Polarization Optics to Differentiate Among Bioaerosols for Lidar Applications
"> Figure 1
<p>Microscopic images of two widely encountered bioaerosols: (<b>a</b>) Ragweed pollen (<span class="html-italic">Ambrosia artemisiifolia</span>, laboratory study at iLM), (<b>b</b>) Fungal spores (<span class="html-italic">Cladosporium herbarum</span>, from MycoBank, a comprehensive database of images of fungal species (<a href="https://www.mycobank.org/" target="_blank">https://www.mycobank.org/</a> (accessed on 14 October 2024)).</p> "> Figure 2
<p>Visualization of polarization states on the Poincaré sphere [<a href="#B23-photonics-11-01067" class="html-bibr">23</a>]. A polarization state, defined by its longitude 2<math display="inline"><semantics> <mrow> <mi>χ</mi> </mrow> </semantics></math> and latitude 2<math display="inline"><semantics> <mrow> <mi>ω</mi> </mrow> </semantics></math>, has <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>,</mo> <mrow> <mrow> <mi mathvariant="normal">cos</mi> </mrow> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> <mo>ω</mo> </mrow> </mfenced> </mrow> </mrow> <mo> </mo> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">s</mi> <mo>(</mo> <mn>2</mn> <mo>χ</mo> <mo>)</mo> <mo>,</mo> <mo> </mo> <mrow> <mi mathvariant="normal">cos</mi> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> <mo>ω</mo> </mrow> </mfenced> </mrow> </mrow> <mo> </mo> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mo>(</mo> <mn>2</mn> <mo>χ</mo> <mo>)</mo> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mo>(</mo> <mn>2</mn> <mo>ω</mo> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">T</mi> </msup> </mrow> </semantics></math> for Stokes vector. Six degenerate polarization states can then be defined: <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>p</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>s</mi> </mrow> </mfenced> <mo>−</mo> </mrow> </semantics></math> polarized light with <b>St</b> = <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>1,0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> with positive sign for <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </semantics></math>-state,<math display="inline"><semantics> <mrow> <mo> </mo> <mfenced separators="|"> <mrow> <mn>45</mn> <mo>±</mo> </mrow> </mfenced> <mo>−</mo> </mrow> </semantics></math> polarized light with <b>St</b> = <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>[</mo> <mn>1,0</mn> <mo>,</mo> <mo>±</mo> <mn>1,0</mn> <mo>]</mo> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>R</mi> <mi>C</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>L</mi> <mi>C</mi> </mrow> </mfenced> <mo>−</mo> </mrow> </semantics></math> polarized light with <b>St</b> = <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>[</mo> <mn>1,0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>±</mo> <mn>1</mn> <mo>]</mo> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> with positive sign for <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>R</mi> <mi>C</mi> </mrow> </mfenced> </mrow> </semantics></math>-state.</p> "> Figure 3
<p>Laboratory <math display="inline"><semantics> <mrow> <mi>π</mi> </mrow> </semantics></math>-polarimeter operating at exact backscattering lidar angle (<math display="inline"><semantics> <mrow> <mi>θ</mi> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <mi>π</mi> </mrow> </semantics></math>, blue arrows), and at near backscattering angle (<math display="inline"><semantics> <mrow> <mi>θ</mi> <mo><</mo> <mi>π</mi> </mrow> </semantics></math>, yellow arrows) [<a href="#B24-photonics-11-01067" class="html-bibr">24</a>]. The <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math> is precisely aligned (1 mm out of 10 m) to cover the backscattering angle <math display="inline"><semantics> <mrow> <mi>θ</mi> </mrow> </semantics></math> = 180.0 ± 0.2° with accuracy. The <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>W</mi> <mi>P</mi> </mrow> </semantics></math> modulates the polarization