Key Points
-
Microsatellites, or tandem repeats of 1–6 bp, are abundant in the genomes of higher organisms and usually show high levels of polymorphism.
-
The density of microsatellites differs among species, as does the relative frequency of different repeat motifs.
-
Microsatellites are usually considered to be neutral markers and mainly occur in non-coding DNA.
-
Mutations in simple repeats lead to the insertion or deletion of one or a few repeat units, a situation that is broadly compatible with the stepwise mutation model.
-
One model of microsatellite evolution posits that stationary length distributions arise from a balance between length mutations, which tend to promote repeat growth, and point mutations, which tend to break long repeat arrays into smaller units.
-
The main mechanism of mutation is replication slippage, which results from the transient dissociation of the replicating DNA strands followed by misaligned reassociation.
-
Most primary mutations in microsatellites are corrected by the mismatch-repair system. Cells that are deficient in mismatch repair show highly elevated rates of microsatellite mutation.
-
Microsatellite mutation rate generally increases with repeat number.
-
Mutation rate heterogeneity among markers is significant, although the causes of this variation are not yet fully understood.
Abstract
Few genetic markers, if any, have found such widespread use as microsatellites, or simple/short tandem repeats. Features such as hypervariability and ubiquitous occurrence explain their usefulness, but these features also pose several questions. For example, why are microsatellites so abundant, why are they so polymorphic and by what mechanism do they mutate? Most importantly, what governs the intricate balance between the frequent genesis and expansion of simple repetitive arrays, and the fact that microsatellite repeats rarely reach appreciable lengths? In other words, how do microsatellites evolve?
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). The first description and analysis of a publicly released assembly of the human genome.
Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).
Orgel, L. E. & Crick, F. H. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).
Weber, J. L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).
Weber, J. L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).
Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101, 581–584 (2000).
Albà, M. M. & Guigó, R. Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 14, 549–545 (2004).
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).
Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).
Webster, M. T., Smith, N. G. & Ellegren, H. Microsatellite evolution inferred from human–chimpanzee genomic sequence alignments. Proc. Natl Acad. Sci. USA 99, 8748–8753 (2002). Provides an unbiased comparison of microsatellite length in humans and chimpanzees on the basis of orthologous genome sequence data.
Pascual, M., Schug, M. D. & Aquadro, C. F. High density of long dinucleotide microsatellites in Drosophila subobscura. Mol. Biol. Evol. 17, 1259–1267 (2000).
Schlotterer, C. & Harr, B. Drosophila virilis has long and highly polymorphic microsatellites. Mol. Biol. Evol. 17, 1641–1646 (2000).
Hancock, J. M. Simple sequences in a 'minimal' genome. Nature Genet. 14, 14–15 (1996).
Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981 (2000).
Katti, M. V., Ranjekar, P. K. & Gupta, V. S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18, 1161–1167 (2001).
Morgante, M., Hanafey, M. & Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet. 30, 194–200 (2002).
Lagercrantz, U., Ellegren, H. & Andersson, L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res. 21, 1111–1115 (1993).
Bachtrog, D., Weiss, S., Zangerl, B., Brem, G. & Schlotterer, C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol. Biol. Evol. 16, 602–610 (1999).
Arcot, S. S., Wang, Z., Weber, J. L., Deininger, P. L. & Batzer, M. A. Alu repeats: a source for the genesis of primate microsatellites. Genomics 29, 136–144 (1995).
Ramsay, L. et al. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17, 415–425 (1999).
Temnykh, S. et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441–1452 (2001).
Wilder, J. & Hollocher, H. Mobile elements and the genesis of microsatellites in dipterans. Mol. Biol. Evol. 18, 384–392 (2001).
Field, D. & Wills, C. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc. Natl Acad. Sci. USA 95, 1647–1652 (1998).
Metzgar, D., Thomas, E., Davis, C., Field, D. & Wills, C. The microsatellites of Escherichia coli: rapidly evolving repetitive DNAs in a non-pathogenic prokaryote. Mol. Microbiol. 39, 183–190 (2001).
Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).
Ohta, T. & Kimura, M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22, 201–204 (1973). Classic description of the stepwise mutation model.
Shriver, M. D., Jin, L., Chakraborty, R. & Boerwinkle, E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics 134, 983–993 (1993).
