figure 9
<p>Performance of the models to forecast the 90th percentile. The BMU-MAX gate shows the best performance.</p> "> Figure 10
<p>Forecasting results obtained by the MLP-Station for each station.</p> "> Figure 11
<p>Forecasting results obtained by the SOM-MLP with the BMU-MAX gate for each monitoring station.</p> ">
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Time Series Forecasting
2.2. Artificial Neural Networks
2.2.1. Multilayer Perceptron
2.2.2. Self-Organizing Maps
3. A Self-Organizing Topological Multilayer Perceptron for Extreme Value Forecasting
- Stage 1. The monitoring station data are combined into one large data set. Then, we proceed to normalize all the records in the range of :This article’s data consist of observations collected hourly, for which 24 samples are available daily. The day vector is defined as , where is the sample of day t at the lth hour for station s. On one hand, target is built by obtaining a defined percentile of the next day, i.e., . For example, this work considers the 75th and 90th percentiles ( is 75 and 90, respectively). On the other hand, input vector is constructed as time segments of the selected day-lags. For instance, if we select a lag of p days, i.e., , up to , then the time segment is built as the concatenation of these day samples as follows:
- Stage 2. This stage aims to recognize topological similarities in the time segments using the SOM network. The SOM model is built with K units corresponding to the optimal number of clusters to group vectors for each station s. These daily segments are then used to forecast the value for the following day. In this sense, the SOM clusters these segments with similar contamination patterns for each monitoring station. The nodes are expected to learn contamination patterns; therefore, some of these nodes could have associated high-pollution episodes. The SOM network receives 24 h vectors from each station and associates it with one of the nodes with a similar pollution pattern, which could be low, intermediate, or high-pollution episodes. These episodes can be found on any of the stations. For this reason, SOM is performed for each station independently.The SOM model is constructed with K units in a hexagonal lattice. To define the number of units, K, the elbow method, the Calinski–Harabasz index, or the Gap statistic can be used. The Within Cluster Sum of Squares (WCSS) value measures the average squared distance of all the points within a cluster to the cluster centroid. The elbow method graphs the WCSS as a function of the number of clusters, where the bend of the curve offers information on the minimum number of units required by SOM [48,49]. The Calinski–Harabasz index is based on assessing the relationship between variance within clusters and between clusters [50], where the optimal number of clusters maximizes this index [51]. The Gap statistic compares the within-cluster dispersion to its expectation under an appropriate null reference distribution [52].
- Stage 3. The SOM network provides time segments into the best matching unit, , i.e., the node with the most similar contamination pattern is associated with the 24-h vector as follows:For each node of SOM, an MLP is trained to predict the next day’s extreme values based on inputs associated by the . The MLP contains an input layer with D neurons, one hidden layer with neurons, and an output layer with one neuron. D is the length of time segment input vector , and number is user defined.
- Stage 4. The individual outputs of the MLPs are combined using a combiner operator to generate the final output. We denote the output of the kth MLP as , , and it corresponds to the kth unit of SOM. In this article, we test the following combining operators that we call the gate:
- (a)
- Best Matching Unit Gate: this gate lets through only the signal from the MLP model corresponding to the best matching unit.
- (b)
- Mean Gate: this gate obtains the average of the MLPs’ outputs:
- (c)
- Softmax Gate: this gate computes the mean of the softmax of MLPs’ outputs:
- (d)
- Maximum Gate: this gate computes the maximum of the outputs of MLPs.
- (e)
- BMU-MAX Gate (GATE_BM): this gate combines the Best Matching Unit Gate and the Maximum Gate. The gate is controlled by an on–off parameter depending on either the moment of the year or the variability of pollution level.
3.1. Data Understanding
3.2. Performance Metrics
- Root of the Mean Squared Error (RMSE):
- Mean Absolute Error (MAE):
- Mean Absolute Percentage Error (MAPE):
- Spearman Correlation Index:
- Pearson coefficient:
- Coefficient of determination:
4. Results
4.1. Exploratory Data Analysis
4.2. Determining the Number of Nodes
5. Performance Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EPA. Particulate Matter (PM) Basics; Technical Report; United States Environmental Protection Agency: Washington, DC, USA, 2021.
