Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects
<p>A Schematic diagram of the experiment. A CdTe single nanowire is suspended in free space via tapered optical fibers to avoid interaction with the substrate. As a result of different transverse nonlinear effect, different colors emit in the direction perpendicular to the axis of the nanowire.</p> "> Figure 2
<p>Optical and scanning electron microscope images. (<b>a</b>) Optical microscope image of a ~280 nm diameter CdTe nanowire suspended in free space. The pumping lights are coupled inside the nanowire via the two tapered optical fibers. (<b>b</b>,<b>c</b>) Scanning electron microscope images of the CdTe nanowire. (<b>d</b>–<b>f</b>) The optical microscope images of the nanowire with 1064 nm wavelength pump light coupled in from the left, right, and both sides, respectively.</p> "> Figure 3
<p>Optical emitting properties of a nanowire pumped by 1064 nm wavelength light from one single side. (<b>a</b>) An optical microscope image of the nanowire subjected to an input power of ~1.90 mW from the left side. (<b>b</b>) Optical spectra of the TPA-induced fluorescence when the nanowire is subjected to a different input power, indicating a strong peak at a wavelength of 713 nm and a weak peak at a wavelength of 532 nm. The inset image is an enlarged view of the peak at a 532 nm wavelength. (<b>c</b>) The relationship between the normalized intensity of the peak at a 713 nm wavelength and the input power, corresponding to (<b>b</b>).</p> "> Figure 4
<p>Optical emitting properties of the nanowire when pumped with 1064 nm wavelength light from both sides. (<b>a</b>) Optical spectra of the transverse emitting light with different input powers. The peaks at wavelength of 713 nm and 532 nm correspond to the TPA-induced fluorescence and TSHG, respectively. (<b>b</b>) The relationship between the normalized intensity of the two peaks and the input power. (<b>c</b>) Normalized optical spectra when using a 600 nm short-pass optical filter. (<b>d</b>) Normalized optical spectra when using a 600 nm long-pass optical filter. (<b>e</b>) The optical microscope images of the nanowire with different input powers.</p> "> Figure 5
<p>Optical emitting properties of the nanowire pumped by 1064 nm wavelength light and 980 nm wavelength light coupled to the two sides of the nanowire, respectively. (<b>a</b>) Optical spectra of the transverse emitting light. The peaks at wavelengths of 713 nm, 532 nm, and 510 nm correspond to the TPA-induced fluorescence, TSHG, and TSFG, respectively. (<b>b</b>) The relationship between the normalized intensity of the three peaks and the input power of 1064 nm wavelength pumping light. (<b>c</b>) The optical microscope images with different input powers of 1064 nm wavelength pumping light.</p> "> Figure 6
<p>The gamut of the transverse emitting light in the CIE 1931 <span class="html-italic">xy</span> chromaticity diagram. The circle represents the case with a single peak in the spectra, while the square, diamond, and triangle represent cases with two distinct peaks. The pentagram represents the case with three peaks.</p> "> Figure 7
<p>The shifts in the CIE 1931 <span class="html-italic">xy</span> coordinates for (<b>a</b>) the three-peak cases and for the two-peak case with wavelengths of (<b>b</b>) 532 nm and 713 nm, (<b>c</b>) 510 nm and 532 nm, and (<b>d</b>) 510 nm and 713 nm, respectively. The input power of the left-side 980 nm wavelength pumping light remains unchanged at ~2.00 mW, and the input power of the right-side 1064 nm wavelength pumping light increases gradually.</p> "> Figure 8
