Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum
<p>Cluster and correlation analysis of 30 varieties based on 36 phenotypic characteristics: (<b>a</b>) correlation analysis; (<b>b</b>) cluster correlation analysis. Note: C-1~C-30: variety code (<a href="#horticulturae-10-00845-t001" class="html-table">Table 1</a>); *, **: significant correlation with <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 2
<p>Genetic analysis of 30 varieties based on 31,448 SNPs concluded from simplified genome sequencing data: (<b>a</b>) phylogenetic tree; (<b>b</b>) principal component analysis; (<b>c</b>) line chart of error rate of cross-validation; (<b>d</b>) population structure diagram (K = 2). Note: C-1~C-30: variety code; G1–G5: group code (<a href="#horticulturae-10-00845-t001" class="html-table">Table 1</a>).</p> "> Figure 3
<p>Features of the 487 MNP(multiple nucleotide polymorphism) markers of chrysanthemum. (<b>a</b>) Statistical analysis of 487 MNP marker lengths after primer amplification; (<b>b</b>) Statistics of the number of MNP markers corresponding to the number of high-frequency SNPs contained in each of the 487 MNP markers; (<b>c</b>) Statistical analysis of the distribution of 487 MNP markers on chromosomes; (<b>d</b>) Compare the genetic distance of 30 varieties pairwise based on 487 MNP markers and perform logarithmic statistics; (<b>e</b>) Evaluate the discriminative ability of each MNP (MNP001-MNP487 represent the numbering of 487 MNP markers respectively).</p> "> Figure 4
<p>Genetic relationship analysis of 30 chrysanthemum varieties. (<b>a</b>) Heat map of genetic similarity between any two of the thirty varieties. (<b>b</b>) Phylogenetic tree of chrysanthemum based on 487 MNP sequences from 30 varieties. Note: C-1~C-30: variety code (<a href="#horticulturae-10-00845-t001" class="html-table">Table 1</a>).</p> "> Figure 5
<p>Phylogenetic tree of 136 chrysanthemum varieties based on 487 MNP sequences. Note: C-31~C-166: variety code (<a href="#app1-horticulturae-10-00845" class="html-app">Table S1</a>). The same color represents the gathering of varieties together.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Phenotypic Analysis
2.3. Genetic Analysis
2.3.1. Library Construction
2.3.2. Genetic Analysis
2.4. MNP Screening, Evaluation, and Application
2.4.1. MNP Screening
2.4.2. MNP Evaluation
2.4.3. MNP Application
3. Results
3.1. Phenotypic Analysis
3.2. Genetic Analysis
3.2.1. Library Evaluation
3.2.2. Analysis of Population Genetic Differentiation
3.2.3. Phylogenetic and Population Structure Analysis
3.3. MNP Marker Screening, Evaluation, and Application
3.3.1. MNP Marker Screening
3.3.2. MNP Marker Evaluation
3.3.3. MNP Marker Application
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Lu, C.; Zhou, J.; Zhou, F.; Gui, A.; Chu, H.; Shao, Q. Chrysanthemum morifolium as a traditional herb: A review of historical development, classification, phytochemistry, pharmacology and application. J. Ethnopharmacol. 2024, 330, 118198. [Google Scholar] [CrossRef] [PubMed]
- Mekapogu, M.; Kwon, O.K.; Song, H.Y.; Jung, J.A. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int. J. Mol. Sci. 2022, 23, 12284. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Jiang, S.; Liu, Y.; Daniyal, M.; Jian, Y.; Peng, C.; Shen, J.; Liu, S.; Wang, W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. J. Ethnopharmacol. 2020, 261, 113043. [Google Scholar] [CrossRef]
- Li, X.; Chen, F. Advances of genetic improvement and germplasm resources for Chrysanthemum. Chin. Bull. Bot. 2004, 21, 392–401. (In Chinese) [Google Scholar]