state of the incident ns-pulsed laser light to obtain accurate evaluations of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> by adjusting the experimental variations of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>ψ</mi> </mrow> </mfenced> </mrow> </semantics></math> with the <math display="inline"><semantics> <mrow> <mi>ψ</mi> </mrow> </semantics></math> rotation angle of the <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>W</mi> <mi>P</mi> </mrow> </semantics></math>, as quantified by Equation (7) (for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>180.0</mn> </mrow> </semantics></math>°) and (10) (for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo><</mo> <mn>180.0</mn> </mrow> </semantics></math>°). Accurate values of the lidar <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>D</mi> <mi>R</mi> </mrow> </semantics></math> are then retrieved from <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>22</mn> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> using Equation (5). For the sake of clarity, we add that the angle <math display="inline"><semantics> <mrow> <mi>ψ</mi> </mrow> </semantics></math> is measured counterclockwise between the <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>W</mi> <mi>P</mi> </mrow> </semantics></math>’s fast axis and the laser scattering plane <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>z</mi> </mrow> </semantics></math>), as seen from the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math> toward the particles and that the <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mo> </mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> polarization components are defined relative to this plane. The experiment involves two laboratory polarimeters operating simultaneously at 532 and 1064 nm wavelengths (only one is represented to ease the reading).</p> "> Figure 4
<p>Backscattered light intensity <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>ψ</mi> <mo>)</mo> <mo>/</mo> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> as a function of the orientation of the QWP for pollen bioaerosol (in green) and fungal spores bioaerosol (in brown) at 180.0° lidar backscattering angle, allowing to retrieve their polarimetric signature <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>22</mn> </mrow> </msub> <mo>(</mo> <mi>π</mi> <mo>)</mo> </mrow> </semantics></math> and lidar <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>D</mi> <mi>R</mi> </mrow> </semantics></math>, using Equations (8) and (9). The experiment is carried out at 532 nm wavelength, using the π-polarimeter presented in <a href="#sec2dot3-photonics-11-01067" class="html-sec">Section 2.3</a>.</p> "> Figure 5
<p>Backscattered light intensity <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>d</mi> <mo>,</mo> <mi>p</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> <mo>(</mo> <mi>ψ</mi> <mo>)</mo> <mo>/</mo> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> as a function of the orientation of the QWP for pollen bioaerosol (in green) and fungal spores bioaerosol (in brown) for successive incident polarization states <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>o</mi> <mi>l</mi> <mo>=</mo> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mn>45</mn> <mo>+</mo> <mo>,</mo> <mi>R</mi> <mi>C</mi> <mo>)</mo> </mrow> </semantics></math>, respectively, labeled (<b>a</b>–<b>c</b>) in the figure. The experiment is carried out at 532 nm wavelength at 177.5° angle, using the polarimeter presented in <a href="#sec2dot4-photonics-11-01067" class="html-sec">Section 2.4</a>. The curves are adjusted with Equation (10) to derive the polarimetric signatures (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>22</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>33</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>44</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>34</mn> </mrow> </msub> </mrow> </semantics></math>) of pollen and fungal spores using Equations (11)–(13).</p> "> Figure 6
