Optimizing Wildfire Evacuations through Scenario-Based Simulations with Autonomous Vehicles
<p>Evacuation area, Knolls Fire of 2020, Saratoga Springs, Utah.</p> "> Figure 2
<p>Study area map: Saratoga Springs, Utah, United States.</p> "> Figure 3
<p>Traffic control structure in Segment 3.</p> "> Figure 4
<p>Travel times across the different scenarios.</p> "> Figure 5
<p>Typical travel times across the different scenarios (Impact of AV penetration).</p> "> Figure 6
<p>Percentage change in travel time compared to “No Change 0% AV”.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: Knolls Fire of 2020, Utah
2.2. Scenario Studies
2.2.1. Scenario 1—No Change
2.2.2. Scenario 2—Different Intersection Controls
2.2.3. Scenario 3—Lane Reversal
3. Results and Discussion
3.1. Scenario Results
3.2. Impact of AV Penetration
3.3. Travel Time Comparison
4. Conclusions
5. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grünthal, G.; Thieken, A.H.; Schwarz, J.; Radtke, K.S.; Smolka, A.; Merz, B. Comparative Risk Assessments for the City of Cologne—Storms, Floods, Earthquakes. Nat. Hazards 2006, 38, 21–44. [Google Scholar] [CrossRef]
- Zuzak, C.; Mowrer, M.; Goodenough, E.; Burns, J.; Ranalli, N.; Rozelle, J. The national risk index: Establishing a nationwide baseline for natural hazard risk in the US. Nat. Hazards 2022, 114, 2331–2355. [Google Scholar] [CrossRef]
- Statista. Natural Disasters in the U.S. Available online: https://www.statista.com/topics/1714/natural-disasters/#topicOverview (accessed on 21 December 2023).
- Smith, A.B. US Billion-Dollar Weather and Climate Disasters, 1980-Present. 2022. Available online: https://www.geoplatform.gov/metadata/9b3248e8-a6fe-4f71-92cb-e71bf65447d9 (accessed on 21 December 2023).
- Hamideh, S.; Sen, P.; Fischer, E. Wildfire impacts on education and healthcare: Paradise, California, after the Camp Fire. Nat. Hazards 2022, 111, 353–387. [Google Scholar] [CrossRef] [PubMed]
- Camp Fire. California Department of Forestry and Fire Protection. Available online: https://www.fire.ca.gov/incidents/2018/11/8/camp-fire/ (accessed on 20 December 2023).
- Haddow, G.; Haddow, K.S.; Coppola, D. Introduction to Emergency Management, Enhanced; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- FEMA. Mitigation Ideas: A Resource for Reducing Risk to Natural Hazards. Available online: https://www.fema.gov/sites/default/files/2020-06/fema-mitigation-ideas_02-13-2013.pdf (accessed on 22 February 2024).
- Thompson, R.R.; Garfin, D.R.; Silver, R.C. Evacuation from natural disasters: A systematic review of the literature. Risk Anal. 2017, 37, 812–839. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- McKENZIE, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic Change, Wildfire, and Conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Beverly, J.L.; Bothwell, P. Wildfire evacuations in Canada 1980–2007. Nat. Hazards 2011, 59, 571–596. [Google Scholar] [CrossRef]
- Caton, S.E.; Hakes, R.S.P.; Gorham, D.J.; Zhou, A.; Gollner, M.J. Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions. Fire Technol. 2017, 53, 429–473. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Climate Change Indicators: Wildfires. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires#:~:text=Multiple%20studies%20have%20found%20that,wildfire%20frequency%2C%20and%20burned%20area.&text=The%20wildfire%20season%20has%20lengthened,and%20drier%20soils%20and%20vegetation (accessed on 22 February 2024).
- U.S. Fire Administration. Fire in the United States 2008–2017. November 2019. Available online: https://www.usfa.fema.gov/downloads/pdf/publications/fius20th.pdf (accessed on 22 February 2024).
- Mietkiewicz, N.; Balch, J.K.; Schoennagel, T.; Leyk, S.; Denis, L.A.S.; Bradley, B.A. In the line of fire: Consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 2020, 3, 50. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmed, H.U.; Ali, A.; Yang, X.; Huang, Y.; Guo, M.; Ren, Y.; Lu, P. Evaluating driving behavior patterns during wildfire evacuations in wildland-urban interface zones using connected vehicles data. Fire Saf. J. 2024, 142, 104015. [Google Scholar] [CrossRef]
- U.S. Fire Administration. Wildland Urban Interface. Available online: https://www.usfa.fema.gov/wui/ (accessed on 22 February 2024).
