Abstract
Three Tertiary aquifers and one Mesozoic aquifer located in the two neighbouring Autonomous Communities of Madrid and Castilla-La Mancha (central Spain) were selected to study the environmental factors affecting groundwater pollution by nitrate. The majority of the territory was subject to a very high degree of human impact, with it being difficult to identify which potential sources of nitrogen were responsible for the observed cases of groundwater nitrate pollution. The objectives were: (1) to obtain a better understanding of nitrate distribution in the aquifers during a period of 25 years; (2) to determine the relative contribution of several environmental parameters (including land use) that are often used in groundwater vulnerability assessment using principal components analysis (PCA); (3) to make a critical review of the current criteria used for the designation of nitrate vulnerable zones (NVZs; Directive 91/676/EEC) in this territory; and (4) to discuss the concept of groundwater vulnerability to nitrate vs. groundwater nitrate pollution. Contour maps of nitrate contents in the four aquifers from 1985 to 2010 showed a persistent problem of nitrate pollution affecting wide areas of the Tertiary aquifers (subjected to a high risk of anthropogenic impact), whereas the Mesozoic aquifer remained unpolluted (protected by non-polluting land uses). The PCA demonstrated that the main risk of groundwater nitrate pollution stemmed from the interaction between intrinsic vulnerability (related to hydrogeological factors and soil media) and land use; and this, together with groundwater flow, allowed us to explain the possible sources of nitrogen at each sampling point. The current demarcations of NVZs in central Spain reveal a lack of coordination between administrations and poorly defined criteria. Our results show the need to redefine these NVZs by mapping vulnerability to nitrate pollution within this territory based on the environmental factors highlighted by the PCA.
Similar content being viewed by others
References
Alcolea MA, García Alvarado JM (2006) El agua en la Comunidad de Madrid. Observatorio Medioambiental 9:63–96
Aller L, Bennet T, Lher JH, Petty RJ (1987) DRASTIC. A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. U.S. EPA Report 600/2-87-035 Ada, Oklahoma
Arauzo M, Valladolid M (2013) Drainage and N-leaching in alluvial soils under agricultural land uses: implications for the implementation of the EU Nitrates Directive. Agr Ecosyst Environ 179:94–107
Arauzo M, Martínez-Bastida JJ, Valladolid M (2008) Contaminación por nitrógeno en el sistema “río-acuífero aluvial” de la cuenca del Jarama (Comunidad de Madrid, España): ¿origen agrícola o urbano? Limnetica 27:195–210
Arauzo M, Valladolid M, Martínez-Bastida JJ (2011) Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: implications for the implementation of the Nitrate Directive. J Hydrol 411:155–168
Auge M (2004) Vulnerabilidad de Acuíferos (Aquifers vulnerability). Revista Latino-Americana de Hidrogeologia 4:85–103
BOCM (2009) Orden 2331/2009. Boletín Oficial de la Comunidad de Madrid no 170, del 20 de Julio de 2009
Cabrera F, Fernandez-Bohy E, Aparicio MG, Murillo JM, Moreno F (1995) Leaching of nitrate from a sandy loam soil under corn and two N-fertilizations. Fresh Environ Bull 4:250–255
Choi WJ, Han GH, Lee SM, Lee GT, Yoon KS, Choi SM, Ro HM (2007) Impact of land-use types on nitrate concentration and delta N-15 in unconfined groundwater in rural areas of Korea. Agr Ecosyst Environ 120:259–268
Colman IP, Palmer RC, Bellamy PH, Hollis JM (2005) Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database. Hydrogeol J 13:665–674
Comunidad de Madrid (2001) Plan regional de actuaciones en materia de suelos contaminados de la Comunidad de Madrid 2001–2006, Madrid
Council of the European Communities (1991) Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Council of the European Communities, Brussels, 12 Dec 1991
