Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model
<p>Agricultural land distribution in the basin.</p> "> Figure 2
<p>Percentage of crops of total agriculture in LCB—main crops.</p> "> Figure 3
<p>Geology of the Morelia–Querendaro aquifer, obtained from National Institute of Statistics and Geography (INEGI; <a href="https://www.inegi.org.mx/temas/" target="_blank">https://www.inegi.org.mx/temas/</a>; accessed on 28 October 2023).</p> "> Figure 4
<p>Coupling of mathematical models. Quantitative and qualitative inputs and outputs of each model.</p> "> Figure 5
<p>Monthly average recharge of the Morelia–Querendaro aquifer; 1 hm<sup>3</sup> = 1,000,000 m<sup>3</sup>.</p> "> Figure 6
<p>Annual and monthly average nitrate load entering the Morelia–Querendaro aquifer. Amounts are shown in 10<sup>3</sup> tons of nitrogen.</p> "> Figure 7
<p>Quantitative and qualitative inputs and outputs of each model.</p> "> Figure 8
<p>Historical and modeled flow series, calibrated. (<b>A</b>) Point S1, period 1960–1989. (<b>B</b>) Point S2, period 1960–2002. (<b>C</b>) Point S3. Validation, period 2000–2002. 1 hm<sup>3</sup> = 1,000,000 m<sup>3</sup>.</p> "> Figure 9
<p>Point S3, calibrated. Historical and modeled nitrate concentrations, period 2008–2009.</p> "> Figure 10
<p>Historical and simulated groundwater level. (<b>A</b>) Point G4, period 1970–2010. (<b>B</b>) Point G5, period 1970–2010.</p> "> Figure 11
<p>Nitrate concentrations in groundwater. (<b>A</b>) Point NG1. (<b>B</b>) Point NG3. (<b>C</b>) Point NG4. (<b>D</b>) Point NG5. Period simulated: 1970–2010.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Coupled SWAT/MODFLOW/MT3DMS Model
2.3. Watershed Model
2.4. Groundwater Flow Model
2.5. Nitrate Transport Model
3. Model Calibration and Validation
3.1. Watershed Model
3.2. Groundwater Flow Model
3.3. Nitrate Transport Model
4. Results
4.1. Watershed Model
4.2. Groundwater Flow Model
4.3. Nitrate Transport Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valin, H.; Sands, R.D.; van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The Future of Food Demand: Understanding Differences in Global Economic Models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Narain-Ford, D.M.; Bartholomeus, R.P.; Raterman, B.; van Zaanen, I.; ter Laak, T.T.; van Wezel, A.P.; Dekker, S.C. Shifting the Imbalance: Intentional Reuse of Dutch Sewage Effluent in Sub-Surface Irrigation. Sci. Total Environ. 2021, 752, 142214. [Google Scholar] [CrossRef] [PubMed]
- Salmoral, G.; Viñarta Carbó, A.; Zegarra, E.; Knox, J.W.; Rey, D. Reconciling Irrigation Demands for Agricultural Expansion with Environmental Sustainability—A Preliminary Assessment for the Ica Valley, Peru. J. Clean. Prod. 2020, 276, 123544. [Google Scholar] [CrossRef]
- Fazel, S.; Kakhki, F.; Sharifian, A.R.; Beikzadeh, N. Evaluation of Effect of Different Growing Media and Nitrogen Fertilizer on Some Morphological Traits in Spathiphyllum wallisii L. J. Ornam. Plants 2020, 10, 49–58. [Google Scholar]
- Rosa, L.; Gabrielli, P. Energy and Food Security Implications of Transitioning Synthetic Nitrogen Fertilizers to Net-Zero Emissions. Environ. Res. Lett. 2023, 18, 014008. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Lin, B.; Bodirsky, B.L.; Xuan, J.; Dietrich, J.P.; Stevanović, M.; Bai, Z.; Ma, L.; Jin, S.; et al. Reforming China’s Fertilizer Policies: Implications for Nitrogen Pollution Reduction and Food Security. Sustain. Sci. 2023, 18, 1063–1076. [Google Scholar] [CrossRef]
- He, J.; Yao, J.; Li, A.; Tan, Z.; Xie, G.; Shi, H.; Zhang, X.; Sun, W.; Du, P. Potential Impact of Water Transfer Policy Implementation on Lake Eutrophication on the Shandong Peninsula: A Difference-in-Differences Approach. Hydrol. Res. 2020, 51. [Google Scholar] [CrossRef]
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—Nitrate and Nitrite; Minister of Health: Ottawa, ON, Canada, 2013; Volume 30, ISBN 9781100229997.
