Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations
"> Figure 1
<p>Total polyphenol content (<b>a</b>) and antioxidant activity (<b>b</b>). Each data point is the mean ± the standard error of the mean of three independent experiments.</p> "> Figure 2
<p>SEM micrographs of the microencapsulated PE sample.</p> "> Figure 3
<p>The FTIR spectra of Na alginate, common-plantain extract and microencapsulated common-plantain extract: (<b>a</b>) 3750–2750 cm<sup>−1</sup>; (<b>b</b>) 1800–400 cm<sup>−1</sup> spectral domain.</p> "> Figure 4
<p>Cell viability of fibroblasts treated with alginate and PE formulations after 48 h of exposure to dilutions of each sample extract (<b>left panel</b>) and the PE extract with different concentrations of polyphenols (µg mL<sup>−1</sup>, <b>right panel</b>); the results are expressed as % of the viability of untreated controls, with the toxicity limit at 70%. Lower panels show representative microscopical images of the living cells in culture after 24 h exposure to different alginate formulations (dilution 1:20) and the PE extract (5 µg mL<sup>−1</sup> of polyphenols), bar = 10 µm.</p> "> Figure 5
<p>Collagen synthesis. Collagen 1 and 3 levels were determined by Western blot. Images (upper panel) were quantified by densitometry (lower panels), using GAPDH as a reference. Data are presented as the mean ± SD (<span class="html-italic">n</span> = 3); * = <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.0001 compared to the control and between the treated groups.</p> "> Figure 6
<p>Scratch wound assay. (<b>a</b>) Comparative microscopic images of dermal fibroblasts (objective 4×) following exposure to the alginate formulations containing the extract (dilution 1:20) and to PE (5 µg mL<sup>−1</sup> of polyphenols) at different time points, bar =10 µm; (<b>b</b>) quantification of the wound area closure was performed using the Image J software 1.8.0 and MiToBo plugging (2023). The results are presented as % of the initial wound area. The data are presented as mean ± SD (<span class="html-italic">n</span> = 3). * = <span class="html-italic">p</span> < 0.05 vs. control.</p> "> Figure 7
<p>Oxidative stress and inflammation. Malondialdehyde (MDA) was determined spectrophotometrically (TBA method); Il1α and Il1β were measured by ELISA after 48 h of exposure. Data are shown as mean ± SD (<span class="html-italic">n</span> = 3). * = <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.001, *** <span class="html-italic">p</span> < 0.0001 compared to the control and between the treated groups.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Analysis
2.2. Microencapsulated PE Characterization
2.3. Cell Viability
2.4. Collagen Synthesis
2.5. Scratch Wound Assay
2.6. Oxidative Stress and Inflammation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation and Characterization of the Common-Plantain Extract
4.3. Preparation and Characterization of Sodium Alginate Hydrogels
4.3.1. Preparation of Sodium Alginate Hydrogels
- (a)
- A sodium alginate hydrogel (Alg) was prepared by mixing at 600 rpm sodium alginate with ultrapure water in the ratio of 1:32 (w/v). The stirring took place at 40 °C for 20 min, after which the hydrogel was cooled to room temperature.
- (b)
- Another sodium alginate hydrogel (AlgPE) was obtained in the same way as the first hydrogel, but after it was cooled to room temperature, 5 mL of PE was added under continuous stirring. After adding the extract, stirring continued for another 10 min.
- (c)
- Alginate microspheres (MPE) were obtained by adding the second hydrogel to 200 mL of a 0.05 M CaCl2 solution. The hydrogel was added drop by drop with the help of a syringe, under continuous stirring. After finishing adding the hydrogel to the CaCl2 solution, stirring was continued for another 15 min. At the end, the formed microcapsules were centrifuged for 5 min at 3000 rpm and washed three times with ultrapure water.