- Chong, X.; Zhang, F.; Wu, Y.; Yang, X.; Zhao, N.; Wang, H.; Guan, Z.; Fang, W.; Chen, F. A SNP-Enabled Assessment of Genetic Diversity, Evolutionary Relationships and the Identification of Candidate Genes in Chrysanthemum. Genome Biol. Evol. 2016, 8, 3661–3671. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Huang, M.; Zhong, H.; Lin, B. The Development Status of Agricultural Varieties Protection and DUS Testing Techniques in China. Chin. J. Trop. Crops 2017, 38, 1155–1162. (In Chinese) [Google Scholar]
- Wu, F.; Zou, B.; Li, X.; Qian, Y. Development of a DUS Test Guide for New Varieties of Buffalo Grass Plants. Acta Agrestia Sin. 2023, 31, 3462–3471. (In Chinese) [Google Scholar]
- Wang, Y.; Lv, H.; Xiang, X.; Yang, A.; Feng, Q.; Dai, P.; Li, Y.; Jiang, X.; Liu, G.; Zhang, X. Construction of a SNP Fingerprinting Database and Population Genetic Analysis of Cigar Tobacco Germplasm Resources in China. Front. Plant Sci. 2021, 12, 618133. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, P.; Liu, Y.; Huang, C.; Huang, G.; Jiang, H.; Xu, L.; Zhang, M.; Deng, Z.; Zhao, X. Development of SLAF-Sequence and Multiplex SNaPshot Panels for Population Genetic Diversity Analysis and Construction of DNA Fingerprints for Sugarcane. Genes 2022, 13, 1477. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Lv, Y.; Zhang, X.; Xia, C.; Zhao, H.; Wen, C. Genetic diversity analysis and variety identification using SSR and SNP markers in melon. BMC Plant Biol. 2023, 23, 39. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, S.; Chen, F.; Fang, W.; Deng, Y.; Chang, Q.; Liu, P. Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 2011, 177, 15–24. [Google Scholar] [CrossRef]
- Klie, M.; Menz, I.; Linde, M.; Debener, T. Strigolactone pathway genes and plant architecture: Association analysis and QTL detection for horticultural traits in chrysanthemum. Mol. Genet. Genom. 2016, 291, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, S.; Hong, Y.; Song, X. Application of genomic SSR locus polymorphisms on the identification and classification of chrysanthemum cultivars in China. PLoS ONE 2014, 9, e104856. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Gao, Y.; Wu, Z.; Haider, S.; Zhang, Q. Evidence for hexasomic inheritance in Chrysanthemum morifolium Ramat. based on analysis of EST-SSR markers. Genome 2022, 65, 75–81. [Google Scholar] [CrossRef] [PubMed]
- van Geest, G.; Bourke, P.M.; Voorrips, R.E.; Marasek-Ciolakowska, A.; Liao, Y.; Post, A.; van Meeteren, U.; Visser, R.G.F.; Maliepaard, C.; Arens, P. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor. Appl. Genet. 2017, 130, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Chong, X.; Su, J.; Wang, F.; Wang, H.; Song, A.; Guan, Z.; Fang, W.; Jiang, J.; Chen, S.; Chen, F.; et al. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. Plant Mol. Biol. 2019, 99, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Rao, D.; Guo, T.; Gangurde, S.; Hong, Y.; Chen, M.; Huang, Z.; Jiang, Y.; Xu, Z.; Chen, Z. Whole Genome Sequencing and Morphological Trait-Based Evaluation of UPOV Option 2 for DUS Testing in Rice. Front. Genet. 2022, 13, 945015. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, Q.; Zheng, H.; Xu, Y.; Sang, Z.; Guo, Z.; Peng, H.; Zhang, C.; Lan, H.; Wang, Y.; et al. Genotyping by target sequencing (GBTS) and its applications. Sci. Agric. Sin. 2020, 53, 2983–3004. (In Chinese) [Google Scholar]
- Byers, R.L.; Harker, D.B.; Yourstone, S.M.; Maughan, P.J.; Udall, J.A. Development and mapping of SNP assays in allotetraploid cotton. Theor. Appl. Genet. 2012, 124, 1201–1214. [Google Scholar] [CrossRef]
- Ai, S.; Li, S.; Fang, Z.; Li, L.; Li, T.; Gao, L.; Chen, L.; Xiao, H.; Wan, R.; Yan, D.; et al. Development and application of cotton MNP marker for fingerprint construction. Acta Agron. Sin. 2024. in press (In Chinese) [Google Scholar]