<p>Scanning electron microscope image and optical emitting properties of a nanowire pumped with 1064 nm wavelength light from one single side. (<b>a</b>) Scanning electron microscope image of a ~385 nm diameter CdTe nanowire. (<b>b</b>) Optical microscope image of the nanowire from one single side. (<b>c</b>) Optical spectra of the TPA-induced fluorescence, indicating a strong peak at a wavelength of 713 nm and a weak peak at a wavelength of 532 nm. The inset image is an enlarged view of the peak at a 532 nm wavelength.</p> "> Figure 9
<p>The uncertainty of the measured intensity for the TPA-induced fluorescence. Four spectra are measured with a time interval of ~10 s between each other. The inset image is an enlarged view of the region around the peak of the spectrum.</p> ">
Abstract
:1. Introduction
2. Theory
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Q.; Painter, O.J.; Agrawal, G.P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 2007, 15, 16604–16644. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.A.; Turner, A.C.; Lipson, M.; Gaeta, A.L. Nonlinear optics in photonic nanowires. Opt. Express 2008, 16, 1300–1320. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ying, Y.; Tong, L. Photonic nanowires: From subwavelength waveguides to optical sensors. Acc. Chem. Res. 2014, 47, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sandgren, E.; Barnhart, M.; Zhu, R.; Huang, G. Photonic Nanostructures Design and Optimization for Solar Cell Application. Photonics 2015, 2, 893–905. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, L.; Wu, G.; Zhu, Y.; Zeng, H. Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides. Nanoscale 2014, 6, 12371–12375. [Google Scholar] [CrossRef]
- Xin, C.; Qi, J.; Zhang, R.; Jin, L.; Zhou, Y. In-situ modal inspection based on transverse second harmonic generation in single CdS nanobelt. Chin. Opt. Lett. 2021, 19, 071901. [Google Scholar] [CrossRef]
- Yu, H.; Fang, W.; Wu, X.; Lin, X.; Tong, L.; Liu, W.; Wang, A.; Shen, Y.R. Single nanowire optical correlator. Nano Lett. 2014, 14, 3487–3490. [Google Scholar] [CrossRef]
- Monat, C.; Grillet, C.; Collins, M.; Clark, A.; Schroeder, J.; Xiong, C.; Li, J.; O’faolain, L.; Krauss, T.F.; Eggleton, B.J. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun. 2014, 5, 3246. [Google Scholar] [CrossRef]
- Gu, F.; Wu, G.; Zhang, L.; Zeng, H. Above-Bandgap Surface-Emitting Frequency Conversion in Semiconductor Nanoribbons with Ultralow Continuous-Wave Pump Power. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 7600106. [Google Scholar]
- Yu, J.; Liu, F.; Gu, Z.; Gu, F.; Zhuang, S. Efficient higher-order nonlinear optical effects in CdSe nanowaveguides. Opt. Express 2018, 26, 6880–6889. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Lu, W.; Katsuro, S.; Okuda, R.; Nakayama, N.; Sone, N.; Mizutani, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs. Nanoscale Adv. 2022, 4, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Lim, T.; Kim, S.; Park, H.-L.; Ju, S. Tunable-white-light-emitting nanowire sources. Nanotechnology 2010, 21, 255201. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Yu, S.; Bao, Q.; Wu, X.; Chen, B.; Wang, Y.; Xu, Y.; Yang, Z.; Tong, L. Single CdTe nanowire optical correlator for femtojoule pulses. Nano Lett. 2016, 16, 4807–4810. [Google Scholar] [CrossRef]
- Xin, C.; Zhang, J.; Xu, P.; Xie, Y.; Yao, N.; Zhou, N.; Guo, X.; Fang, W.; Tong, L. Self-phase modulation in single CdTe nanowires. Opt. Express 2019, 27, 31800–31809. [Google Scholar] [CrossRef]
- Shaygan, M.; Davami, K.; Kheirabi, N.; Baek, C.K.; Cuniberti, G.; Meyyappan, M.; Lee, J.-S. Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector. Phys. Chem. Chem. Phys. 2014, 16, 22687–22693. [Google Scholar] [CrossRef]
- Matei, E.; Ion, L.; Antohe, S.; Neumann, R.; Enculescu, I. Multisegment CdTe nanowire homojunction photodiode. Nanotechnology 2010, 21, 105202. [Google Scholar] [CrossRef]