Valdes, A. M., Slatkin, M. & Freimer, N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737–749 (1993).
Kimmel, M. & Chakraborty, R. Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor. Popul. Biol. 50, 345–367 (1996).
Kimmel, M., Chakraborty, R., Stivers, D. N. & Deka, R. Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci. Genetics 143, 549–555 (1996).
Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl Acad. Sci. USA 91, 3166–3170 (1994).
Nauta, M. J. & Weissing, F. J. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143, 1021–1032 (1996).
Feldman, M. W., Bergman, A., Pollock, D. D. & Goldstein, D. B. Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics 145, 207–216 (1997).
Pollock, D. D., Bergman, A., Feldman, M. W. & Goldstein, D. B. Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. Theor. Popul. Biol. 53, 256–271 (1998).
Stefanini, F. M. & Feldman, M. W. Bayesian estimation of range for microsatellite loci. Genet. Res. 75, 167–177 (2000).
Garza, J. C., Slatkin, M. & Freimer, N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol. Biol. Evol. 12, 594–603 (1995).
Zhivotovsky, L. A. A new genetic distance with application to constrained variation at microsatellite loci. Mol. Biol. Evol. 16, 467–471 (1999).
Calabrese, P. & Durrett, R. Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. Mol. Biol. Evol. 20, 715–725 (2003).
Cooper, G., Burroughs, N. J., Rand, D. A., Rubinsztein, D. C. & Amos, W. Markov chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation. Proc. Natl Acad. Sci. USA 96, 11916–11921 (1999).
Nielsen, R. & Palsboll, P. J. Single-locus tests of microsatellite evolution: multi-step mutations and constraints on allele size. Mol. Phylogenet. Evol. 11, 477–484 (1999).
Renwick, A., Davison, L., Spratt, H., King, J. P. & Kimmel, M. DNA dinucleotide evolution in humans: fitting theory to facts. Genetics 159, 737–747 (2001).
Dieringer, D. & Schlotterer, C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res. 13, 2242–2251 (2003).
Bell, G. I. & Jurka, J. The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single-step mutation process. J. Mol. Evol. 44, 414–421 (1997).
Kruglyak, S., Durrett, R. T., Schug, M. D. & Aquadro, C. F. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl Acad. Sci. USA 95, 10774–10778 (1998). Provides an integrated model of microsatellite evoluton that takes length mutations as well as base substitutions into account.
Calabrese, P. P., Durrett, R. T. & Aquadro, C. F. Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. Genetics 159, 839–852 (2001).
Levinson, G. & Gutman, G. A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15, 5323–5338 (1987). Firm demonstration of replication slippage as a main mechanism for microsatellite instability.
Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).
Schlotterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215 (1992). Experimental evidence that DNA polymerase is the only enzymatic activity needed for replication slippage.
Hile, S. E. & Eckert, K. A. Positive correlation between DNA polymerase α-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J. Mol. Biol. 335, 745–759 (2004).
Hauge, X. Y. & Litt, M. A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2, 411–415 (1993).
Murray, V., Monchawin, C. & England, P. R. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res. 21, 2395–2398 (1993).
Shinde, D., Lai, Y., Sun, F. & Arnheim, N. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res. 31, 974–980 (2003).
Berg, I., Neumann, R., Cederberg, H., Rannug, U. & Jeffreys, A. J. Two modes of germline instability at human minisatellite MS1 (locus D1S7): complex rearrangements and paradoxical hyperdeletion. Am. J. Hum. Genet. 72, 1436–1447 (2003).
Majewski, J. & Ott, J. GT repeats are associated with recombination on human chromosome 22. Genome Res. 10, 1108–1114 (2000).
Treco, D. & Arnheim, N. The evolutionarily conserved repetitive sequence d(TG. AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol. Cell. Biol. 6, 3934–3947 (1986).
Huang, Q. Y. et al. Mutation patterns at dinucleotide microsatellite loci in humans. Am. J. Hum. Genet. 70, 625–634 (2002).
Heyer, E., Puymirat, J., Dieltjes, P., Bakker, E. & de Knijff, P. Estimating Y chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. Hum. Mol. Genet. 6, 799–803 (1997).
Kayser, M. et al. Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am. J. Hum. Genet. 66, 1580–1588 (2000).