- Zimnicki, T.; Boring, T.; Evenson, G.; Kalcic, M.; Karlen, D.L.; Wilson, R.S.; Zhang, Y.; Blesh, J. On Quantifying Water Quality Benefits of Healthy Soils. Bioscience 2020, 70, 343–352. [Google Scholar] [CrossRef]
- Vitoria, I.; Maraver, F.; Sánchez-Valverde, F.; Armijo, F. Contenido En Nitratos de Aguas de Consumo Público Españolas. Gac. Sanit. 2015, 29, 217–220. [Google Scholar] [CrossRef]
- García Torres, E.; Pérez Morales, R.; González Zamora, A.; Ríos Sánchez, E.; Olivas Calderón, E.H.; de Alba Romero, J.J.; Calleros Rincón, E.Y. Consumption of Water Contaminated by Nitrate and Its Deleterious Effects on the Human Thyroid Gland: A Review and Update. Int. J. Environ. Health Res. 2022, 32, 984–1001. [Google Scholar] [CrossRef]
- Van Maanen, J.M.S.; van Dijk, A.; Mulder, K.; de Baets, M.H.; Menheere, P.C.A.; van der Heide, D.; Mertens, P.L.J.M.; Kleinjans, J.C.S. Consumption of Drinking Water with High Nitrate Levels Causes Hypertrophy of the Thyroid. Toxicol. Lett. 1994, 72, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; El Ghissassi, F.; Cogliano, V. Carcinogenicity of Nitrate, Nitrite, and Cyanobacterial Peptide Toxins. Lancet Oncol. 2006, 7, 628–629. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, V.M.; Rao, N.H.; Sarma, P.B.S. Decision Support Framework for Assessment of Non-Point-Source Pollution of Groundwater in Large Irrigation Projects. Agric. Water Manag. 2005, 75, 194–225. [Google Scholar] [CrossRef]
- Holt, M.S. Sources of Chemical Contaminants and Routes into the Freshwater Environment. Food Chem. Toxicol. 2000, 38, S21–S27. [Google Scholar] [CrossRef] [PubMed]
- Lake, I.R.; Lovett, A.A.; Hiscock, K.M.; Betson, M.; Foley, A.; Sünnenberg, G.; Evers, S.; Fletcher, S. Evaluating Factors Influencing Groundwater Vulnerability to Nitrate Pollution: Developing the Potential of GIS. J. Environ. Manag. 2003, 68, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Debele, B.; Srinivasan, R.; Parlange, J.Y. Coupling Upland Watershed and Downstream Waterbody Hydrodynamic and Water Quality Models (SWAT and CE-QUAL-W2) for Better Water Resources Management in Complex River Basins. Environ. Model. Assess. 2008, 13, 135–153. [Google Scholar] [CrossRef]
- Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J.G. Advances in the Application of the SWAT Model for Water Resources Management. Hydrol. Process 2005, 19, 749–762. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Shayannejad, M. Quantity and Quality Modelling of Groundwater to Manage Water Resources in Isfahan-Borkhar Aquifer. Environ. Dev. Sustain. 2021, 23, 15943–15959. [Google Scholar] [CrossRef]
- Srinivasan, R.; Arnold, J.G. Integration of a Basin-Scale Water Quality Model with GIS. J. Am. Water Resour. Assoc. 1994, 30, 453–462. [Google Scholar] [CrossRef]
- Ireson, A.; Makropoulos, C.; Maksimovic, C. Water Resources Modelling under Data Scarcity: Coupling MIKE BASIN and ASM Groundwater Model. Water Resour. Manag. 2006, 20, 567–590. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Højberg, A.L.; Møller, I.; Hansen, M.; Søndergaard, V. Groundwater Modeling in Integrated Water Resources Management—Visions for 2020. Ground Water 2010, 48, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Cheng, G.D.; Li, X. Integrated Research Methods in Watershed Science. Sci. China Earth Sci. 2015, 58, 1159–1168. [Google Scholar] [CrossRef]
- He, C.; Harden, C.P.; Holden, J.; Mdee, A. Watershed Science: Coupling Hydrological Science and Water Resources Management. Hydrol. Process 2023, 37, e14889. [Google Scholar] [CrossRef]
- Témez, J.R. Modelo Matemático de Trasformación “Precipitación-Escorrentía”. Asoc. De Investig. Ind. Eléctrica 1977, 39. [Google Scholar]
- Burnash, R.J.C.; Ferral, R.L.; McGuire, R.A. A Generalized Streamflow Simulation System–Conceptual Modeling for Digital Computers; US Department of Commerce: Washington, DC, USA; National Weather Service: Silver Spring, MA, USA; State of California, Department of Water Resources: Sacramento, CA, USA, 1973. [Google Scholar]
- Soil Conservation Service (SCS) National Engineering Handbook, Section 4; Hydrology, Soil Conservation Service, US Department of Agriculture: Washington, DC, USA, 1972.