- Liang, B.; Li, X.L.; Ma, K.; Liang, S.X. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Brema, J. Spatio-temporal variation in the concentration of atmospheric particulate matter: A study in fourth largest urban agglomeration in India. Environ. Technol. Innov. 2020, 17, 100546. [Google Scholar] [CrossRef]
- Zhou, S.M.; Deng, Q.H.; Liu, W.W. Extreme air pollution events: Modeling and prediction. J. Cent. South Univ. 2012, 19, 1668–1672. [Google Scholar] [CrossRef]
- Pino-Cortés, E.; Díaz-Robles, L.; Campos, V.; Vallejo, F.; Cubillos, F.; Gómez, J.; Cereceda-Balic, F.; Fu, J.; Carrasco, S.; Figueroa, J. Effect of socioeconomic status on the relationship between short-term exposure to PM2.5 and cardiorespiratory mortality and morbidity in a megacity: The case of Santiago de Chile. Air Qual. Atmos. Health 2020, 13, 509–517. [Google Scholar] [CrossRef]
- Gautam, S.; Prasad, N.; Patra, A.K.; Prusty, B.K.; Singh, P.; Pipal, A.S.; Saini, R. Characterization of PM2.5 generated from opencast coal mining operations: A case study of Sonepur Bazari Opencast Project of India. Environ. Technol. Innov. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Lopez-Restrepo, S.; Yarce, A.; Pinel, N.; Quintero, O.; Segers, A.; Heemink, A. Forecasting PM10 and PM2.5 in the Aburrá Valley (Medellín, Colombia) via EnKF based data assimilation. Atmos. Environ. 2020, 232, 117507. [Google Scholar] [CrossRef]
- Gualtieri, G.; Carotenuto, F.; Finardi, S.; Tartaglia, M.; Toscano, P.; Gioli, B. Forecasting PM10 hourly concentrations in northern Italy: Insights on models performance and PM10 drivers through self-organizing maps. Atmos. Pollut. Res. 2018, 9, 1204–1213. [Google Scholar] [CrossRef]
- Liou, N.C.; Luo, C.H.; Mahajan, S.; Chen, L.J. Why is Short-Time PM2.5 Forecast Difficult? The Effects of Sudden Events. IEEE Access 2019, 8, 12662–12674. [Google Scholar] [CrossRef]
- Encalada-Malca, A.A.; Cochachi-Bustamante, J.D.; Rodrigues, P.C.; Salas, R.; López-Gonzales, J.L. A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima. Atmosphere 2021, 12, 609. [Google Scholar] [CrossRef]
- Solci, C.C.; Reisen, V.A.; Rodrigues, P.C. Robust local bootstrap for weakly stationary time series in the presence of additive outliers. Stoch. Environ. Res. Risk Assess. 2023, 37, 2977–2992. [Google Scholar] [CrossRef]
- Zhu, S.; Lian, X.; Wei, L.; Che, J.; Shen, X.; Yang, L.; Qiu, X.; Liu, X.; Gao, W.; Ren, X.; et al. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos. Environ. 2018, 183, 20–32. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Cordova, C.H.; Portocarrero, M.N.L.; Salas, R.; Torres, R.; Rodrigues, P.C.; López-Gonzales, J.L. Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru. Sci. Rep. 2021, 11, 24232. [Google Scholar] [CrossRef]
- Salas, R.; Bustos, A. Constructing a NARX model for the prediction of the PM10 air pollutant concentration. In Proceedings of the Encuentro Chileno de Computación, Jornada Chilena de Ciencias de la Computación, Valdivia, Chile, 12 November 2005; pp. 7–12. [Google Scholar]
- Li, S.; Xie, G.; Ren, J.; Guo, L.; Yang, Y.; Xu, X. Urban PM2.5 Concentration Prediction via Attention-Based CNN–LSTM. Appl. Sci. 2020, 10, 1953. [Google Scholar] [CrossRef]
- Liu, D.R.; Lee, S.J.; Huang, Y.; Chiu, C.J. Air pollution forecasting based on attention-based LSTM neural network and ensemble learning. Expert Syst. 2020, 37, e12511. [Google Scholar] [CrossRef]
- Russo, A.; Soares, A.O. Hybrid model for urban air pollution forecasting: A stochastic spatio-temporal approach. Math. Geosci. 2014, 46, 75–93. [Google Scholar] [CrossRef]