Hile, S. E., Yan, G. & Eckert, K. A. Somatic mutation rates and specificities at TC/AG and GT/CA microsatellite sequences in nontumorigenic human lymphoblastoid cells. Cancer Res. 60, 1698–1703 (2000).
Brohede, J., Primmer, C. R., Moller, A. & Ellegren, H. Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Res. 30, 1997–2003 (2002).
Shimoda, N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219–232 (1999).
Fitzsimmons, N. N. Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Mol. Ecol. 7, 575–584 (1998).
Gardner, M. G., Bull, C. M., Cooper, S. J. & Duffield, G. A. Microsatellite mutations in litters of the Australian lizard Egernia stokesii. J. Evol. Biol. 13, 551–560 (2000).
Jones, A. G., Rosenqvist, G., Berglund, A. & Avise, J. C. Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 152, 1057–1063 (1999).
Amos, W., Sawcer, S. J., Feakes, R. W. & Rubinsztein, D. C. Microsatellites show mutational bias and heterozygote instability. Nature Genet. 13, 390–391 (1996).
Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J. & Rolf, B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).
Holtkemper, U., Rolf, B., Hohoff, C., Forster, P. & Brinkmann, B. Mutation rates at two human Y-chromosomal microsatellite loci using small pool PCR techniques. Hum. Mol. Genet. 10, 629–633 (2001). Introduction of sperm typing as an alternative means for microsatellite mutation detection.
Myhre Dupuy, B., Stenersen, M., Egeland, T. & Olaisen, B. Y-chromosomal microsatellite mutation rates: differences in mutation rate between and within loci. Hum. Mutat. 23, 117–124 (2004).
Ellegren, H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nature Genet. 24, 400–402 (2000).
Xu, X., Peng, M. & Fang, Z. The direction of microsatellite mutations is dependent upon allele length. Nature Genet. 24, 396–399 (2000).
Primmer, C. R., Saino, N., Moller, A. P. & Ellegren, H. Directional evolution in germline microsatellite mutations. Nature Genet. 13, 391–393 (1996).
Primmer, C. R., Saino, N., Moller, A. P. and Ellegren, H. Unraveling the process of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica. Mol. Biol. Evol. 15, 1047–1054 (1998).
Beck, N. R., Double, M. C. & Cockburn, A. Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Mol. Biol. Evol. 20, 54–61 (2003).
Harr, B. & Schlotterer, C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155, 1213–1220 (2000).
Metzgar, D., Liu, L., Hansen, C., Dybvig, K. & Wills, C. Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. Genome Res. 12, 408–413 (2002).
Estoup, A., Jarne, P. & Cornuet, J. M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002). A useful overview of the implications of microsatellite homoplasy in evolutionary studies.
Messier, W., Li, S. H. & Stewart, C. B. The birth of microsatellites. Nature 381, 483 (1996).
Orti, G., Pearse, D. E. & Avise, J. C. Phylogenetic assessment of length variation at a microsatellite locus. Proc. Natl Acad. Sci. USA 94, 10745–10749 (1997).
Angers, B. & Bernatchez, L. Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol. Biol. Evol. 14, 230–238 (1997).
Primmer, C. R. & Ellegren, H. Patterns of molecular evolution in avian microsatellites. Mol. Biol. Evol. 15, 997–1008 (1998).
Harr, B., Zangerl, B. & Schlotterer, C. Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila. Mol. Biol. Evol. 17, 1001–1009 (2000).
Zhu, Y., Strassmann, J. E. & Queller, D. C. Insertions, substitutions, and the origin of microsatellites. Genet. Res. 76, 227–236 (2000).
Taylor, J. S., Durkin, J. M. & Breden, F. The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol. Biol. Evol. 16, 567–572 (1999).
Schlotterer, C., Amos, B. & Tautz, D. Conservation of polymorphic simple sequence loci in cetacean species. Nature 354, 63–65 (1991).
Colson, I. & Goldstein, D. B. Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152, 617–627 (1999).
Ellegren, H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 16, 551–558 (2000).
Schug, M. D., Mackay, T. F. & Aquadro, C. F. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nature Genet. 15, 99–102 (1997). Characterizaton of mutation rate and repeat lengths of microsatellites in D. melanogaster , revealing significant differences from vertebrate genomes.