- Oñate-Valdivieso, F.; Bosque-Sendra, J.; Sastre-Merlin, A.; Miguel Ponce, V. Calibration, Validation and Evaluation of a Lumped Hydrological Model in a Mountain Area in Southern Ecuador. Agrociencia 2015, 50, 945–963. [Google Scholar]
- Potenciano De Las Heras, A.; Villaverde Valero, J.J. Implementación del Modelo Hidrológico de Témez Para la Evaluación de Recursos Hídricos Con Grass GIS: Fase Superficial y Subterránea; 2009. II Jornadas de Sig Libre. Universitat de Girona. ISBN 978-48-691-9409-6. Available online: https://dugi-doc.udg.edu/bitstream/handle/10256/1387/C18.pdf?sequence=1&isAllowed=y; (accessed on 1 November 2023).
- CEDEX. Cálculo Hidrometeorológico de Aportaciones y Crecidas. Manual CHAC; CEDEX: Madrid, Spain, 2013. [Google Scholar]
- Gallart, F.; Delgado, J.; Beatson, S.J.V.; Posner, H.; Llorens, P.; Marcé, R. Analysing the Effect of Global Change on the Historical Trends of Water Resources in the Headwaters of the Llobregat and Ter River Basins (Catalonia, Spain). Phys. Chem. Earth 2011, 36, 655–661. [Google Scholar] [CrossRef]
- Katsanou, K.; Lambrakis, N. Modelleren van de Helleense Karststroomgebieden Met Het Sacramento Soil Moisture Accounting Model. Hydrogeol. J. 2017, 25, 757–769. [Google Scholar] [CrossRef]
- Ajmal, M.; Waseem, M.; Kim, D.; Kim, T.-W. A Pragmatic Slope-Adjusted Curve Number Model to Reduce Uncertainty in Predicting Flood Runoff from Steep Watersheds. Water 2020, 12, 1469. [Google Scholar] [CrossRef]
- Młyński, D.; Wałęga, A.; Książek, L.; Florek, J.; Petroselli, A. Possibility of Using Selected Rainfall-Runoff Models for Determining the Design Hydrograph in Mountainous Catchments: A Case Study in Poland. Water 2020, 12, 1450. [Google Scholar] [CrossRef]
- Psomiadis, E.; Soulis, K.X.; Efthimiou, N. Using SCS-CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes. Water 2020, 12, 1386. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment. Part I: Model Development. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Feldman, A.D.; Hydrologic Engineering Center (U.S.). Hydrologic Modeling System HEC-HMS Technical Reference Manual; US Army Corps of Engineers: Washington, DC, USA, 2000. [Google Scholar]
- Muñoz-Carpena, R.; Parsons, J.E.; Gilliam, J.W. Modeling Hydrology and Sediment Transport in Vegetative Filter Strips. J. Hydrol. 1999, 214, 111–129. [Google Scholar] [CrossRef]
- Ibáñez, J.F.; Valentín, M.G.; Jang, D. Application of the Kineros 2 Model to Natural Basin for Estimation of Erosion. Appl. Sci. 2021, 11, 9320. [Google Scholar] [CrossRef]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Jones, K.B. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds. Environ. Monit. Assess. 2000, 64, 285–298. [Google Scholar] [CrossRef]
- Miller, S.N.; Kepner, W.G.; Mehaffey, M.H.; Hernandez, M.; Miller, R.C.; Goodrich, D.C.; Devonald, K.K.; Heggem, D.T.; Miller, W.P. Integrating Landscape Assessment and Hydrologic Modeling for Land Cover Change Analysis. Proc. J. Am. Water Resour. Assoc. 2002, 38, 915–929. [Google Scholar] [CrossRef]
- Michaud, J.; Sorooshian, S. Comparison of Simple versus Complex Distributed Runoff Models on a Midsized Semiarid Watershed. Water Resour. Res. 1994, 30, 593–605. [Google Scholar] [CrossRef]
- Downer, C.W.; Ogden, F.L. GSSHA: Model to Simulate Diverse Stream Flow Producing Processes. J. Hydrol. Eng. 2004, 9, 161–174. [Google Scholar] [CrossRef]
- Sith, R.; Nadaoka, K. Comparison of SWAT and GSSHA for High Time Resolution Prediction of Stream Flow and Sediment Concentration in a Small Agricultural Watershed. Hydrology 2017, 4, 27. [Google Scholar] [CrossRef]
- Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; Zahner, J.A. Relative Importance of Impervious Area, Drainage Density, Width Function, and Subsurface Storm Drainage on Flood Runoff from an Urbanized Catchment. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Lagos, M.S.; Muñoz, J.F.; Suárez, F.I.; Fuenzalida, M.J.; Yáñez-Morroni, G.; Sanzana, P. Investigating the Effects of Channelization in the Silala River: A Review of the Implementation of a Coupled MIKE-11 and MIKE-SHE Modeling System. Wiley Interdiscip. Rev. Water 2023. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Refsgaard, J.C. Parameterisation, Calibration and Validation of Distributed Hydrological Models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef]