4.3.2. Characterization of the Obtained Microcapsules
4.4. Biological Assays
4.4.1. Cell Cultures
4.4.2. Alginate Formulations of the Extract
4.4.3. Viability Assay
4.4.4. Cell Lysates
4.4.5. ELISA and Spectrophotometry
4.4.6. Western Blot
4.4.7. Scratch Wound Assay
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younis, T.; Jabeen, F.; Hussain, A.; Rasool, B.; Ishaq, A.R.; Nawaz, A.; El-Nashar, H.A.S.; El-Shazly, M. Antioxidant and pulmonary protective potential of Fraxinus xanthoxyloides bark extract against CCl4-induced toxicity in rats. Chem. Biodivers. 2023, 20, e202200755. [Google Scholar] [CrossRef] [PubMed]
- Abdelghfar, E.A.R.; El-Nashar, H.A.S.; Fayez, S.; Obaid, W.A.; Eldahshan, O.A. Ameliorative efect of oregano (Origanum vulgare) versus silymarin in experimentally induced hepatic encephalopathy. Sci. Rep. 2022, 12, 17854. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, H.A.S.; Abbas, H.; Zewail, M.; Noureldin, M.H.; Ali, M.M.; Shamaa, M.M.; Khattab, M.A.; Ibrahim, N. Neuroprotective effect of artichoke-based nanoformulation in sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-Inflammatory, and amyloidogenic pathways. Pharmaceuticals 2022, 15, 1202. [Google Scholar] [CrossRef] [PubMed]
- Elham, A.; Eftekhari, A.; Janas, D.; Vahedi, P. Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: A perspective. Nanotheranostics 2023, 7, 61–69. [Google Scholar]
- Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci. 2023, 8, 140–146. [Google Scholar]
- Baran, M.F.; Keskin, C.; Baran, A.; Hatipoğlu, A.; Yildiztekin, M.; Küçükaydin, S.; Kurt, K.; Hoşgören, H.; Sarker, M.M.R.; Sufianov, A.; et al. Green synthesis of silver nanoparticles from Allium cepa L. peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules 2023, 28, 2310. [Google Scholar] [CrossRef]
- Lino, P.B.; Corrêa, C.F.; Archondo, M.E.D.L.; Dellova, D.C.A.L. Evaluation of post-surgical healing in rats using a topical preparation based on extract of Musa sapientum epicarp. Rev. Bras. Farmacogn. 2011, 21, 491–496. [Google Scholar] [CrossRef]
- Zubairab, M.; Nyboma, H.; Lindholmc, C.; Brandnerd, J.M.; Rumpunena, K. Promotion of wound healing by Plantago major L. leaf extracts—Ex-vivo experiments confirm experiences from traditional medicine. Nat. Prod. Res. 2016, 30, 622–624. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L.: A review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Krasnov, M.S.; Yamskova, V.P.; Margasyuk, D.V.; Kulikova, O.G.; Il’ina, A.P.; Rybakova, E.Y.; Yamskov, I.A. Study of a new group of bioregulators isolated from the greater plantain (Plantago major L.). Prikl. Biokhim. Mikrobiol. 2011, 47, 146–153. [Google Scholar] [CrossRef]
- Cheng, K.; Zhu, Y.; Wang, D.; Li, Y.; Xu, X.; Cai, H.; Chu, H.; Li, J.; Zhang, D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. Mater. Sci. Eng. C 2020, 117, 111368. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Chen, X.; Liu, Y.; Yu, L.; Li, J.; Ding, J. Cucurbit [7]-assisted sustained release of human calcitonin from thermosensitive block copolymer hydrogel. Int. J. Pharm. 2017, 527, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gan, D.; Xing, W.; Jiang, L.; Fang, J.; Zhao, C.; Ren, F.; Fang, L.; Wang, K.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487. [Google Scholar] [CrossRef]