De Clercq P, Gertsis AC, Hofman G, Jarvism SC, Neeteson JJ, Sinabel F (2001) Nutrient management legislation in European countries. Ghent University, Department of Soil Management and Soil Care, Ghent
Debernardi L, De Luca DA, Lasagna M (2012) Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558
DOCM (2003) Resolución de 10 de febrero de 2003. Diario Oficial de Castilla-La Mancha no 26, del 28 de febrero de 2003
Environmental Systems Research Institute (2006) ESRI ArcGIS 9.2, Environmental Systems Research Institute Ltd., Redlands, California
European Commission (2010) On implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2004-2007. Commission staff working document, Brussels
European Environment Agency (2007) CORINE land cover 2000 by country. European Environment Agency. http://www.eea.europa.eu/data-and-maps/figures/corine-land-cover-2000-by-country-1. Accessed 9 Dec 2009
European Environmental Agency (2005) Source apportionment of nitrogen and phosphorus inputs into the aquatic environment. EEA Report No 7, Copenhagen
EuropeanCommission (2000) Nitrates Directive (91/676/EEC) Status and trends of aquatic environment and agricultural practice, Development guide for Member States’ reports. Directorate-General for Environment, Brussels
Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenbooden W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants. TNO Committee on Hydrological Research, Proceeding and information, vol 38. The Hague, pp 69–86
Foster S (2007) Aquifer pollution vulnerability concept and tools-use, benefits and constraints. In: Witkowski A, Kowalczyk A, Vrba J (eds) Groundwater vulnerability assessment and mapping. IAH- selected Papers, volume 11. Taylor & Francis, London, pp 2–9
Foster S, Hirata R, Gómez D, D’Elia M, Paris M (2002) Ground water Quality Protection. A guide for water utilities, municipal authorities and environment agencies. The World Bank, Washington DC
Garfías J, Franco R, Llanos H (2002) Análisis de la vulnerabilidad intrínseca y su adecuación mediante un modelo de flujo con trazado de partículas para evaluar la vulnerabilidad del acuífero del curso alto del río Lerma, estado de México. Revista Latino-Americana de Hidrogeología 2:115–126
Gogu RD, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ Geol 44:881–892
Groeneveld R, Bouwman AF, Kruitwagen S, Van Ierland EC (1998) Nitrate leaching in dairy farming: economic effects of environmental restrictions. Environ Pollut 102:755–761
Guerra A, Monturiol F (1970). Mapa de suelos de la provincia de Guadalajara. Escala 1:250000. Instituto Nacional de Edafología y Agrobiología José María Albareda, CSIC, Madrid
Hernández-García MA, Custodio E (2004) Natural baseline quality of Madrid Tertiary Detrital Aquifer groundwater (Spain): a basis for aquifer management. Environ Geol 46:173–188
IGME (1981) Plan Nacional de Investigación de Aguas Subterráneas (PNIAS): Proyecto de investigación hidrogeológica de la cuenca del Tajo. Informes técnicos: 1, 2, 3, 4, 5. Instituto Geológico y Minero de España, Madrid
IGME (1988). Mapa Geológico de la Comunidad de Madrid. Escala 1:200000. Instituto Geológico y Minero de España, Madrid
IGME (1991). Mapa Geológico de España. Escala 1:200000. Instituto Geológico y Minero de España. http://www.igme.es/internet/default.asp. Accessed 20 June 2012
IGME (1993) Las aguas subterráneas en España. Instituto Geológico y Minero de España. http://aguas.igme.es/igme/publica/libro20/lib20.htm. Accessed 21 July 2012
IGME (2009a) Encomienda de gestión para la realización de trabajos científico-técnicos de apoyo a la sostenibilidad y protección de las aguas subterráneas. Actividad 5: Elaboración del mapa piezométrico de España. Cuenca del Tajo. Instituto Geológico y Minero de España, Madrid