- Andreu, J.; Sala, J.D. La Modelación en la Planificación Hidráulica: Modelos de Simulación y Síntesis de Hidrología Superficial; Servicios de Publicación UPV: Valencia, Spain, 1986. [Google Scholar]
- McDonald, M.; Harbaugh, A.W. A Modular Three-Dimensional Finite Difference Ground-Water Flow Model. In Techniques of Water-Resources Investigations, Book 6; US Geological Survey: Reston, VA, USA, 1988; p. 588. [Google Scholar]
- Andreu, J.; Capilla, J.; Sanchís, E. AQUATOOL, a Generalized Decision-Support System for Water-Resources Planning and Operational Management. J. Hydrol. 1996, 177, 269–291. [Google Scholar] [CrossRef]
- Sahuquillo, A.; Andreu, J. Eigenvalue Simulation of Aquifers and River Interaction for Conjunctive Use. In Proceedings of the Congress of the International Association of Hydraulic Research, IAHR, San Francisco, CA, USA, 10–15 August 1997; Volume C. [Google Scholar]
- Flores-Fernández, G.C.; García-Romero, L.; Sánchez-Quispe, S.T. Assessing Climate Change Impacts on Hydrology: Application to Zacapu and Pastor Ortiz Aquifers (Mexico). J. Water Clim. Change 2022, 13, 2129–2142. [Google Scholar] [CrossRef]
- Guzman, J.A.; Moriasi, D.N.; Gowda, P.H.; Steiner, J.L.; Starks, P.J.; Arnold, J.G.; Srinivasan, R. A Model Integration Framework for Linking SWAT and MODFLOW. Environ. Model. Softw. 2015, 73, 103–116. [Google Scholar] [CrossRef]
- Restrepo, J.I.; Montoya, A.M.; Obeysekera, J. A Wetland Simulation Module for the MODFLOW Ground Water Model. Ground Water 1998, 36, 764–770. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Rolle, M. PHT3D: A Reactive Multicomponent Transport Model for Saturated Porous Media. Ground Water 2010, 48, 627–632. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Nelson, N.O.; Frees, L.D.; Mankin, K.R. Comparison of AnnAGNPS and SWAT Model Simulation Results in USDA-CEAP Agricultural Watersheds in South-Central Kansas. Hydrol. Process 2009, 23, 748–763. [Google Scholar] [CrossRef]
- Yang, C.C.; Prasher, S.O.; Wang, S.; Kim, S.H.; Tan, C.S.; Drury, C.; Patel, R.M. Simulation of Nitrate-N Movement in Southern Ontario, Canada with DRAINMOD-N. Agric. Water Manag. 2007, 87, 299–306. [Google Scholar] [CrossRef]
- Barkow, I.S.; Oswald, S.E.; Lensing, H.-J.; Munz, M. Seasonal Dynamics Modifies Fate of Oxygen, Nitrate, and Organic Micropollutants during Bank Filtration—Temperature-Dependent Reactive Transport Modeling of Field Data. Environ. Sci. Pollut. Res. 2021, 28, 9682–9700. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, G.; Shang, M.; Liu, M. Groundwater Nitrate Bioremediation Simulation of In Situ Horizontal Well by Microbial Denitrification Using PHREEQC. Water Air Soil. Pollut. 2021, 232, 356. [Google Scholar] [CrossRef]
- Ranjbar, F.; Jalali, M. Measuring and Modeling Ammonium Adsorption by Calcareous Soils. Environ. Monit. Assess. 2013, 185, 3191–3199. [Google Scholar] [CrossRef] [PubMed]
- Johnes, P.J. Evaluation and Management of the Impact of Land Use Change on the Nitrogen and Phosphorus Load Delivered to Surface Waters: The Export Coefficient Modelling Approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Spanò, M.; D’Ambrosio, E.; Ricci, G.F.; Gentile, F. Developing a Nitrogen Load Apportionment Tool: Theory and Application. Agric. Water Manag. 2019, 226, 105806. [Google Scholar] [CrossRef]
- Bell, C.D.; Tague, C.L.; McMillan, S.K. Modeling Runoff and Nitrogen Loads From a Watershed at Different Levels of Impervious Surface Coverage and Connectivity to Storm Water Control Measures. Water Resour. Res. 2019, 55, 2690–2707. [Google Scholar] [CrossRef]