- Khunmanee, S.; Jeong, Y.; Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 2017, 8, 2041731417726464. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, H.-W. Emerging properties of hydrogels in tissue engineering. J. Tissue Eng. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Trappmann, B.; Baker, B.M.; Polacheck, W.J.; Choi, C.K.; Burdick, J.A.; Chen, C.S. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun. 2017, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Oprea, A.M.; Ciolacu, D.; Neamtu, A.; Mungiu, O.C.; Stoica, B.; Vasile, C. Cellulose/chondroitin sulfate hydrogels: Synthesis, drug loading/release properties and biocompatibility. Cellul. Chem. Technol. 2010, 44, 369–378. [Google Scholar]
- Masood, F.; Makhdoom, M.A.; Channa, I.A.; Gilani, S.J.; Khan, A.; Hussain, R.; Batool, S.A.; Konain, K.; Rahman, S.U.; Wadood, A.; et al. Development and characterization of chitosan and chondroitin sulfate based hydrogels enriched with garlic extract for potential wound healing/skin regeneration applications. Gels 2022, 8, 676. [Google Scholar] [CrossRef]
- Zahid, M.; Lodhi, M.; Rehan, Z.A.; Tayyab, H.; Javed, T.; Shabbir, R.; Mukhtar, A.; EL Sabagh, A.; Adamski, R.; Sakran, M.I.; et al. Sustainable development of chitosan/Calotropis procera-based hydrogels to stimulate formation of granulation tissue and angiogenesis in wound healing applications. Molecules 2021, 26, 3284. [Google Scholar] [CrossRef]
- Kȩdzierska, M.; Bánkosz, M.; Drabczyk, A.; Kudłacik-Kramarczyk, S.; Jamrozy, M.; Potemski, P. Silver Nanoparticles and Glycyrrhiza glabra (licorice) root extract as modifying agents of hydrogels designed as innovative dressings. Int. J. Mol. Sci. 2023, 24, 217. [Google Scholar] [CrossRef]
- Tanideh, N.; Rokhsari, P.; Mehrabani, D.; Mohammandi Samani, S.; Sarvestani, S.F.; Ashraf, M.J.; Hosseinabadi, K.O.; Shamsian, S.; Ahmadi, N. The healing effect of licorice on Pseudomonas aeruginosa infected burn wounds in experimental rat model. World J. Plast. Surg. 2014, 3, 99–106. [Google Scholar]
- Jales, S.T.L.; Barbosa, R.d.M.; de Albuquerque, A.C.; Duarte, L.H.V.; da Silva, G.R.; Meirelles, L.M.A.; da Silva, T.M.S.; Alves, A.F.; Viseras, C.; Raffin, F.N.; et al. Development and characterization of Aloe vera mucilaginous-based hydrogels for psoriasis treatment. J. Compos. Sci. 2022, 6, 231. [Google Scholar] [CrossRef]
- Ang, L.F.; Darwis, Y.; Koh, R.Y.; Leong, K.V.G.; Yew, M.Y.; Por, L.Y.; Yam, M.F. Wound healing property of curcuminoids as a microcapsule-incorporated cream. Pharmaceutics 2019, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Garg, P.; Goyal, R.; Kaur, G.; Li, X.; Negi, P.; Valis, M.; Kuca, K.; Kulshrestha, S. A novel herbal hydrogel formulation of Moringa oleifera for wound healing. Plants 2021, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Mazzutti, S.; Riehl, C.A.S.; Ibanez, E.; Ferreira, S.R.S. Green-based methods to obtain bioactive extracts from Plantago major and Plantago lanceolata. J. Supercrit. Fluids 2017, 119, 211–220. [Google Scholar] [CrossRef]
- Mazzutti, S.; Ferreira, S.R.S.; Herrero, M.; Ibanez, E. Intensified aqueous-based processes to obtain bioactive extracts from Plantago major and Plantago lanceolata. J. Supercrit. Fluids 2017, 119, 64–71. [Google Scholar] [CrossRef]
- Karima, S.; Farida, S.; Mihoub, Z.M. Antioxidant and antimicrobial activities of Plantago major. Int. J. Pharm. Pharm. Sci. 2015, 7, 58–64. [Google Scholar]
- Sarker, B.; Papageorgiou, D.G.; Silva, R.; Zehnder, T.; Gul-E-Noor, F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detscha, R.; Boccaccini, A.R. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2014, 2, 1470–1482. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Sokolan, N.I.; Kolotova, D.S.; Kuchina, Y.A. Interactions between gelatin and sodium alginate: UV and FTIR studies. J. Dispers. Sci. Technol. 2019, 41, 690–698. [Google Scholar] [CrossRef]