IGME (2009b) Encomienda de gestión para la realización de trabajos científico-técnicos de apoyo a la sostenibilidad y protección de las aguas subterráneas. Actividad 4: Identificación y caracterización de la interrelación que se presenta entre aguas subterráneas, cursos fluviales, descarga por manantiales, zonas húmedas y otros ecosistemas naturales de especial interés hídrico. Mapa sinóptico de la relación río-acuífero (Tajo). Instituto Geológico y Minero de España, Madrid
Instituto Provincial de Investigaciones y Estudios Toledanos (1984) Estudio agrobiológico de la provincia de Toledo. Ciencia y técnica toledanas, núm. 1. Diputación provincial de Toledo. Toledo
Livingston ML, Cory DC (1998) Agricultural nitrate contamination of ground water: an evaluation of environmental policy. J Am Wat Resour Assoc 34:1311–1317
Llamas MR, López Vera CF (1975) Estudio sobre los recursos hidráulicos subterráneos del área metropolitana de Madrid y su zona de influencia: avance de las características hidrogeológicas del Terciario Detrítico de la Cuenca del Jarama. Agua 88:36–55
Llamas MR, Martínez-Alfaro PE (1981) Application of different computer models to the study of solute transport on a vertical profile of Madrid Aquifer. Sci Total Environ 21:347–352
MAPYA (2005) Mapa de cultivos y aprovechamientos de España. Escala 1:50000. Ministerio de Agricultura, Pesca y Alimentación. http://www.mapa.es. Accessed 10 may 2011
Martínez-Bastida JJ, Arauzo M, Valladolid M (2010) Intrinsic and specific vulnerability of groundwater in Central Spain: the risk of nitrate pollution. Hydrogeol J 18:681–698
Monturiol F, Alcalá L (1990) Mapa de asociación de suelos de la Comunidad de Madrid, Consejería de Agricultura y Cooperación. Comunidad de Madrid y Consejo Superior de Investigaciones Científicas, Madrid
Moore KB, Ekwurzel B, Esser BK et al (2006) Sources of groundwater nitrate revealed using residence time and isotope methods. Appl Geochem 21:1016–1029
Remesan R, Panda RK (2008) Groundwater Vulnerability Assessment, Risk Mapping, and Nitrate Evaluation in a Small Agricultural Watershed: using the DRASTIC Model and GIS. Environ Qual Manage 17:53–75
Rupert MG (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 39:625–630
Sanchez-Pérez JM, Antigüedad I, Arrate I, García-Linares C, Morell I (2003) The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case of study. Sci Total Environ 317:173–187
Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manag 54:39–57
SPSS (2007) SPSS Statistics Base 17.0. User’s Guide. SPSS Inc., Chicago
Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99
Strauch G, Moder M, Wennrich R, Osenbruck K, Glaser HR, Schladitz T, Muller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soil Sediment 8:23–33
Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grisven H, Grizzetti B (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge
Verstraete W, Philips S (1998) Nitrification-denitrification processes and technologies in new context. Environ Pollut 102:717–726
Vias JM, Andreo B, Perales MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595
Witkowski A, Kowalczyk A, Vrba J (eds) (2007) Groundwater Vulnerability Assessment and Mapping. IAH- selected Papers, volume 11. Taylor & Francis, London
Worrall F, Spencer E, Burt TP (2009) The effectiveness of nitrate vulnerable zones for limiting surface water nitrate concentrations. J Hydrol 370:21–28
Acknowledgments
This research was funded by the Autonomous Community of Madrid, the European Social Fund (GR/AMB/0745/2004) and Spain’s Ministry of Science and Innovation (AGL2011-29861). The Confederación Hidrográfica del Tajo provided piezometric and hydrochemical data.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arauzo, M., Martínez-Bastida, J.J. Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: groundwater vulnerability vs. groundwater pollution. Environ Earth Sci 73, 8271–8286 (2015). https://doi.org/10.1007/s12665-014-3989-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12665-014-3989-8