Composition and Physicochemical Properties of Pomace of Various Cultivars of Blackberry (Rubus fruticosus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blackberry Pomace Sample Preparation
2.2. Chemicals and Reference Substances
2.3. Approximate Composition of Blackberry Pomace
2.4. Determination of Dietary Fiber Fractions
2.5. Determination of Total Anthocyanin Content (TAC)
2.6. Color Parameters of Blackberry Pomace
2.7. Determination of Techno-Functional Properties of Blackberry Pomace
2.7.1. Pomace Seed Content
2.7.2. The Water Holding Capacity (WHC), Swelling Capacity (SC), and Oil Holding Capacity (OHC)
2.8. Statistical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Promoting Fruit and Vegetable Consumption around the World. Available online: https://www.fao.org/documents/card/en/c/cb7956en (accessed on 30 October 2023).
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. Available online: https://pubmed.ncbi.nlm.nih.gov/16385975/ (accessed on 29 November 2023). [CrossRef]
- Silva, S.H.; Figueiredo, J.A.; Rodrigues, A.A.; Vilela de Resende, J. Drying efficiency and quality preservation of blackberries (Rubus spp. variety Tupy) in the near and mid-infrared-assisted freeze-drying. Food Chem. Adv. 2023, 3, 100550. [Google Scholar] [CrossRef]
- Dos Santos, S.S.; Paraíso, C.M.; Romanini, E.B.; Côrrea, V.G.; Peralta, R.M.; da Costa, S.C.; de Oliveira Santos Junior, O.; Visentainer, J.V.; Reis, M.H.; Madrona, G.S. Bioavailability of blackberry pomace microcapsules by using different techniques: An approach for yogurt application. Innov. Food Sci. Emerg. Technol. 2022, 81, 103111. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Panteldis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- Četojević-Simin, D.; Ranitović, A.S.; Cvetković, D.D.; Markov, S.L.; Vinčić, M.N.; Đilas, S.M. Bioactivity of blackberry (Rubus fruticosus L.) pomace: Polyphenol content, radical scavenging, antimicrobial and antitumor activity. Acta Period. Technol. 2017, 48, 63–76. [Google Scholar] [CrossRef]
- Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hewes, D.; Salaheen, S.; Federman, C.; Biswas, D. Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control 2014, 37, 15–20. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F.J.; Escudero-Gilete, M.L. Comparative study of red berry pomaces (blueberry, red raspberry, red currant and blackberry) as source of antioxidants and pigments. Eur. Food Res. Technol. 2019, 245, 1–9. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Kitrytė, V.; Narkevičiūtė, A.; Tamkutė, L.; Syrpas, M.; Pukalskienė, M.; Venskutonis, P.R. Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chem. 2020, 312, 126072. [Google Scholar] [CrossRef]
- Reißner, A.M.; Al–Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef]
- European Commission. Food 2030 Pathways for Action: Research and Innovation Policy as a Driver for Sustainable, Healthy and Inclusive Food Systems; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Radočaj, O.; Vujasinović, V.; Dimić, E.; Basić, Z. Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after long-term frozen storage of berries can be used as functional food ingredients. Eur. J. Lipid Sci. Technol. 2014, 116, 1015–1024. [Google Scholar] [CrossRef]
- Lavelli, V. Circular Food Supply Chains—Impact on Value Addition and Safety. Trends Food Sci. Technol. 2021, 114, 323–332. [Google Scholar] [CrossRef]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in fruit industry and their contemporary potential application. Agric. Food Sci. 2016, 48, 259–265. Available online: https://www.researchgate.net/publication/304151790_Pomace_in_fruit_industry_and_their_contemporary_potential_application (accessed on 29 November 2023).