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland–urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Fraser, A.M.; Chester, M.V.; Underwood, B.S. Wildfire risk, post-fire debris flows, and transportation infrastructure vulnerability. Sustain. Resilient Infrastruct. 2020, 7, 188–200. [Google Scholar] [CrossRef]
- Beyki, S.M.; Santiago, A.; Laím, L.; Craveiro, H.D. Evacuation Simulation under Threat of Wildfire—An Overview of Research, Development, and Knowledge Gaps. Appl. Sci. 2023, 13, 9587. [Google Scholar] [CrossRef]
- Kuligowski, E. Evacuation decision-making and behavior in wildfires: Past research, current challenges and a future research agenda. Fire Saf. J. 2021, 120, 103129. [Google Scholar] [CrossRef]
- Ramezani, M.; Geroliminis, N. Queue Profile Estimation in Congested Urban Networks with Probe Data. Comput. Civ. Infrastruct. Eng. 2015, 30, 414–432. [Google Scholar] [CrossRef]
- Li, X.; Dadashova, B.; Yu, S.; Zhang, Z. Rethinking highway safety analysis by leveraging crowdsourced waze data. Sustainability 2020, 12, 10127. [Google Scholar] [CrossRef]
- Cookson, G.; Pishue, B. INRIX Global Traffic Scorecard—Appendices. INRIX Res. 2017, p. 44. Available online: https://media.bizj.us/view/img/10360454/inrix2016trafficscorecarden.pdf (accessed on 14 March 2023).
- Wojnarski, M.; Gora, P.; Szczuka, M.; Nguyen, H.S.; Swietlicka, J.; Zeinalipour, D. IEEE ICDM 2010 Contest: TomTom Traffic prediction for intelligent GPS Navigation. In Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW), Sydney, Australia, 13 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1372–1376. [Google Scholar] [CrossRef]
- Otonomo. Available online: https://otonomo.io/ (accessed on 3 April 2023).
- Wejo. Available online: https://www.wejo.com/ (accessed on 3 April 2023).
- Desai, J.; Saldivar-Carranza, E.; Mathew, J.K.; Li, H.; Platte, T.; Bullock, D. Methodology for Applying Connected Vehicle Data to Evaluate Impact of Interstate Construction Work Zone Diversions. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4035–4042. [Google Scholar] [CrossRef]
- Saldivar-Carranza, E.D.; Hunter, M.; Li, H.; Mathew, J.; Bullock, D.M. Longitudinal Performance Assessment of Traffic Signal System Impacted by Long-Term Interstate Construction Diversion Using Connected Vehicle Data. J. Transp. Technol. 2021, 11, 644–659. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, A.; Ahmed, H.U.; Huang, Y.; Lu, P. Evaluating traffic operation conditions during wildfire evacuation using connected vehicles data. Fire 2023, 6, 184. [Google Scholar] [CrossRef]
- Bahaaldin, K.; Fries, R.; Bhavsar, P.; Das, P. A Case Study on the Impacts of Connected Vehicle Technology on No-Notice Evacuation Clearance Time. J. Adv. Transp. 2017, 2017, 6357415. [Google Scholar] [CrossRef]
- Grajdura, S.; Borjigin, S.; Niemeier, D. Fast-moving dire wildfire evacuation simulation. Transp. Res. Part D Transp. Environ. 2022, 104, 103190. [Google Scholar] [CrossRef]
- Duanmu, J.; Taaffe, K.M.; Chowdhury, M.; Robinson, R.M. Simulation analysis for evacuation under congested traffic scenarios: A case study. Simulation 2012, 88, 1379–1389. [Google Scholar] [CrossRef]
- Tumminello, M.L.; Macioszek, E.; Granà, A.; Giuffrè, T. Simulation-Based Analysis of “What-If” Scenarios with Connected and Automated Vehicles Navigating Roundabouts. Sensors 2022, 22, 6670. [Google Scholar] [CrossRef] [PubMed]
- Federal Highway Administration (FHWA). Traffic Congestion and Reliability: Trends and Advanced Strategies for Congestion Mitigation. Available online: https://ops.fhwa.dot.gov/congestion_report/chapter2.htm (accessed on 13 April 2024).
- U.S. Department of Transportation. Federal Highway Administration. Roundabouts. Available online: https://highways.dot.gov/safety/intersection-safety/intersection-types/roundabouts (accessed on 29 February 2024).