- Liu, D.j.; Li, L. Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2.5 concentration in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 7085–7099. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Qin, Z.; Zhang, G. A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmos. Pollut. Res. 2017, 8, 850–860. [Google Scholar] [CrossRef]
- Paliwal, M.; Kumar, U.A. Neural networks and statistical techniques: A review of applications. Expert Syst. Appl. 2009, 36, 2–17. [Google Scholar] [CrossRef]
- Kourentzes, N.; Barrow, D.K.; Crone, S.F. Neural network ensemble operators for time series forecasting. Expert Syst. Appl. 2014, 41, 4235–4244. [Google Scholar] [CrossRef]
- Fu, M.; Wang, W.; Le, Z.; Khorram, M.S. Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model. Neural Comput. Appl. 2015, 26, 1789–1797. [Google Scholar] [CrossRef]
- Wu, S.; Feng, Q.; Du, Y.; Li, X. Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China. Environ. Eng. Sci. 2011, 28, 357–363. [Google Scholar] [CrossRef]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Yeganeh, B.; Hewson, M.G.; Clifford, S.; Tavassoli, A.; Knibbs, L.D.; Morawska, L. Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environ. Model. Softw. 2018, 100, 222–235. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote. Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Qin, D.; Yu, J.; Zou, G.; Yong, R.; Zhao, Q.; Zhang, B. A novel combined prediction scheme based on CNN and LSTM for urban PM2.5 concentration. IEEE Access 2019, 7, 20050–20059. [Google Scholar] [CrossRef]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather. Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Miskell, G.; Pattinson, W.; Weissert, L.; Williams, D. Forecasting short-term peak concentrations from a network of air quality instruments measuring PM2.5 using boosted gradient machine models. J. Environ. Manag. 2019, 242, 56–64. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Park, T.W.; Deng, Y. Quantifying the relationship between extreme air pollution events and extreme weather events. Atmos. Res. 2017, 188, 64–79. [Google Scholar] [CrossRef]
- Bougoudis, I.; Demertzis, K.; Iliadis, L. Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integr. Comput. Aided Eng. 2016, 23, 115–127. [Google Scholar] [CrossRef]
- Mijić, Z.; Tasić, M.; Rajšić, S.; Novaković, V. The statistical characters of PM10 in Belgrade area. Atmos. Res. 2009, 92, 420–426. [Google Scholar] [CrossRef]
- Ercelebi, S.G.; Toros, H. Extreme value analysis of Istanbul air pollution data. Clean-Soil Air Water 2009, 37, 122–131. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Durbin, R.; Golden, R.; Chauvin, Y. Backpropagation: The basic theory. In Backpropagation: Theory, Architectures and Applications; Springer: New York, NY, USA, 1995; pp. 1–34. [Google Scholar]
- Brockwell, P.; Davis, R.; Davis, R. Introduction to Time Series and Forecasting; Number v. 1-2 in Introduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Allende, H.; Moraga, C.; Salas, R. Artificial neural networks in time series forecasting: A comparative analysis. Kybernetika 2002, 38, 685–707. [Google Scholar]
- Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials 1994, 13, 27–31. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Net. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools. Atmos. Pollut. Res. 2015, 6, 1013–1023. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer Series in Information Sciences; Springer: Berlin/Heidelberg, Germany, 2001; Volume 30. [Google Scholar]