- Han, B.; Reidy, A.; Li, A. Modeling Nutrient Release with Compiled Data in a Typical Midwest Watershed. Ecol. Indic. 2021, 121, 107213. [Google Scholar] [CrossRef]
- Povilaitis, A.; Stalnacke, P.; Vassiljev, A. Nutrient Retention and Export to Surface Waters in Lithuanian and Estonian River Basins. Hydrol. Res. 2012, 43, 359–373. [Google Scholar] [CrossRef]
- Zhang, H.; Hiscock, K.M. Modelling the Effect of Forest Cover in Mitigating Nitrate Contamination of Groundwater: A Case Study of the Sherwood Sandstone Aquifer in the East Midlands, UK. J. Hydrol. 2011, 399, 212–225. [Google Scholar] [CrossRef]
- Strickling, H.L.; Obenour, D.R. Leveraging Spatial and Temporal Variability to Probabilistically Characterize Nutrient Sources and Export Rates in a Developing Watershed. Water Resour. Res. 2018, 54, 5143–5162. [Google Scholar] [CrossRef]
- Chen, D.; Dahlgren, R.A.; Shen, Y.; Lu, J. A Bayesian Approach for Calculating Variable Total Maximum Daily Loads and Uncertainty Assessment. Sci. Total Environ. 2012, 430, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, J.; Wellen, C.; Wang, Y. A Bayesian Approach of High Impaired River Reaches Identification and Total Nitrogen Load Estimation in a Sparsely Monitored Basin. Environ. Sci. Pollut. Res. 2017, 24, 987–996. [Google Scholar] [CrossRef]
- Lu, J.; Gong, D.; Shen, Y.; Liu, M.; Chen, D. An Inversed Bayesian Modeling Approach for Estimating Nitrogen Export Coefficients and Uncertainty Assessment in an Agricultural Watershed in Eastern China. Agric. Water Manag. 2013, 116, 79–88. [Google Scholar] [CrossRef]
- Yang, G.; Best, E.P.H.; Whiteaker, T.; Teklitz, A.; Yeghiazarian, L. A Screening-Level Modeling Approach to Estimate Nitrogen Loading and Standard Exceedance Risk, with Application to the Tippecanoe River Watershed, Indiana. J. Environ. Manag. 2014, 135, 1–10. [Google Scholar] [CrossRef]
- Yan, R.; Brunner, P.; Gao, J. Simulation of Nitrogen Dynamics in Lowland Polders Using a New Coupled Modelling Approach: Insights into Management. J. Clean. Prod. 2021, 313, 127753. [Google Scholar] [CrossRef]
- Wriedt, G.; Bronstert, A.; Geistlinger, H.; Rode, M. Modelling of Nitrogen Transport and Turnover during Soil and Groundwater Passage in a Small Lowland Catchment of Northern Germany. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2004. [Google Scholar]
- Akhavan, S.; Abedi-Koupai, J.; Mousavi, S.-F.; Afyuni, M.; Eslamian, S.-S.; Abbaspour, K.C. Application of SWAT Model to Investigate Nitrate Leaching in Hamadan–Bahar Watershed, Iran. Agric. Ecosyst. Environ. 2010, 139, 675–688. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F. Modeling Nitrate-Nitrogen Load Reduction Strategies for the Des Moines River, Iowa Using SWAT. Environ. Manag. 2009, 44, 671–682. [Google Scholar] [CrossRef]
- Pérez, M.Á. Modelo Distribuido de Simulación Del Ciclo Hidrológo y Calidad Del Agua, Integrado a Sistemas de Información Geográfica, Para Grandes Cuencas. Aportación La Análisis de Presiones e Impactos de La Directiva Marco Del Agua. Ph.D. Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2005. [Google Scholar]
- Muñoz Del Prado, F.C.; Velarde Rodríguez, A. Actualización y Mejora Del Modelo Hidrológico Patrical En La Demarcación Hidrográfica Del Júcar. Ph.D. Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2016. [Google Scholar]
- Zheng, C. MT3D: A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reaction of Contaminants in Groundwater Systems; SS Papadopulos & Associates: Bethesda, MD, USA, 1990. [Google Scholar]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; The University of Alabama: Tuscaloosa, AL, USA, 1999. [Google Scholar]
- Clement, T.P. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems; Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 1999. [Google Scholar]
- Haerens, B.; Prommer, H.; Lerner, D.N.; Dassargues, A. Reactive Transport Modeling of a Groundwater Contamination by Ammoniacal Liquor. 2006. Available online: https://orbi.uliege.be/bitstream/2268/3409/1/publi152-2006.pdf (accessed on 27 October 2023).