Leopoldino, A. M. & Pena, S. D. The mutational spectrum of human autosomal tetranucleotide microsatellites. Hum. Mutat. 21, 71–79 (2003).
Sibly, R. M. et al. The structure of interrupted human AC microsatellites. Mol. Biol. Evol. 20, 453–459 (2003).
Crozier, R. H., Kaufmann, B., Carew, M. E. & Crozier, Y. C. Mutability of microsatellites developed for the ant Camponotus consobrinus. Mol. Ecol. 8, 271–276 (1999).
Glenn, T. C., Stephan, W., Dessauer, H. C. & Braun, M. J. Allelic diversity in alligator microsatellite loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Mol. Biol. Evol. 13, 1151–1154 (1996).
Bachtrog, D., Agis, M., Imhof, M. & Schlotterer, C. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol. Biol. Evol. 17, 1277–1285 (2000).
Harr, B., Zangerl, B., Brem, G. & Schlotterer, C. Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Mol. Biol. Evol. 15, 176–184 (1998).
Mellon, I., Rajpal, D. K., Koi, M., Boland, C. R. & Champe, G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560 (1996).
Ellegren, H., Smith, N. G. & Webster, M. T. Mutation rate variation in the mammalian genome. Curr. Opin. Genet. Dev. 13, 562–568 (2003).
Santibanez-Koref, M. F., Gangeswaran, R. & Hancock, J. M. A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol. Biol. Evol. 18, 2119–2123 (2001). Offers a suggestion for how variation in microsatellite length might relate to point-mutation-rate heterogeneity.
Brohede, J., Arnheim, N. & Ellegren, H. Single molecule analysis of the hypermutable tetranucleotide repeat locus D21S1245 through sperm genotyping: a heterogeneous pattern of mutation but no clear male age effect. Mol. Biol. Evol. 21, 58–64 (2004).
Henderson, S. T. & Petes, T. D. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2749–2757 (1992). Introduces an experimental approach to the study of microsatellite mutations, using artificial plasmid-borne repeat sequences associated with a resistance or reporter gene.
Sia, E. A., Kokoska, R. J., Dominska, M., Greenwell, P. & Petes, T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17, 2851–2858 (1997).
Strauss, B. S., Sagher, D. & Acharya, S. Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. Nucleic Acids Res. 25, 806–813 (1997).
Tran, H. T., Keen, J. D., Kricker, M., Resnick, M. A. & Gordenin, D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17, 2859–2865 (1997).
Gutierrez, P. J. & Wang, T. S. Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165, 65–81 (2003).
Wierdl, M., Dominska, M. & Petes, T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769–779 (1997).
Yamada, N. A. et al. Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells. Mutat. Res. 499, 213–225 (2002).
Petes, T. D., Greenwell, P. W. & Dominska, M. Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. Genetics 146, 491–498 (1997).
Bacon, A. L., Farrington, S. M. & Dunlop, M. G. Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair-deficient cells. Hum. Mol. Genet. 9, 2707–2713 (2000).
Maurer, D. J., O'Callaghan, B. L. & Livingston, D. M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 6617–6622 (1996).
Eckert, K. A. & Yan, G. Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. Nucleic Acids Res. 28, 2831–2838 (2000).
Lee, J. S., Hanford, M. G., Genova, J. L. & Farber, R. A. Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. Hum. Mol. Genet. 8, 2567–2572 (1999).
Sagher, D., Hsu, A. & Strauss, B. Stabilization of the intermediate in frameshift mutation. Mutat. Res. 423, 73–77 (1999).
Boyer, J. C. et al. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Hum. Mol. Genet. 11, 707–713 (2002).
Harfe, B. D. & Jinks-Robertson, S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 156, 571–578 (2000).
Twerdi, C. D., Boyer, J. C. & Farber, R. A. Relative rates of insertion and deletion mutations in a microsatellite sequence in cultured cells. Proc. Natl Acad. Sci. USA 96, 2875–2879 (1999).
Strand, M., Earley, M. C., Crouse, G. F. & Petes, T. D. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 92, 10418–10421 (1995).
Harr, B., Todorova, J. & Schlotterer, C. Mismatch repair-driven mutational bias in D. melanogaster. Mol. Cel. 10, 199–205 (2002).