- Ibrahim, H.M.; Zaghloul, S.; Hashem, M.; El-Shafei, A. A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose 2020, 28, 549–564. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu–Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by–products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Use of Berry Pomace to Design Functional Foods. Food Rev. Int. 2023, 39, 3204–3224. [Google Scholar] [CrossRef]
- Paun, N.; Botoran, O.R.; Niculescu, V.C. Total Phenolic, Anthocyanins HPLC–DAD–MS Determination and Antioxidant Capacity in Black Grape Skins and Blackberries: A Comparative Study. Appl. Sci. 2022, 12, 936. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef]
- Jurevičiūtė, I.; Keršienė, M.; Bašinskienė, L.; Leskauskaitė, D.; Jasutienė, I. Characterization of Berry Pomace Powders as Dietary Fiber–Rich Food Ingredients with Functional Properties. Foods 2022, 11, 716. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues cv. Tupy. J. Food Qual. 2018, 9, 5950761. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Jukniūtė, K.; Šlepetienė, A.; Paulauskienė, A. Qualitative properties of cookies enriched with berries pomace. Food Sci. Technol. 2020, 41, 63–76. [Google Scholar] [CrossRef]
- ISO 751:1998; Fruit and Vegetable Products. Determination of Water-Insoluble Solids. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 5984:2002; Animal Feeding Stuffs—Determination of Crude Ash. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 20483:2013; Cereals and Pulses. Determination of the Nitrogen Content And Calculation of the Crude Protein Content Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 11085:2015; Cereals, Cereals-Based Products and Animal Feeding Stuffs. Determination of Crude Fat and Total Fat Content by the Randall Extraction Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 13906:2008; Animal Feeding Stuffs. Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. International Organization for Standardization: Geneva, Switzerland, 2008.
- Faithful, N. Methods in Agricultural Chemical Analysis. A Practical Handbook; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates inplant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Butkutė, B.; Lemežienė, N.; Cesevičienė, J.; Liatukas, Ž.; Dabkevičienė, G. Carbohydrate and lignin partitioning in switchgrass (Panicumvirgatum L.) biomass as a bioenergy feedstock. Zemdirb. Agric. 2013, 100, 251–260. [Google Scholar] [CrossRef]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Bobinas, C.; Petruskevicius, A.; Klavins, L.; Viskelis, J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries (Vaccinium myrtillus L.). Antioxidants 2022, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Kocadağlı, T.; Vančetović, J.; Gökmen, V. Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. Lebensm. Wiss. Technol. 2016, 65, 597–603. [Google Scholar] [CrossRef]
- Kosmala, M.; Jurgoński, A.; Juśkiewicz, J.; Karlińska, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical Composition of Blackberry Press Cake, Polyphenolic Extract, and Defatted Seeds, and Their Effects on Cecal Fermentation, Bacterial Metabolites, and Blood Lipid Profile in Rats. J. Agric. Food Chem. 2017, 65, 5470–5479. [Google Scholar] [CrossRef]
- Pasquel-Reátegui, J.L.; Da Fonseca Machado, A.P.; Barbero, G.F.; Rezende, C.A.; Martinez, J. Extraction of Antioxidant Compounds from Blackberry (Rubus sp.) Bagasse Using Supercritical CO2 Assisted by Ultrasound. J. Supercrit. Fluids 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Gouw, P.; Jung, J.; Zhao, Y. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT—Food Sci Technol. 2017, 80, 136–144. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Nafchi, A.M.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag. Shelf Life 2022, 33, 2214–2894. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Mounir, S.; Allaf, K. Functional Properties of Water Holding Capacity, Oil Holding Capacity, Wettability, and Sedimentation of Swell-Dried Soybean Powder. Sch. J. Eng. Technol. 2015, 3, 402–412. [Google Scholar]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef] [PubMed]