- Park, S.; Jeong, J.; Motter, E.; Bailey, R.T.; Green, C.H.M. Introducing APEXMOD—A QGIS Plugin for Developing Coupled Surface-Subsurface Hydrologic Modeling Framework of APEX, MODFLOW, and RT3D-Salt. Environ. Model. Softw. 2023, 165, 105723. [Google Scholar] [CrossRef]
- Saaltink, M.W.; Carrera, J.; Ayora, C. On the Behavior of Approaches to Simulate Reactive Transport. J Contam Hydrol. 2001, 48, 213–235. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)-a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Prommer, H.; Barry, D.A.; Zheng, C. MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling. Ground Water 2003, 41, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; et al. Reactive Transport Codes for Subsurface Environmental Simulation. Comput. Geosci. 2015, 19, 445–478. [Google Scholar] [CrossRef]
- Elçi, A.; Karadaş, D.; Fıstıkoğlu, O. The Combined Use of MODFLOW and Precipitation-Runoff Modeling to Simulate Groundwater Flow in a Diffuse-Pollution Prone Watershed. Water Sci. Technol. 2010, 62, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Styczen, M.; Storm, B. Modelling of N-Movements on Catchment Scale—A Tool for Analysis and Decision Making. Fertil. Res. 1993, 36, 1–6. [Google Scholar] [CrossRef]
- Chunn, D.; Faramarzi, M.; Smerdon, B.; Alessi, D. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water 2019, 11, 110. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Bailey, R.T.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Park, S.; Jensen, J.S.; Jensen, J.B.; Trolle, D. Comparison of Abstraction Scenarios Simulated by SWAT and SWAT-MODFLOW. Hydrol. Sci. J. 2019, 64, 434–454. [Google Scholar] [CrossRef]
- Ehtiat, M.; Jamshid Mousavi, S.; Srinivasan, R. Groundwater Modeling Under Variable Operating Conditions Using SWAT, MODFLOW and MT3DMS: A Catchment Scale Approach to Water Resources Management. Water Resour. Manag. 2018, 32, 1631–1649. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T.; Records, R.M.; Wible, T.C.; Arabi, M. Comprehensive Simulation of Nitrate Transport in Coupled Surface-Subsurface Hydrologic Systems Using the Linked SWAT-MODFLOW-RT3D Model. Environ. Model. Softw. 2019, 122, 104242. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T. Evaluating Nitrate and Phosphorus Remediation in Intensively Irrigated Stream-Aquifer Systems Using a Coupled Flow and Reactive Transport Model. J. Hydrol. 2021, 598, 126304. [Google Scholar] [CrossRef]
- Granados, E.L.; Mendoza, M.; Acosta, A. Cambio de Cobertura Vegetal y Uso de La Tierra. El Caso de La Cuenca Endorreica Del Lago de Cuitzeo, Michoacán. Gac. Ecol. 2002, 64, 19–34. [Google Scholar]
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Morelia-Queréndaro (1602), Estado de Michoacán; CONAGUA: Mexico City, México, 2020. [Google Scholar]
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Morelia-Queréndaro (1602), Estado de Michoacán; CONAGUA: Mexico City, México, 2009. [Google Scholar]
- Cram, S.; Galicia, L.; Israde-Alcantara, I. Atlas de la Cuenca del lago de Cuitzeo: Analisis de su Geografia y Entorno Socioambiental: National or Regional Atlas Mexico; Universidad Nacional Autonoma de Mexico: Mexico City, Mexico, 2010; ISBN 9786070218309. [Google Scholar]
- CONAGUA. Actualización Hidrogeológica de los Acuíferos: Maravatío-Contepec-Epitacio Huerta, Zacapu, Morelia-Queréndaro y Pastor Ortiz, en el Estado de Michoacán; CONAGUA: Mexico City, México, 2007. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; College of Agriculture and Life Sciences: College Station, TX, USA, 2011. [Google Scholar]
- Serratos, L.; Douglas, A.; Douglas, A. NAME: Mexico Climatological Station Network Data. Version 1.0. UCAR/NCAR—Earth Observing Laboratory. 2007. Available online: https://data.eol.ucar.edu/dataset/82.175 (accessed on 27 October 2023).
- CONAGUA. Banco Nacional de Datos de Aguas Superficiales (BANDAS); CONAGUA: Mexico City, Mexico, 2016. [Google Scholar]
- CONAGUA. Estudio de Diagnóstico de las Condiciones Geohidrológicas Actuales y Análisis de Alternativas de Operación del Acuífero de Morelia Queréndaro, Michoacán; CONAGUA: Mexico City, México, 1993. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 1983, 50, 885–900. [Google Scholar] [CrossRef]
- Huang, X.; Gao, L.; Crosbie, R.S.; Zhang, N.; Fu, G.; Doble, R. Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning. Water 2019, 11, 1879. [Google Scholar] [CrossRef]