- Köküer, M.; Naguib, R.N.; Jančovič, P.; Younghusband, H.B.; Green, R. Chapter 12—Towards Automatic Risk Analysis for Hereditary Non-Polyposis Colorectal Cancer Based on Pedigree Data. In Outcome Prediction in Cancer; Taktak, A.F., Fisher, A.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 319–337. [Google Scholar] [CrossRef]
- Salas, R.; Moreno, S.; Allende, H.; Moraga, C. A robust and flexible model of hierarchical self-organizing maps for non-stationary environments. Neurocomputing 2007, 70, 2744–2757. [Google Scholar] [CrossRef]
- Salas, R.; Saavedra, C.; Allende, H.; Moraga, C. Machine fusion to enhance the topology preservation of vector quantization artificial neural networks. Pattern Recognit. Lett. 2011, 32, 962–972. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar] [CrossRef]
- Marutho, D.; Handaka, S.H.; Wijaya, E. The determination of cluster number at k-mean using elbow method and purity evaluation on headline news. In Proceedings of the 2018 International Seminar on Application for Technology of Information and Communication, Semarang, Indonesia, 21–22 September 2018; pp. 533–538. [Google Scholar] [CrossRef]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Muñoz, R.C.; Corral, M.J. Surface Indices of Wind, Stability, and Turbulence at a Highly Polluted Urban Site in Santiago, Chile, and their Relationship with Nocturnal Particulate Matter Concentrations. Aerosol Air Qual. Res. 2017, 17, 2780–2790. [Google Scholar] [CrossRef]
- Perez, P.; Menares, C. Forecasting of hourly PM2.5 in south-west zone in Santiago de Chile. Aerosol Air Qual. Res. 2018, 18, 2666–2679. [Google Scholar] [CrossRef]
- Perez, P.; Gramsch, E. Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes. Atmos. Environ. 2016, 124, 22–27. [Google Scholar] [CrossRef]
- Guth, S.; Sapsis, T.P. Machine Learning Predictors of Extreme Events Occurring in Complex Dynamical Systems. Entropy 2019, 21, 925. [Google Scholar] [CrossRef]
- Qi, D.; Majda, A.J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA 2020, 117, 52–59. [Google Scholar] [CrossRef]
- Mishra, D.; Goyal, P. Neuro-Fuzzy approach to forecasting Ozone Episodes over the urban area of Delhi, India. Environ. Technol. Innov. 2016, 5, 83–94. [Google Scholar] [CrossRef]
- da Silva, K.L.S.; López-Gonzales, J.L.; Turpo-Chaparro, J.E.; Tocto-Cano, E.; Rodrigues, P.C. Spatio-temporal visualization and forecasting of PM 10 in the Brazilian state of Minas Gerais. Sci. Rep. 2023, 13, 3269. [Google Scholar] [CrossRef]
- de la Cruz, A.R.H.; Ayuque, R.F.O.; de la Cruz, R.W.H.; López-Gonzales, J.L.; Gioda, A. Air quality biomonitoring of trace elements in the metropolitan area of Huancayo, Peru using transplanted Tillandsia capillaris as a biomonitor. An. Acad. Bras. Cienc. 2020, 92, 1. [Google Scholar] [CrossRef]
- Cabello-Torres, R.J.; Estela, M.A.P.; Sánchez-Ccoyllo, O.; Romero-Cabello, E.A.; García Ávila, F.F.; Castañeda-Olivera, C.A.; Valdiviezo-Gonzales, L.; Eulogio, C.E.Q.; De La Cruz, A.R.H.; López-Gonzales, J.L. Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú. Sci. Rep. 2022, 12, 1. [Google Scholar] [CrossRef]
- Quispe, K.; Martínez, M.; da Costa, K.; Romero Giron, H.; Via y Rada Vittes, J.F.; Mantari Mincami, L.D.; Hadi Mohamed, M.M.; Huamán De La Cruz, A.R.; López-Gonzales, J.L. Solid Waste Management in Peru’s Cities: A Clustering Approach for an Andean District. Appl. Sci. 2023, 13, 1646. [Google Scholar] [CrossRef]
- Orrego Granados, D.; Ugalde, J.; Salas, R.; Torres, R.; López-Gonzales, J.L. Visual-Predictive Data Analysis Approach for the Academic Performance of Students from a Peruvian University. Appl. Sci. 2022, 12, 11251. [Google Scholar] [CrossRef]