- Isopencu, G.O.; Stoica-Guzun, A.; Busuioc, C.; Stroescu, M.; Deleanu, I.M. Development of antioxidant and antimicrobial edible coatings incorporating bacterial cellulose, pectin, and blackberry pomace. Carbohydr. Polym. Technol. Appl. 2021, 2, 100057. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, F.; Wu, W.; Lyu, L.; Li, W. Proteins from Blackberry Seeds: Extraction, Osborne Isolate, Characteristics, Functional Properties, and Bioactivities. Int. J. Mol. Sci. 2023, 24, 15371. [Google Scholar] [CrossRef] [PubMed]
Composition/Blackberry Cultivar | ‘Polar’ | ‘Orkan’ | ‘Brzezina’ |
---|---|---|---|
Dry matter | 97.92 ± 0.03 a | 97.80 ± 0.03 a | 97.14 ± 0.01 b |
Protein | 9.25 ± 0.02 a | 7.26 ± 0.15 c | 8.58 ± 0.45 b |
Fat | 12.25 ± 0.10 a | 10.09 ± 0.40 b | 9.97 ± 0.25 b |
Ash | 2.55 ± 0.08 a | 3.97 ± 1.71 a | 2.49 ± 0.07 a |
ADF | 35.32 ± 0.51 ab | 34.35 ± 0.84 b | 36.05 ± 0.69 a |
NDF | 43.25 ± 0.55 a | 38.22 ± 0.35 b | 37.57 ± 1.38 b |
Lignin | 16.57 ± 1.34 a | 16.80 ± 0.09 a | 16.73 ± 0.4 a |
WSCs | 36.33 ± 0.37 a | 36.24 ± 0.08 a | 36.22 ± 0.96 a |
Cellulose | 18.75 ± 0.83 ab | 17.55 ± 0.93 b | 19.31 ± 0.64 a |
Hemicellulose | 7.94 ± 1.06 a | 3.87 ± 0.48 b | 1.52 ± 0.69 c |
Total anthocyanins, mg 100 g−1 | 115.62 b | 129.58 a | 113.82 c |
Blackberry Cultivar | Seed Content, % | Water Holding Capacity (g/g) | Swelling Capacity (mL/g) | Oil Holding Capacity (g/g) |
---|---|---|---|---|
‘Orkan’ | 48.97 ± 0.9 a | 1.14 ± 0.2 b | 1.85 ± 0.2 b | 0.98 ± 0.1 c |
‘Brzezina’ | 40.61 ± 0.7 b | 1.26 ± 0.1 a | 1.13 ± 0.6 c | 1.12 ± 0.1 b |
‘Polar’ | 38.50 ± 0.6 c | 1.13 ± 0.2 b | 2.27 ± 0.5 a | 1.26 ± 0.04 a |
Blackberry Cultivar | L* | a* | b* | C | h° |
---|---|---|---|---|---|
‘Polar’ | 33.72 ± 1.16 a | 27.95 ± 0.62 b | 10.3 ± 1.7 a | 29.78 ± 1.4 b | 20.22 ± 0.32 a |
‘Orkan’ | 33.87 ± 0.24 a | 28.96 ± 0.3 a | 9.54 ± 0.41 b | 30.49 ± 1.2 a | 18.23 ± 0.21 b |
‘Brzezina’ | 26.56 ± 0.44 b | 25.49 ± 0.37 c | 8.74 ± 0.26 c | 26.95 ± 1.1 c | 18.92 ± 0.92 b |
Parameter | Oil Holding Capacity (g/g) | Water Holding Capacity (g/g) | Swelling Capacity (mL/g) |
---|---|---|---|
Dry matter | 0.066 | −0.722 * | 0.821 * |
Protein | 0.832 * | 0.013 | 0.164 |
Fat | 0.735 * | −0.408 | 0.793 * |
Ash | −0.725 * | −0.418 | 0.138 |
ADF | 0.499 | 0.660 | −0.399 |
NDF | 0.714 * | −0.464 | 0.811 * |
Lignin | −0.249 | 0.158 | −0.069 |
WSCs | 0.018 | 0.184 | 0.074 |
Cellulose | 0.614 | 0.496 | −0.318 |
Hemicellulose | 0.527 | −0.666 | 0.917 * |
Seed content | −0.865 * | −0.276 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čechovičienė, I.; Šlepetienė, A.; Gumbytė, M.; Paulauskienė, A.; Tarasevičienė, Ž. Composition and Physicochemical Properties of Pomace of Various Cultivars of Blackberry (Rubus fruticosus L.). Horticulturae 2024, 10, 38. https://doi.org/10.3390/horticulturae10010038
Čechovičienė I, Šlepetienė A, Gumbytė M, Paulauskienė A, Tarasevičienė Ž. Composition and Physicochemical Properties of Pomace of Various Cultivars of Blackberry (Rubus fruticosus L.). Horticulturae. 2024; 10(1):38. https://doi.org/10.3390/horticulturae10010038
Chicago/Turabian StyleČechovičienė, Indrė, Alvyra Šlepetienė, Milda Gumbytė, Aurelija Paulauskienė, and Živilė Tarasevičienė. 2024. "Composition and Physicochemical Properties of Pomace of Various Cultivars of Blackberry (Rubus fruticosus L.)" Horticulturae 10, no. 1: 38. https://doi.org/10.3390/horticulturae10010038
APA StyleČechovičienė, I., Šlepetienė, A., Gumbytė, M., Paulauskienė, A., & Tarasevičienė, Ž. (2024). Composition and Physicochemical Properties of Pomace of Various Cultivars of Blackberry (Rubus fruticosus L.). Horticulturae, 10(1), 38. https://doi.org/10.3390/horticulturae10010038