- Sahoo, M.; Das, T.; Kumari, K.; Dhar, A. Space–Time Forecasting of Groundwater Level Using a Hybrid Soft Computing Model. Hydrol. Sci. J. 2017, 62, 561–574. [Google Scholar] [CrossRef]
- Duan, R.; Fedler, C.B.; Borrelli, J. Field Evaluation of Infiltration Models in Lawn Soils. Irrig. Sci. 2011, 29, 379–389. [Google Scholar] [CrossRef]
- Zheng, C.; Hill, M.C.; Cao, G.; Ma, R. MT3DMS: Model use, calibration, and validation. Trans ASABE 2012, 55, 1549. [Google Scholar] [CrossRef]
- Hill, M.C. Methods and Guidelines for Effective Model Calibration Water-Resources Investigations Report 98-4005 with Application to: UCODE, a Computer Code for Universal Inverse Modeling, and MODFLOWP, a Computer Code for Inverse Modeling with MODFLOW; U.S. Geological Survey, Branch of Information Services: Denver, CO, USA, 1998. [Google Scholar]
- Tolera, M.B.; Chung, I.-M. Integrated Hydrological Analysis of Little Akaki Watershed Using SWAT-MODFLOW, Ethiopia. Appl. Sci. 2021, 11, 6011. [Google Scholar] [CrossRef]
- Yifru, B.A.; Chung, I.-M.; Kim, M.-G.; Chang, S.W. Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model. Sustainability 2020, 12, 6593. [Google Scholar] [CrossRef]
- Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-Temporal Effect of Climate Change on Water Balance and Interactions between Groundwater and Surface Water in Plains. Sci. Total Environ. 2020, 722, 137886. [Google Scholar] [CrossRef]
- WHO. Nitrate and Nitrite in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Yifru, B.A.; Chung, I.M.; Kim, M.G.; Chang, S.W. Assessing the Effect of Urbanization on Regional-Scale Surface Water-Groundwater Interaction and Nitrate Transport. Sci. Rep. 2022, 12, 12520. [Google Scholar] [CrossRef]
- Line Conan, C.; Bouraoui, F.; Turpin, N.; De Marsily, G.; Bidoglio, G. Modeling Flow and Nitrate Fate at Catchment Scale in Brittany (France). J. Environ. Qual. 2003, 32, 2026–2032. [Google Scholar] [CrossRef]
- Aliyari, F.; Bailey, R.T.; Tasdighi, A.; Dozier, A.; Arabi, M.; Zeiler, K. Coupled SWAT-MODFLOW Model for Large-Scale Mixed Agro-Urban River Basins. Environ. Model. Softw. 2019, 115, 200–210. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing Regional-Scale Spatio-Temporal Patterns of Groundwater–Surface Water Interactions Using a Coupled SWAT-MODFLOW Model. Hydrol. Process 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and Application of the Integrated SWAT-MODFLOW Model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Power, J.F.; Schepers, J.S. Nitrate Contamination of Groundwater in North America. Agric. Ecosyst. Environ. 1989, 26, 165–187. [Google Scholar] [CrossRef]
- Spalding, R.F.; Exner, M.E. Occurrence of Nitrate in Groundwater—A Review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater Nitrate Contamination: Factors and Indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef]
- Benes, V.; Pĕkný, V.; Skorepa, J.; Vrba, J. Impact of Diffuse Nitrate Pollution Sources on Groundwater Quality--Some Examples from Czechoslovakia. Environ. Health Perspect. 1989, 83, 5–24. [Google Scholar] [CrossRef]
- Meinardi, C.R.; Beusen, A.H.W.; Bollen, M.J.S.; Klepper, O.; Willems, W.J. Vulnerability to Diffuse Pollution and Average Nitrate Contamination of European Soils and Groundwater. Water Sci. Technol. 1995, 31, 159–165. [Google Scholar] [CrossRef]
- Agrawal, G.D.; Lunkad, S.K.; Malkhed, T. Diffuse Agricultural Nitrate Pollution of Groundwaters in India. Water Sci. Technol. 1999, 39, 67–75. [Google Scholar] [CrossRef]
- Arauzo, M.; Martínez-Bastida, J.J. Environmental Factors Affecting Diffuse Nitrate Pollution in the Major Aquifers of Central Spain: Groundwater Vulnerability vs. Groundwater Pollution. Environ. Earth Sci. 2015, 73, 8271–8286. [Google Scholar] [CrossRef]
- Krause, S.; Jacobs, J.; Voss, A.; Bronstert, A.; Zehe, E. Assessing the Impact of Changes in Landuse and Management Practices on the Diffuse Pollution and Retention of Nitrate in a Riparian Floodplain. Sci. Total Environ. 2008, 389, 149–164. [Google Scholar] [CrossRef]
- Ameur, M.; Aouiti, S.; Hamzaoui-Azaza, F.; Cheikha, L.B.; Gueddari, M. Vulnerability Assessment, Transport Modeling and Simulation of Nitrate in Groundwater Using SI Method and Modflow-MT3DMS Software: Case of Sminja Aquifer, Tunisia. Environ. Earth Sci. 2021, 80, 1–16. [Google Scholar] [CrossRef]
- Eryiğit, M.; Engel, B. Spatiotemporal Modelling of Groundwater Flow and Nitrate Contamination in An Agriculture-Dominated Watershed. J. Environ. Inform. 2022, 39, 125–135. [Google Scholar] [CrossRef]