Amos, W., Hutter, C. M., Schug, M. D. & Aquadro, C. F. Directional evolution of size coupled with ascertainment bias for variation in Drosophila microsatellites. Mol. Biol. Evol. 20, 660–662 (2003).
Ohashi, J. & Tokunaga, K. Power of genome-wide linkage disequilibrium testing by using microsatellite markers. J. Hum. Genet. 48, 487–491 (2003).
Schlotterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003).
Ellegren, H., Lindgren, G., Primmer, C. R. & Moller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997).
Kovalchuk, O., Kovalchuk, I., Arkhipov, A., Hohn, B. & Dubrova, Y. E. Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post-Chernobyl radioactive contamination. Mutat. Res. 525, 93–101 (2003).
Dubrova, Y. E. et al. Human minisatellite mutation rate after the Chernobyl accident. Nature 380, 683–686 (1996).
Spritz, R. A. Duplication/deletion polymorphism 5′- to the human β-globin gene. Nucleic Acids Res. 9, 5037–5047 (1981).
Miesfeld, R., Krystal, M. & Arnheim, N. A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human δ- and β-globin genes. Nucleic Acids Res. 9, 5931–5947 (1981).
Hamada, H. & Kakunaga, T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298, 396–398 (1982).
Jeffreys, A. J., Wilson, V. & Thein, S. L. Hypervariable 'minisatellite' regions in human DNA. Nature 314, 67–73 (1985).
Tautz, D., Trick, M. & Dover, G. A. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322, 652–656 (1986).
Litt, M. & Luty, J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401 (1989). This paper, and references 128 and 129, introduce the use of PCR for genotyping microsatellites.
Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).
Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471 (1989).
Ellegren, H. DNA typing of museum birds. Nature 354, 113 (1991).
Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).
Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).
Dawid, A. P., Mortera, J. & Pascali, V. L. Non-fatherhood or mutation? A probabilistic approach to parental exclusion in paternity testing. Forensic Sci. Int. 124, 55–61 (2001).
Whittaker, J. C. et al. Likelihood-based estimation of microsatellite mutation rates. Genetics 164, 781–787 (2003).
Acknowledgements
The author would like to acknowledge two particularly helpful reviewers who provided useful comments on the manuscript. The author's work was supported in part by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Glossary
- HETEROZYGOSITY
-
The proportion of individuals in a population that carry two different alleles at a locus.
- GENE FLOW
-
The transfer of alleles within and between populations that arises from migration and dispersal.
- DENSITY GRADIENT CENTRIFUGATION
-
Separation of biomolecules on the basis of their density.
- RETROTRANSPOSONS
-
Mobile elements that spread in the genome through an RNA intermediate.
- EFFECTIVE POPULATION SIZE
-
The theoretical size of an idealized population that has the same magnitude of random genetic drift as the actual population.
- SKEWNESS
-
Deviation from the normal distribution.
- MISMATCH-REPAIR SYSTEM
-
An enzymatic system for the correction of errors that are introduced during DNA replication or recombination when an incorrect base is incorporated into the daughter strand, or when small insertion–deletion loops are being formed.
- GENE CONVERSION
-
A meiotic process of directed change in which one allele directs the conversion of a partner allele to its own form.
- TRANSCRIPTION-COUPLED REPAIR
-
Preferential repair of the transcribed strand of an active gene that is performed by excision-repair pathways.
Rights and permissions
About this article
Cite this article
Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5, 435–445 (2004). https://doi.org/10.1038/nrg1348
Issue Date:
DOI: https://doi.org/10.1038/nrg1348
This article is cited by
-
Comparative chloroplast genomics of 24 species shed light on the genome evolution and phylogeny of subtribe Coelogyninae (Orchidaceae)
BMC Plant Biology (2024)
-
Exploring the mating systems of wild rice Oryza rufipogon and O. nivara: implications for population genetic variation
Genetic Resources and Crop Evolution (2024)
-
Teleost genomic repeat landscapes in light of diversification rates and ecology
Mobile DNA (2023)
-
Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci
Journal of Genetic Engineering and Biotechnology (2023)
-
Pattern and variation in simple sequence repeat (SSR) at different genomic regions and its implications to maize evolution and breeding
BMC Genomics (2023)