Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field
<p>HTS cube submitted to an external time-varying magnetic field.</p> "> Figure 2
<p>Instantaneous losses in the HTS cube.</p> "> Figure 3
<p>Eddy current distribution in the HTS cube, with magnitude normalized to <span class="html-italic">Jc</span>: (<b>a</b>) <span class="html-italic">t</span> = T/4 and (<b>b</b>) <span class="html-italic">t</span> = 3T/4.</p> "> Figure 4
<p>Eddy current distribution in the sub-cubes, with magnitudes normalized to <span class="html-italic">Jc</span>, at <span class="html-italic">t</span> = <span class="html-italic">T</span>/4, with and without considering their electromagnetic coupling.</p> "> Figure 5
<p>Instantaneous losses in the entire and subdivided cube with and without electromagnetic coupling between the sub-cubes.</p> ">
Abstract
:1. Introduction
2. The Modeled System
3. Discretization and Implementation
4. Results and Discussions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Norris, W.T. Calculation of hysteresis losses in hard superconductors: Polygonal-section conductors. J. Phys. D Appl. Phys. 1971, 4, 1358–1364. [Google Scholar] [CrossRef]
- Brandt, E.H. Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves. Phys. Rev. B 1998, 58, 6506–6522. [Google Scholar] [CrossRef]
- Grilli, F. Numerical modeling of HTS applications. IEEE Trans. Appl. Supercond. 2016, 26, 0500408. [Google Scholar] [CrossRef]
- Berger, K.; Quéval, L.; Kameni, A.; Alloui, L.; Ramdane, B.; Trillaud, F.; Hell, L.M.; Meunier, G.; Masson, P.; Lévêque, J. Benchmark on the 3D Numerical Modeling of a Superconducting Bulk. In Proceedings of the 21st International Conference on the Computation of Electromagnetic Fields (Compumag 2017), Daejeon, Republic of Korea, 18–22 June 2017. [Google Scholar]
- Rozier, B.; Badel, A.; Ramdane, B.; Meunier, G. Modeling of Dynamic Current Distribution in REBCO Insulated Coils Using a Volume Integral Formulation for Protection Purpose. IEEE Trans. Appl. Supercond. 2019, 29, 4702105. [Google Scholar] [CrossRef]
- Brambilla, R.; Grilli, F.; Nguyen, D.N.; Martini, L.; Sirois, F. AC losses in thin superconductors: The integral equation method applied to stacks and windings. Supercond. Sci. Technol. 2009, 22, 075018. [Google Scholar] [CrossRef]
- Sirois, F.; Roy, F.; Dutoit, B. Assessment of the Computational Performances of the Semi-Analytical Method (SAM) for Computing 2-D Current Distributions in Superconductors. IEEE Trans. Appl. Supercond. 2009, 19, 3600–3604. [Google Scholar] [CrossRef]
- Statra, Y.; Menana, H.; Douine, B. Semianalytical Modeling of AC Losses in HTS Stacks Near Ferromagnetic Parts. IEEE Trans. Appl. Supercond. 2021, 31, 5900306. [Google Scholar] [CrossRef]
- Menana, H.; Farhat, M.; Hinaje, M.; Douine, B. An Integro-Differential Time-Domain Scheme for Electromagnetic Field Modeling in HTS Materials. IEEE Trans. Magn. 2020, 56, 7514504. [Google Scholar] [CrossRef]
- Menana, H.; Feliachi, M. An Integro-Differential Model for 3-D Eddy Current Computation in Carbon Fiber Reinforced Polymer Composites. IEEE Trans. Magn. 2011, 47, 756–763. [Google Scholar] [CrossRef]
- Dorget, R.; Nouailhetas, Q.; Colle, A.; Berger, K.; Sudo, K.; Ayat, S.; Lévêque, J.; Koblischka, M.R.; Sakai, N.; Oka, T.; et al. Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. Materials 2021, 14, 2847. [Google Scholar] [CrossRef] [PubMed]
- Ceric, H. Numerical Techniques in Modern TCAD. Ph.D. Thesis, Faculty of Electrical Engineering and Information Technology, Technical University of Vienna, Vienna, Austria, 2005. [Google Scholar]
- Kameni, A.; Matar, H.; Queval, L. Linearization of E(J) power law used for HTS superconductors modeling. In Proceedings of the 23rd International Conference on the Computation of Electromagnetic Fields (Compumag 2021), Cancun, Mexico, 16–20 January 2021. [Google Scholar]
Quantity | Symbol | Value |
---|---|---|
HTS properties | JC0 |B0 |n | 2.54 106 A/m2|0.3 T|23 |
Cube side|Discretization | a|nx × ny × nz | 10 mm|10 × 10 × 10 |
Source|Freq.|Time step | |f|Δt | 5 mT|50 Hz|5 10−5 s |
Quantity | Obtained | Published [4] |
---|---|---|
Average losses P (mW) | 0.74 | 0.66 to 0.87 |
Computation time (min) | 14 | 6.4 to 134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menana, H. Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field. Condens. Matter 2024, 9, 47. https://doi.org/10.3390/condmat9040047
Menana H. Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field. Condensed Matter. 2024; 9(4):47. https://doi.org/10.3390/condmat9040047
Chicago/Turabian StyleMenana, Hocine. 2024. "Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field" Condensed Matter 9, no. 4: 47. https://doi.org/10.3390/condmat9040047
APA StyleMenana, H. (2024). Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field. Condensed Matter, 9(4), 47. https://doi.org/10.3390/condmat9040047