- Williams, B.M.; Tagliaferri, A.P.; Meinhold, S.S.; Hummer, J.E.; Rouphail, N.M. Simulation and analysis of freeway lane reversal for coastal hurricane evacuation. J. Urban Plan. Dev. 2007, 133, 61–72. [Google Scholar] [CrossRef]
- McAslan, D.; Gabriele, M.; Miller, T.R. Planning and policy directions for autonomous vehicles in metropolitan planning organizations (mpos) in the United States. J. Urban Technol. 2021, 28, 175–201. [Google Scholar] [CrossRef]
- The Society of Automotive Engineers. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Available online: https://www.sae.org/standards/content/j3016_202104/ (accessed on 24 February 2024).
- Tyagi, A.K.; Aswathy, S.U. Autonomous Intelligent Vehicles (AIV): Research statements, open issues, challenges and road for future. Int. J. Intell. Netw. 2021, 2, 83–102. [Google Scholar] [CrossRef]
- Boualam, O.; Borsos, A.; Koren, C.; Nagy, V. Impact of autonomous vehicles on roundabout capacity. Sustainability 2022, 14, 2203. [Google Scholar] [CrossRef]
- Morando, M.M.; Tian, Q.; Truong, L.T.; Vu, H.L. Studying the safety impact of autonomous vehicles using simulation-based surrogate safety measures. J. Adv. Transp. 2018, 2018, 6135183. [Google Scholar] [CrossRef]
- Padmaja, B.; Moorthy, C.V.; Venkateswarulu, N.; Bala, M.M. Exploration of issues, challenges and latest developments in autonomous cars. J. Big Data 2023, 10, 61. [Google Scholar] [CrossRef]
- Stanek, D.; Milam, R.T.; Huang, E.; Wang, Y.A. Measuring autonomous vehicle impacts on congested networks using simulation. In Proceedings of the Transportation Research Board Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Saffre, F.; Hildmann, H.; Karvonen, H.; Lind, T. Monitoring and Cordoning Wildfires with an Autonomous Swarm of Unmanned Aerial Vehicles. Drones 2022, 6, 301. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Jia, B.; Zheng, S.; Ji, H. Managing traffic evacuation with multiclass connected and autonomous vehicles. Phys. A Stat. Mech. Its Appl. 2023, 625, 128985. [Google Scholar] [CrossRef]
- Rahimi, A.M.; Dulebenets, M.A.; Mazaheri, A. Evaluation of microsimulation models for roadway segments with different functional classifications in northern iran. Infrastructures 2021, 6, 46. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Huang, Y.; Lu, P. A Review of car-following models and modeling tools for human and autonomous-ready driving behaviors in micro-simulation. Smart Cities 2021, 4, 314–335. [Google Scholar] [CrossRef]
- Abohassan, M.; El-Basyouny, K. Leveraging LiDAR-based simulations to quantify the complexity of the static environment for autonomous vehicles in rural settings. Sensors 2024, 24, 452. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Guo, M.; Huang, Y.; Ahmed, T.; Lu, P. Evaluating Autonomous Vehicles’ Impact on Emergency Evacuation Clearance Time: A Comparative Study. In Proceedings of the International Conference on Transportation and Development 2024, Atlanta, Georgia, 15–18 June 2024; pp. 573–582. [Google Scholar]
- Utah Department of Public Safety. UTAH Hazard Mitigation. Available online: https://hazards.utah.gov/wildfire/#:~:text=Utah%20is%20one%20of%20the,1%2C000%20wildfires%20in%20Utah%20annually (accessed on 23 February 2024).
- Tribune, T.S.L. 1 Home Destroyed, 12 Damaged as Knolls Fire Grows to 10,000 Acres; Thousands Still under Evacuation in Saratoga Springs. 2020. Available online: https://www.sltrib.com/news/2020/06/28/draper-lehi-residents/ (accessed on 20 December 2023).
- The Weather Channel. 13,000 Utah Residents Forced out by Wildfire May Return Home; Hundreds Evacuated in Nevada, Arizona and Colorado. Available online: https://weather.com/news/news/2020-06-29-utah-wildfire-evacuations-saratoga-springs-knolls-traverse-canal (accessed on 23 February 2024).
- Fox13. Thousands Evacuated as ‘Knolls Fire’ Threatens Saratoga Springs Homes. 2020. Available online: https://www.fox13now.com/news/local-news/knolls-fire-forces-evacuations-in-saratoga-springs (accessed on 20 December 2023).
- Radio, K.S.L.N. 3100 Homes Evacuated in Saratoga Springs by Fire Near Utah Lake. 2020. Available online: https://kslnewsradio.com/1928165/lightning-sparks-fire-near-utah-lake-some-saratoga-springs-neighborhoods-evacuated/ (accessed on 23 December 2023).