- Akinyemi, O.P.; Akinbomi, J.G.; Abbey, M.D. Characterization of blend of plantain peel, pawpaw peel and watermelon rind using FTIR. J. Sci. Eng. Res. 2020, 7, 231–240. [Google Scholar]
- Popescu, L.; Cojocari, D.; Ghendov-Mosanu, A.; Lung, I.; Soran, M.L.; Opriş, O.; Kacso, I.; Ciorîţă, A.; Balan, G.; Sturza, R.; et al. The effect of aromatic plant extracts encapsulated in alginate on the bioactivity, textural characteristics and shelf life of yogurt. Antioxidants 2023, 12, 893. [Google Scholar] [CrossRef] [PubMed]
- Flamminii, F.; Di Mattia, C.D.; Nardella, M.; Chiarini, M.; Valbonetti, L.; Neri, L.; Difonzo, G.; Pittia, P. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll. 2020, 108, 105849. [Google Scholar] [CrossRef]
- Bohari, S.P.; Hukins, D.W.; Grover, L.M. Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts. Biomed. Mater. Eng. 2011, 21, 159–170. [Google Scholar] [CrossRef]
- Hunt, N.C.; Smith, A.M.; Gbureck, U.; Shelton, R.M.; Grover, L.M. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 2010, 6, 3649–3656. [Google Scholar] [CrossRef] [PubMed]
- Hunt, N.C.; Shelton, R.M.; Grover, L. An alginate hydrogel matrix for the localized delivery of a fibroblast/keratinocyte co-culture. Biotechnol. J. 2009, 4, 730–737. [Google Scholar] [CrossRef]
- Varaprasad, K.; Karthikeyan, C.; Yallapu, M.M.; Sadiku, R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int. J. Biol. Macromol. 2022, 212, 561–578. [Google Scholar] [CrossRef]
- Sharma, R.; Malviya, R.; Singh, S.; Prajapati, B. A critical review on classified excipient sodium-alginate-based hydrogels: Modification, characterization, and application in soft tissue engineering. Gels 2023, 9, 430. [Google Scholar] [CrossRef]
- Gao, Q.; Kim, B.S.; Gao, G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Mar. Drugs 2021, 19, 708. [Google Scholar] [CrossRef]
- Hernández-González, A.C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 2020, 229, 115514. [Google Scholar] [CrossRef]
- Naghieh, S.; Sarker, M.D.; Abelseth, E.; Chen, X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2019, 93, 183–193. [Google Scholar] [CrossRef]
- Zhang, J.; Wehrle, E.; Vetsch, J.R.; Paul, G.R.; Rubert, M.; Müller, R. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed. Mater. 2019, 14, 065009. [Google Scholar] [CrossRef] [PubMed]
- Cano-Vicent, A.; Tuñón-Molina, A.; Bakshi, H.; Sabater, I.; Serra, R.; Alfagih, I.M.; Tambuwala, M.M.; Serrano-Aroca, Á. Biocompatible alginate film crosslinked with Ca2+ and Zn2+ Possesses Antibacterial, Antiviral, and Anticancer Activities. ACS Omega 2023, 8, 24396–24405. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. Absorption and interactive properties of alginate wound dressings. In Alginate Fibers and Wound Dressings; Qin, Y., Ed.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, X.; Fan, W.; Lu, Y. Development of the inorganic nanoparticles reinforced alginate-based hybrid fiber for wound care and healing. J. Appl. Polym. Sci. 2021, 138, 51228. [Google Scholar] [CrossRef]
- Zdiri, K.; Cayla, A.; Elamri, A.; Erard, A.; Salaun, F. Alginate-based bio-composites and their potential applications. J. Funct. Biomater. 2022, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez-Moreno, C.D.; Öksüz, K.E.; Dinçer, E.; Hepokur, C.; Şen, İ. Plant-inspired adhesive and injectable natural hydrogels: In vitro and in vivo studies. Biotechnol. Lett. 2023, 45, 1209–1222. [Google Scholar] [CrossRef]
- Planteea. Available online: https://www.planteea.ro/ (accessed on 15 October 2023).