<p>Same as <a href="#photonics-11-01067-f004" class="html-fig">Figure 4</a> but at 1064 nm wavelength.</p> "> Figure 7
<p>Same as <a href="#photonics-11-01067-f005" class="html-fig">Figure 5</a> but at 1064 nm wavelength.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioaerosol Samples
2.2. Light Polarization States: Stokes Vectors and Mueller Matrices
2.3. Scattering Matrix Formalism
2.4. Laboratory Polarimeter at Lidar Exact Backscattering Angle of 180.0° (-Polarimeter)
2.5. Laboratory Polarimeter at near Lidar Backscattering Angle of 180.0°
2.6. Accuracy in Retrieved Normalized Scattering Matrix Elements
2.6.1. At 180.0° Backscattering Angle: Lidar Applications
2.6.2. At near 180.0° Backscattering Angle
3. Results and Discussion
3.1. Depolarization Ratio of Pollen and Fungal Spores at 180.0° Lidar Backscattering Angle
3.2. Polarimetric Signatures of Pollen and Fungal Spores at 177.5° Backscattering Angle
3.3. Polarimetric Signatures of Pollen and Fungal Spores at Two Wavelengths
3.4. Significance of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; et al. Climate Change and Future Pollen Allergy in Europe. Environ. Health Perspect. 2017, 125, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Šantl-Temkiv, T.; Sikoparija, B.; Maki, T.; Carotenuto, F.; Amato, P.; Yao, M.; Morris, C.E.; Schnell, R.; Jaenicke, R.; Pöhlker, C.; et al. Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Sci. Technol. 2020, 54, 520–546. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Weikl, F.; Radl, V.; Munch, J.; Pritsch, K. Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health. Sci. Total. Environ. 2015, 529, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Hess, M. (Ed.) Pollen Terminology: An Illustrated Handbook; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Abrego, N.; Norros, V.; Halme, P.; Somervuo, P.; Ali-Kovero, H.; Ovaskainen, O. Give me a sample of air and I will tell which species are found from your region: Molecular identification of fungi from airborne spore samples. Mol. Ecol. Resour. 2018, 18, 511–524. [Google Scholar] [CrossRef]
- Haarig, M.; Ansmann, A.; Engelmann, R.; Baars, H.; Toledano, C.; Torres, B.; Althausen, D.; Radenz, M.; Wandinger, U. First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust. Atmos. Meas. Tech. 2022, 22, 355–369. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef]
- Müller, D.; Veselovskii, I.; Kolgotin, A.; Tesche, M.; Ansmann, A.; Dubovik, O. Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Appl. Opt. 2013, 52, 3178–3202. [Google Scholar] [CrossRef]
- Miffre, A.; Cholleton, D.; Mehri, T.; Rairoux, P. Remote Sensing Observation of New Particle Formation Events with a (UV, VIS) Polarization Lidar. Remote Sens. 2019, 11, 1761. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Ex-periment. J. Geophys. Res. 2009, 114, D13202. [Google Scholar]
- Burton, S.P.; Hair, J.W.; Kahnert, M.; Ferrare, R.A.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Berkoff, T.A.; Seaman, S.T.; Collins, J.E.; et al. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos. Meas. Tech. 2015, 15, 13453–13473. [Google Scholar] [CrossRef]
- Mehri, T.; Kemppinen, O.; David, G.; Lindqvist, H.; Tyynelä, J.; Nousiainen, T.; Rairoux, P.; Miffre, A. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles’ external mixtures and dust mass concentration retrievals. Atmos. Res. 2018, 203, 44–61. [Google Scholar] [CrossRef]
- David, G.; Thomas, B.; Nousiainen, T.; Miffre, A.; Rairoux, P. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix. Atmos. Meas. Tech. 2013, 13, 6757–6776. [Google Scholar] [CrossRef]
- Miffre, A.; David, G.; Thomas, B.; Rairoux, P. Atmospheric non-spherical particles optical properties from UV-polarization lidar and scattering matrix. Geophys. Res. Lett. 2011, 38, L16804. [Google Scholar] [CrossRef]