- Liu, J.; Wang, H.; Fan, X.; Zhang, Y.; Sun, L.; Liu, C.; Fang, Z.; Zhou, J.; Peng, H.; Jiang, J. Establishment and application of a Multiple nucleotide polymorphism molecular identification system for grape cultivars. Sci. Hortic. 2024, 325, 112642. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, M.; Cao, B.; Lin, Y.; Zhao, R. Application and Prospects of MNP Molecular Markers for Precise Identification of Edible Mushrooms. J. Fungal Res. 2024. in press (In Chinese) [Google Scholar]
- Li, L.; Fang, Z.; Zhou, J.; Hong, C.; Zhang, F.; Gao, L.; Li, H.; Sheng, R.; Ma, H.; Lu, L. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Res. 2017, 45, e88. [Google Scholar] [CrossRef] [PubMed]
- GB/T 38551-2020; Identification of Plant Varieties—MNP Marker Method. National Standard of the P.R.C.: Beijing, China, 2020. (In Chinese)
- Liu, F.; Wang, S.; Jia, R. Development of Multiple Nucleotide Polymorphism Molecular Markers for Enoki Mushroom (Flammulina filiformis) Cultivars Identification. J. Fungi 2023, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Li, Q.; Zhou, X.; Li, L.; Li, T.; Zhou, J.; Li, S.; Peng, H.; Zhang, W.; Fang, Z. Application of Cassava MNP Markers in Variety Identification. Chin. J. Trop. Crops 2023, 44, 2417–2423. (In Chinese) [Google Scholar]
- Ling, Y.; Zhang, M.; Ling, Z.; Cao, B.; Wu, X.; Peng, H.; Wang, Z.; Zhao, R. Evolutionary relationship and a novel method of efficient identification of Lentinula edodes cultivars in China. Mycosphere 2022, 13, 56–85. [Google Scholar] [CrossRef]
- Wei, C.; Wang, M.; Zhang, P.; Liu, F.; Yan, J.; Xie, B.; Deng, Y.; Xie, L. Identification of Pleurotus eryngii Varieties by MNP Makers Based on Next-Generation Sequencing. Acta Edulis Fungi 2023, 30, 9. (In Chinese) [Google Scholar]
- GB/T 19557.19-2018; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability-Chrysanthemum × morifoliu Ramat. National Standard of the P.R.C.: Beijing, China, 2018. (In Chinese)
- Rivera-Colón, A.G.; Catchen, J. Population Genomics Analysis with RAD, Reprised: Stacks 2. Methods Mol. Biol. 2022, 2498, 99–149. [Google Scholar]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3. 5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Song, A.; Dong, G.; Zhao, H.; Sun, W.; Ramakrishnan, S.; Wang, Y.; Wang, S.; Li, T.; et al. The Chrysanthemum nankingense Genome Provides Insights into the Evolution and Diversification of Chrysanthemum Flowers and Medicinal Traits. Mol. Plant. 2018, 11, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Li, L.; Zhou, J.; You, A.; Gao, L.; Li, T.; Chen, H.; Han, R.; Chen, L.; Xiao, H.; et al. Multiple nucleotide polymorphism DNA markers for the accurate evaluation of genetic variations. bioRxiv 2021. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Su, J.; Wang, H.; Zhang, Z.; Zhang, X.; Van de Peer, Y.; Chen, F.; Fang, W.; Guan, Z.; Zhang, F.; et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nat. Commun. 2023, 14, 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, X.; Zhu, J.; Wang, C.; Hong, Y.; Lu, J.; Liu, Q.; Li, B.; Zhu, M.; Wang, Z.; et al. A classification study for chrysanthemum (Chrysanthemum × grandiflorum Tzvelv.) cultivars based on multivariate statistical analyses. J. Syst. Evol. 2014, 52, 612–628. [Google Scholar] [CrossRef]
- Wang, L.; Xun, H.; Aktar, S.; Zhang, R.; Wu, L.; Ni, D.; Wei, K.; Wang, L. Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. Plants 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kang, M.Y.; Shim, E.J.; Oh, J.; Seo, K.I.; Kim, K.S.; Sim, S.C.; Chung, S.M.; Park, Y.; Lee, G.P.; et al. Genome-wide core sets of SNP markers and Fluidigm assays for rapid and effective genotypic identification of Korean cultivars of lettuce (Lactuca sativa L.). Hortic. Res. 2022, 9, uhac119. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Kim, M.; Jung, J.K.; Shim, E.J.; Chung, S.M.; Park, Y.; Lee, G.P.; Sim, S.C. Genome-wide SNP discovery and core marker sets for assessment of genetic variations in cultivated pumpkin (Cucurbita spp.). Hortic. Res. 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, H.; Dong, Y.; Li, T.; Fang, Z.; Zhu, S.; Liu, J. Application of an Accurate Identification Technology MNP Marker Method in the Identification of Qiai; China Association for Acupuncture and Moxibustion: Beijing, China, 2019. [Google Scholar]