- Virginia Department of Transportation. VDOT Vissim User Guide. 2020. Available online: http://166.67.201.35/business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf (accessed on 3 April 2023).
- Jiang, Q.; Nian, D.; Guo, Y.; Ahmed, M.; Yang, G.; Ma, J. Evaluating connected vehicle-based weather responsive management strategies using weather-sensitive microscopic simulation. J. Intell. Transp. Syst. 2023, 27, 92–110. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, X.; Liu, H.; Ren, G.; Zhang, Y.; Liu, X. Assessing the influence of adverse weather on traffic flow characteristics using a driving simulator and VISSIM. Sustainability 2019, 11, 830. [Google Scholar] [CrossRef]
- Abdeen, M.A.R.; Yasar, A.; Benaida, M.; Sheltami, T.; Zavantis, D.; El-Hansali, Y. Evaluating the impacts of autonomous vehicles’ market penetration on a complex urban freeway during autonomous vehicles’ transition period. Sustainability 2022, 14, 10094. [Google Scholar] [CrossRef]
- IOWA DOT. Benefits of Going in Circles. Available online: https://iowadot.gov/traffic/roundabouts/BENEFITS-OF-GOING-IN-CIRCLES (accessed on 29 February 2024).
W99 Parameters Human-Driven | Definition | VISSIM Default | Adjusted Value |
---|---|---|---|
CC0 (m) | Standstill Distance | 1.5 | 1.6 |
CC1 (s) | Headway Time | 0.9 | 1.26 |
CC2 (m) | Following Variation | 4 | 19.4 |
CC3 (s) | Threshold for Entering Following | −8 | −5.37 |
CC4 (m/s) | Negative Following Threshold | −0.35 | −0.83 |
CC5 (m/s) | Positive Following Threshold | 0.35 | 0.83 |
CC6 (-) | Speed Dependency of Oscillation | 11.44 | 0.25 |
CC7 (m/s2) | Oscillation Acceleration | 0.25 | 0.34 |
CC8 (m/s2) | Standstill Acceleration | 3.5 | 1.18 |
CC9 (m/s2) | Acceleration at Speed of 80 km/h | 1.5 | 0.26 |
W99 Parameters Autonomous Vehicles | Definition | VISSIM Default Values for All Weather |
---|---|---|
CC0 (m) | Standstill Distance | 1.5 |
CC1 (s) | Headway Time | 0.9 |
CC2 (m) | Following Variation | 0 |
CC3 (s) | Threshold for Entering Following | −8 |
CC4 (m/s) | Negative Following Threshold | −0.1 |
CC5 (m/s) | Positive Following Threshold | 0.1 |
CC6 (-) | Speed Dependency of Oscillation | 0 |
CC7 (m/s2) | Oscillation Acceleration | 0.1 |
CC8 (m/s2) | Standstill Acceleration | 3.5 |
CC9 (m/s2) | Acceleration at Speed of 80 km/h | 1.5 |
Name | Start Link | Start Position (m) | End Link | End Position (m) | Distance (m) |
---|---|---|---|---|---|
Segment #1 | 1 | 79.287 | 1 | 403.991 | 324.7 |
Segment #2 | 1 | 404.898 | 6 | 243.026 | 535.39 |
Segment #3 | 6 | 243.75 | 19 | 278.559 | 767.23 |
Segment #4 | 19 | 278.631 | 23 | 315.229 | 824.05 |
Segment #5 | 23 | 314.837 | 23 | 875.286 | 560.45 |
Segment #6 | 23 | 874.729 | 23 | 1206.216 | 331.49 |
Segment #7 | 23 | 1205.496 | 41 | 183.039 | 509.21 |
Segment #8 | 41 | 183.067 | 41 | 559.107 | 376.04 |
Segment #9 | 41 | 559.87 | 57 | 163.05 | 437.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Guo, M.; Ahmad, S.; Huang, Y.; Lu, P. Optimizing Wildfire Evacuations through Scenario-Based Simulations with Autonomous Vehicles. Fire 2024, 7, 340. https://doi.org/10.3390/fire7100340
Ali A, Guo M, Ahmad S, Huang Y, Lu P. Optimizing Wildfire Evacuations through Scenario-Based Simulations with Autonomous Vehicles. Fire. 2024; 7(10):340. https://doi.org/10.3390/fire7100340
Chicago/Turabian StyleAli, Asad, Mingwei Guo, Salman Ahmad, Ying Huang, and Pan Lu. 2024. "Optimizing Wildfire Evacuations through Scenario-Based Simulations with Autonomous Vehicles" Fire 7, no. 10: 340. https://doi.org/10.3390/fire7100340