- Ivanova, V.; Stefova, M.; Chinnici, F. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J. Serb. Chem. Soc. 2010, 75, 45–59. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rijo, P.; Matias, D.; Fernandes, A.S.; Simões, M.F.; Nicolai, M.; Reis, C.P. Antimicrobial plant extracts encapsulated into polymeric beads for potential application on the skin. Polymers 2014, 6, 479–490. [Google Scholar] [CrossRef]
- Pasukamonset, P.; Kwon, O.; Adisakwattana, S. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocoll. 2016, 61, 772–779. [Google Scholar] [CrossRef]
- Baldea, I.; Olteanu, D.E.; Filip, G.A.; Cenariu, M.; Dudea, D.; Tofan, A.; Alb, C.; Moldovan, M. Toxicity and efficiency study of plant extracts-based bleaching agents. Clin. Oral Investig. 2017, 21, 1315–1326. [Google Scholar] [CrossRef]
- Baldea, I.; Petran, A.; Florea, A.; Sevastre-Berghian, A.; Nenu, I.; Filip, G.A.; Cenariu, M.; Radu, M.T.; Iacovita, C. Magnetic nanoclusters stabilized with poly[3,4-dihydroxybenzhydrazide] as efficient therapeutic agents for cancer cells destruction. Nanomaterials 2023, 13, 933. [Google Scholar] [CrossRef] [PubMed]
- Filip, M.; Baldea, I.; David, L.; Moldovan, B.; Flontas, G.C.; Macavei, S.; Muntean, D.M.; Decea, N.; Tigu, A.B.; Clichici, S.V. Hybrid material based on Vaccinium myrtillus L. extract and gold nanoparticles reduces oxidative stress and inflammation in hepatic stellate cells exposed to TGF-β. Biomolecules 2023, 13, 1271. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.C.; Park, A.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Cortesi, M.; Pasini, A.; Tesei, A.; Giordano, E. AIM: A computational tool for the automatic quantification of scratch wound healing assays. Appl. Sci. 2017, 7, 1237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bâldea, I.; Lung, I.; Opriş, O.; Stegarescu, A.; Kacso, I.; Soran, M.-L. Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations. Gels 2023, 9, 901. https://doi.org/10.3390/gels9110901
Bâldea I, Lung I, Opriş O, Stegarescu A, Kacso I, Soran M-L. Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations. Gels. 2023; 9(11):901. https://doi.org/10.3390/gels9110901
Chicago/Turabian StyleBâldea, Ioana, Ildiko Lung, Ocsana Opriş, Adina Stegarescu, Irina Kacso, and Maria-Loredana Soran. 2023. "Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations" Gels 9, no. 11: 901. https://doi.org/10.3390/gels9110901
APA StyleBâldea, I., Lung, I., Opriş, O., Stegarescu, A., Kacso, I., & Soran, M. -L. (2023). Antioxidant, Anti-Inflammatory Effects and Ability to Stimulate Wound Healing of a Common-Plantain Extract in Alginate Gel Formulations. Gels, 9(11), 901. https://doi.org/10.3390/gels9110901