- Karlović, I.; Posavec, K.; Larva, O.; Marković, T. Numerical Groundwater Flow and Nitrate Transport Assessment in Alluvial Aquifer of Varaždin Region, NW Croatia. J. Hydrol. Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Macian-Sorribes, H.; Tilmant, A.; Pulido-Velazquez, M. Improving Operating Policies of Large-scale Surface-groundwater Systems through Stochastic Programming. Water Resour. Res. 2017, 53, 1407–1423. [Google Scholar] [CrossRef]
- Taie Semiromi, M.; Koch, M. Analysis of Spatio-Temporal Variability of Surface–Groundwater Interactions in the Gharehsoo River Basin, Iran, Using a Coupled SWAT-MODFLOW Model. Environ. Earth Sci. 2019, 78, 201. [Google Scholar] [CrossRef]
- Kollet, S.J.; Maxwell, R.M. Capturing the Influence of Groundwater Dynamics on Land Surface Processes Using an Integrated, Distributed Watershed Model. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wittenberg, H.; Sivapalan, M. Watershed Groundwater Balance Estimation Using Streamflow Recession Analysis and Baseflow Separation. J. Hydrol. 1999, 219, 20–33. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Potrykus, D.; Jaworska-Szulc, B.; Gumuła-Kawecka, A.; Pruszkowska-Caceres, M.; Dzierzbicka-Głowacka, L. Evaluation of the Influence of Farming Practices and Land Use on Groundwater Resources in a Coastal Multi-Aquifer System in Puck Region (Northern Poland). Water 2020, 12, 1042. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated Assessment of the Impact of Climate and Land Use Changes on Groundwater Quantity and Quality in the Mancha Oriental System (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, N. Recent Progress in Coupled Surface–Ground Water Models and Their Potential in Watershed Hydro-Biogeochemical Studies: A Review. Watershed Ecol. Environ. 2021, 3, 17–29. [Google Scholar] [CrossRef]
- ASABE. Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models American Society of Agricultural and Biological Engineers; ASABE: St. Joseph, MI, USA, 2017. [Google Scholar]
Soil Type | Hydraulic Conductivity (mm/h) | Hydrogeological Group | Soil Thickness (mm) | Base Flow Factor (1/d) | Porosity Fraction | Organic Carbon Content (%) |
---|---|---|---|---|---|---|
Vertic luvisol | 15 | A | 3500 | 0.01 | 0.005 | 0.05 |
Dystric andosol | 5 | B | 1400 | 0.06 | 1 | 0.7 |
Fine leptic skeletal | 2 | D | 300 | 0.01 | 0.005 | 0 |
Eutric regosol | 2 | D | 1000 | 0.06 | 0.7 | 0.05 |
Leptic planosol dístric | 10 | A | 1000 | 0.048 | 0.8 | 0 |
Phaeozem skeletal | 10 | A | 1500 | 0.01 | 1 | 1 |
Lytic dystric leptosol | 10 | A | 1000 | 0.01 | 1 | 0 |
Type | Point | M.M. | M.H. | R | NSE | RSR | PBIAS |
---|---|---|---|---|---|---|---|
S1 | 0.40 | 0.34 | 0.58 | 0.33 | 0.82 | 16.17 | |
Flow | S2 | 2.14 | 2.36 | 0.80 | 0.51 | 0.74 | −15.18 |
S3 | 0.33 | 0.37 | 0.84 | 0.42 | 0.76 | −8.31 | |
Nitrate | S3 | 0.29 | 0.335 | 0.45 | 0.18 | 0.89 | −16.29 |
Type | Point | M.M. 1 | M.H. 1 | MAE | RMSE | R |
---|---|---|---|---|---|---|
G1 | 1888.54 | 1885.46 | 0.35 | 4.64 | 1 | |
Groundwater | G2 | 1875.71 | 1869.98 | 0.64 | 6.9 | 0.98 |
G3 | 1909.23 | 1914.87 | 0.93 | 8.46 | 0.85 | |
G4 | 1887.45 | 1890.69 | 0.08 | 1.2 | 0.96 | |
G5 | 1820.71 | 1820.18 | 0.02 | 0.99 | 0.61 |
Type | Point | M.M. 1 | M.H. 1 | MAE | RMSE |
---|---|---|---|---|---|
NG1 | 0.0115 | 0.0113 | 0.0004 | 0.0004 | |
Nitrate | NG2 | 0.0079 | 0.0074 | 0.0007 | 0.0008 |
NG3 | 0.0144 | 0.0046 | 0.0098 | 0.0107 | |
NG4 | 0.0030 | 0.0061 | 0.0031 | 0.0034 | |
NG5 | 0.0028 | 0.0041 | 0.0012 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-González, A.; Hernández-Bedolla, J.; Martínez-Cinco, M.A.; Sánchez-Quispe, S.T.; Hernández-Hernández, M.A. Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model. Hydrology 2023, 10, 209. https://doi.org/10.3390/hydrology10110209
Correa-González A, Hernández-Bedolla J, Martínez-Cinco MA, Sánchez-Quispe ST, Hernández-Hernández MA. Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model. Hydrology. 2023; 10(11):209. https://doi.org/10.3390/hydrology10110209
Chicago/Turabian StyleCorrea-González, Alejandra, Joel Hernández-Bedolla, Marco Antonio Martínez-Cinco, Sonia Tatiana Sánchez-Quispe, and Mario Alberto Hernández-Hernández. 2023. "Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model" Hydrology 10, no. 11: 209. https://doi.org/10.3390/hydrology10110209