- Sánchez-Garcés, J.J.; Soria, J.; Turpo-Chaparro, J.E.; Avila-George, H.; López-Gonzales, J.L. Implementing the RECONAC Marketing Strategy for the Interaction and Brand Adoption of Peruvian University Students. Appl. Sci. 2021, 11, 2131. [Google Scholar] [CrossRef]
- Gonzales, J.; Calili, R.; Souza, R.; Coelho da Silva, F. Simulation of the energy efficiency auction prices in Brazil. Renew. Energy Power Qual. J. 2016, 1, 574–579. [Google Scholar] [CrossRef]
- López-Gonzales, J.L.; Castro Souza, R.; Leite Coelho da Silva, F.; Carbo-Bustinza, N.; Ibacache-Pulgar, G.; Calili, R.F. Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method. Energies 2020, 13, 4544. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
Labels | Levels |
---|---|
1-Good | <50 g/m |
2-Fair | Between 50 and 80 g/m |
3-Bad | Between 80 and 110 g/m |
4-Critical | Between 110 and 170 g/m |
5-Emergency | >170 g/m |
MS | Minimum | 1st Q. | Median | Mean ± SD | 3rd Q. | Maximum | Variance | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
CNA | 2.00 | 13.00 | 21.00 | 31.49 ± 30.22 | 39.00 | 538.00 | 913.25 | 3.29 | 22.39 |
EBQ | 1.00 | 15.00 | 24.00 | 33.25 ± 27.93 | 43.00 | 562.00 | 780.08 | 2.92 | 21.22 |
IND | 1.00 | 15.00 | 23.00 | 28.88 ± 19.60 | 38.00 | 202.00 | 384.16 | 1.48 | 2.72 |
LCD | 1.00 | 13.00 | 20.00 | 23.42 ± 15.43 | 29.00 | 147.00 | 238.08 | 1.69 | 4.03 |
LFL | 1.00 | 13.00 | 21.00 | 27.75 ± 21.33 | 36.00 | 234.00 | 454.97 | 1.82 | 5.15 |
PDH | 1.00 | 12.00 | 20.00 | 29.91 ± 29.38 | 38.00 | 580.00 | 863.18 | 3.52 | 28.82 |
PTA | 0.00 | 12.00 | 19.00 | 24.51 ± 18.44 | 31.00 | 287.00 | 340.03 | 2.12 | 9.60 |
POH | 0.00 | 13.00 | 22.00 | 28.18 ± 21.06 | 37.00 | 259.00 | 443.52 | 1.65 | 3.76 |
TLG | 0.00 | 8.00 | 15.00 | 23.68 ± 22.93 | 31.00 | 219.00 | 525.78 | 2.00 | 4.96 |
Metrics | MLP-Global | MLP-Station | SOM-MLP(4) | SOM-MLP(9) | SOM-MLP(25) |
---|---|---|---|---|---|
MSE | 147.860 ± 3.410 | 127.655 ± 2.609 | 122.003 ± 9.877 | 102.293 ± 3.348 | 101.677 ± 2.792 |
MAE | 7.850 ± 0.121 | 7.650 ± 0.064 | 7.266 ± 0.156 | 6.944 ± 0.069 | 7.141 ± 0.187 |
RMSE | 12.159 ± 0.141 | 11.298 ± 0.116 | 11.037 ± 0.457 | 10.113 ± 0.164 | 10.083 ± 0.138 |
MAPE | 24.807 ± 0.247 | 24.274 ± 0.181 | 24.050 ± 0.245 | 22.967 ± 0.176 | 24.572 ± 1.695 |
Metrics | BMU | MEAN | SOFTMAX | MAX | GATE_BM |
---|---|---|---|---|---|
MAE | |||||
RMSE | |||||
MAPE | |||||
Pearson | |||||
Spearman | |||||
R |
Metrics | MLP | MLP Stations | SOM-MLP (BMU) |
---|---|---|---|
MAE | |||
RMSE | |||
MAPE | |||
Pearson | |||
Spearman | |||
R |
Metrics | BMU | MEAN | SOFTMAX | MAX | GATE_BM |
---|---|---|---|---|---|
MAE | |||||
RMSE | |||||
MAPE | |||||
Pearson | |||||
Spearman | |||||
R |
Metrics | MLP | MLP Stations | SOM-MLP (GATE_BM) |
---|---|---|---|
MAE | |||
RMSE | |||
MAPE | |||
Pearson | |||
Spearman | |||
R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gonzales, J.L.; Gómez Lamus, A.M.; Torres, R.; Canas Rodrigues, P.; Salas, R. Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats 2023, 6, 1241-1259. https://doi.org/10.3390/stats6040077
López-Gonzales JL, Gómez Lamus AM, Torres R, Canas Rodrigues P, Salas R. Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats. 2023; 6(4):1241-1259. https://doi.org/10.3390/stats6040077
Chicago/Turabian StyleLópez-Gonzales, Javier Linkolk, Ana María Gómez Lamus, Romina Torres, Paulo Canas Rodrigues, and Rodrigo Salas. 2023. "Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values" Stats 6, no. 4: 1241-1259. https://doi.org/10.3390/stats6040077
APA StyleLópez-Gonzales, J. L., Gómez Lamus, A. M., Torres, R., Canas Rodrigues, P., & Salas, R. (2023). Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats, 6(4), 1241-1259. https://doi.org/10.3390/stats6040077