- Ansmann, A.; Tesche, M.; Groß, S.; Freudenthaler, V.; Seifert, P.; Hiebsch, A.; Schmidt, J.; Wandinger, U.; Mattis, I.; Müller, D.; et al. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett. 2010, 37, L13810. [Google Scholar] [CrossRef]
- Miffre, A.; David, G.; Thomas, B.; Rairoux, P.; Fjaeraa, A.; Kristiansen, N.; Stohl, A. Volcanic aerosol optical properties and phase partitioning behavior after long-range advection characterized by UV-Lidar measurements. Atmos. Environ. 2012, 48, 76–84. [Google Scholar] [CrossRef]
- Sicard, M.; Jorba, O.; Ho, J.J.; Izquierdo, R.; De Linares, C.; Alarcón, M.; Comerón, A.; Belmonte, J. Measurement report: Characterization of the vertical distribution of airborne Pinus pollen in the atmosphere with lidar-derived profiles—A modeling case study in the region of Barcelona, NE Spain. Atmos. Meas. Tech. 2021, 21, 17807–17832. [Google Scholar] [CrossRef]
- Filioglou, M.; Leskinen, A.; Vakkari, V.; O’Connor, E.; Tuononen, M.; Tuominen, P.; Laukkanen, S.; Toiviainen, L.; Saarto, A.; Shang, X.; et al. Spectral dependence of birch and pine pollen optical properties using a synergy of lidar. Atmos. Chem. Phys. 2023, 23, 9009–9021. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Stokes, G. On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1852, 9, 399–416. [Google Scholar]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Do-novan, D.P.; et al. The Earthcare Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Am. Meteor. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- Miffre, A.; Mehri, T.; Francis, M.; Rairoux, P. UV–VIS depolarization from Arizona Test Dust particles at exact backscattering angle. J. Quant. Spectrosc. Radiat. Transf. 2016, 169, 79–90. [Google Scholar] [CrossRef]
- Miffre, A.; Cholleton, D.; Rairoux, P. Laboratory evaluation of the scattering matrix elements of mineral dust particles from 176.0° up to 180.0°-exact backscattering angle. J. Quant. Spectrosc. Radiat. Transf. 2019, 222–223, 45–59. [Google Scholar] [CrossRef]
- Van de Hulst, H.C. Light scattering by small particles, New York (John Wiley and Sons), London (Chapman and Hall), 1957. Pp. xiii, 470; 103 Figs.; 46 Tables. 96s. Q. J. R. Meteorol. Soc. 1958, 84, 198–199. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles, 1st ed.; Wiley-VCH: Weinheim, Germany, 1983; 530p, ISBN 9783527618163. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002; 492p. [Google Scholar]
- Shurcliff, W.A. Polarized Light: Production and Use; Harvard University Press: Cambridge, MA, USA; London, UK, 1962; 181p. [Google Scholar] [CrossRef]
- Adamov, S.; Lemonis, N.; Clot, B.; Crouzy, B.; Gehrig, R.; Graber, M.-J.; Sallin, C.; Tummon, F. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia 2024, 40, 77–91. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Tummon, F.; Abt, R.; Allan, N.; Bunderson, L.; Clot, B.; Crouzy, B.; Daunys, G.; Erb, S.; Gonzalez-Alonso, M.; et al. Towards European automatic bioaerosol monitoring: Comparison of 9 automatic pollen observational instruments with classic Hirst-type traps. Sci. Total. Environ. 2023, 866, 161220. [Google Scholar] [CrossRef]
Species | (%) | |
---|---|---|
Pollen | ||
Fungal spores |
Species | |||||
---|---|---|---|---|---|
Pollen | |||||
Fungal spores |
Species | (%) | |
---|---|---|
Pollen | ||
Fungal spores |
Species | |||||
---|---|---|---|---|---|
Pollen | |||||
Fungal spores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miffre, A.; Cholleton, D.; Genoud, A.P.; Spanu, A.; Rairoux, P. Polarization Optics to Differentiate Among Bioaerosols for Lidar Applications. Photonics 2024, 11, 1067. https://doi.org/10.3390/photonics11111067
Miffre A, Cholleton D, Genoud AP, Spanu A, Rairoux P. Polarization Optics to Differentiate Among Bioaerosols for Lidar Applications. Photonics. 2024; 11(11):1067. https://doi.org/10.3390/photonics11111067
Chicago/Turabian StyleMiffre, Alain, Danaël Cholleton, Adrien P. Genoud, Antonio Spanu, and Patrick Rairoux. 2024. "Polarization Optics to Differentiate Among Bioaerosols for Lidar Applications" Photonics 11, no. 11: 1067. https://doi.org/10.3390/photonics11111067