- Bostyn, S. Plant Variety Rights Protection and Essentially Derived Varieties: A Fresh Proposal to Untie the Gordian Knot. GRUR Int. 2020, 69, 785–802. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Liu, F.; Zhao, J.; Zhang, Y.; Zheng, W.; Fan, L. Preliminary Investigation of Essentially Derived Variety of Tea Tree and Development of SNP Markers. Plants 2023, 12, 1643. [Google Scholar] [CrossRef]
Group Code | Group Description | Variety Code | Variety Name | Origin |
---|---|---|---|---|
G1 | Variety with edible quality | C-1 | Hangbaiju | Henan, China |
C-2 | Jiuyueju | Jiangsu, China | ||
C-3 | Jinsihuangju | Jiangxi, China | ||
C-4 | Qiyuebai | Anhui, China | ||
G2 | Potted variety | C-5 | Zhongshanjinyang | Jiangsu, China |
C-6 | Zhongshanguanghui | Jiangsu, China | ||
C-7 | Zhongshanzisongguo | Jiangsu, China | ||
C-8 | Xixiahongyi | Jiangsu, China | ||
G3 | Chinese traditional variety | C-9 | Jinlongzhua | Tianjing, China |
C-10 | Fenshiba | Hebei, China | ||
C-11 | Yupantuogui | Hebei, China | ||
C-12 | Jinfenghuangchao | Beijing, China | ||
C-13 | Panlongbiyu | Hubei, China | ||
G4 | Cut-flower variety with small inflorescence | C-14 | Aladuo | Netherlands |
C-15 | Ruiduositebai | Netherlands | ||
C-16 | Kelongxiangshui | Netherlands | ||
C-17 | Luomajiari | Netherlands | ||
C-18 | Yinyang | Netherlands | ||
C-19 | Tesileizi | Netherlands | ||
C-20 | Nannongyuzhu | Jiangsu, China | ||
C-21 | Nannonghengchun | Jiangsu, China | ||
C-22 | Nannongxiazhu | Jiangsu, China | ||
C-23 | Nannongnianluo | Jiangsu, China | ||
G5 | Cut-flower variety with large inflorescence | C-24 | Nannonghuangfengwo | Jiangsu, China |
C-25 | Songyue | Yunnan, China | ||
C-26 | Chengsongyue | Yunnan, China | ||
C-27 | Fenanna | Yunnan, China | ||
C-28 | Danlvtianzan | Yunnan, China | ||
C-29 | Qiuhuang | Yunnan, China | ||
C-30 | Jiemo | Jiangsu, China |
Variety Code | Number of MNP Commonly Detected in Both Replicates | Number of MNPs with Different Genotypes between Replicates | Repeatability (%) | Accuracy (%) |
---|---|---|---|---|
V1 | 471 | 1 | 99.79 | 99.89 |
V2 | 460 | 0 | 100.00% | 100.00% |
V3 | 471 | 2 | 99.58% | 99.79% |
V4 | 459 | 1 | 99.78% | 99.89% |
V5 | 469 | 1 | 99.79% | 99.89% |
V6 | 465 | 2 | 99.57% | 99.78% |
V7 | 452 | 0 | 100.00% | 100.00% |
V8 | 463 | 3 | 99.35% | 99.68% |
sum | 3710 | 10 | 99.73% | 99.87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, Q.; Li, T.; Teng, C.; Peng, H.; Yao, Z.; Fang, Z.; Zhou, J.; Yang, X.; Qiao, J.; et al. Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum. Horticulturae 2024, 10, 845. https://doi.org/10.3390/horticulturae10080845
Liu Y, Zhao Q, Li T, Teng C, Peng H, Yao Z, Fang Z, Zhou J, Yang X, Qiao J, et al. Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum. Horticulturae. 2024; 10(8):845. https://doi.org/10.3390/horticulturae10080845
Chicago/Turabian StyleLiu, Yanfang, Qin Zhao, Tiantian Li, Cailing Teng, Hai Peng, Zongze Yao, Zhiwei Fang, Junfei Zhou, Xiaohong Yang, Juxiang Qiao, and et al. 2024. "Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum" Horticulturae 10, no. 8: 845. https://doi.org/10.3390/horticulturae10080845
APA StyleLiu, Y., Zhao, Q., Li, T., Teng, C., Peng, H., Yao, Z., Fang, Z., Zhou, J., Yang, X., Qiao, J., Mao, J., Guan, Z., & Hu, Q. (2024). Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum. Horticulturae, 10(8), 845. https://doi.org/10.3390/horticulturae10080845