- Xin, C.; Wu, H.; Xie, Y.; Yu, S.; Zhou, N.; Shi, Z.; Guo, X.; Tong, L. CdTe microwires as mid-infrared optical waveguides. Opt. Express 2018, 26, 10944–10952. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ding, B.; Shen, J.; Hu, Y.; Gu, H. Homo-epitaxial secondary growth of ZnO nanowire arrays for a UV-free warm white light-emitting diode application. Appl. Opt. 2020, 59, 2498–2504. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Z.; Huang, Y.H.; Lin, K.H.; Wu, S.T. High-efficiency nanowire light-emitting diodes for augmented reality and virtual reality displays. J. Soc. Inf. Disp. 2023, 31, 211–219. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: A promising candidate for next generation micro displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, L.; Wu, Y.; Liao, Q. Luminescence emission-modulated based on specific two-photon compound of triazole-conjugated pyrene derivative. RSC Adv. 2017, 7, 19002–19006. [Google Scholar] [CrossRef]
- Gao, Y.; Potasek, M.J. Effects of excited-state absorption on two-photon absorbing materials. Appl. Opt. 2006, 45, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, F.; Xia, T.; Kumar, N.; Hahm, J.-i.; Liu, J.; Wang, Z.L.; Xu, J. Low-threshold two-photon pumped ZnO nanowire lasers. Opt. Express 2009, 17, 7893–7900. [Google Scholar] [CrossRef] [PubMed]
- Otomo, A.; Stegeman, G.I.; Flipse, M.C.; Diemeer, M.B.; Horsthuis, W.H.; Möhlmann, G.R. Nonlinear contrawave mixing devices in poled-polymer waveguides. JOSA B 1998, 15, 759–772. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Harcourt Brace Jovanovich Press: New York, NY, USA, 1992; pp. 62–69. ISBN 0-12-121680-2. [Google Scholar]
- Xin, C.; Fan, C.; Zhang, Z.; Zhou, Y. Dislocation-Driven Growth of Optical Waveguiding CdTe Nano-/Microwires. Cryst. Growth Des. 2022, 22, 5582–5588. [Google Scholar] [CrossRef]
- Gorbach, A.V.; Ding, W. Microfiber-Lithium Niobate on Insulator Hybrid Waveguides for Efficient and Reconfigurable Second-Order Optical Nonlinearity on a Chip. Photonics 2015, 2, 946–956. [Google Scholar] [CrossRef]
- Gusachenko, I.; Truong, V.G.; Frawley, M.C.; Nic Chormaic, S. Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies. Photonics 2015, 2, 795–807. [Google Scholar] [CrossRef]
- Huang, K.; Yang, S.; Tong, L. Modeling of evanescent coupling between two parallel optical nanowires. Appl. Opt. 2007, 46, 1429–1434. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, H.; Xie, Y.; Zhang, J.; Liu, K.; Guo, X.; Tong, L. Variable Optical Attenuator Based on a PDMS-Embedded Microfiber Coupler. IEEE Photonics Technol. Lett. 2024, 36, 449–452. [Google Scholar] [CrossRef]
- Choi, S.B.; Song, M.S.; Kim, Y. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination. Nanotechnology 2018, 29, 145702. [Google Scholar] [CrossRef] [PubMed]
- Rakovich, Y.P.; Volkov, Y.; Sapra, S.; Susha, A.S.; Döblinger, M.; Donegan, J.F.; Rogach, A.L. CdTe nanowire networks: Fast self-assembly in solution, internal structure, and optical properties. J. Phys. Chem. C 2007, 111, 18927–18931. [Google Scholar] [CrossRef]
- Liao, F.; Wang, Y.; Peng, T.; Peng, J.; Gu, Z.; Yu, H.; Chen, T.; Yu, J.; Gu, F. Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a Femto-Joule level. Adv. Opt. Mater. 2018, 6, 1701012. [Google Scholar] [CrossRef]
Central Wavelength (nm) | Maximum Output Intensity (a.u.) | |
---|---|---|
No. 1 | 713.41 | 0.9263 |
No. 2 | 712.83 | 0.9120 |
No. 3 | 712.64 | 0.8902 |
No. 4 | 712.06 | 0.8626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Xu, L.; Fan, C.; Zhang, Y.; Yang, H.; Li, M.; Xin, C. Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects. Photonics 2024, 11, 1068. https://doi.org/10.3390/photonics11111068
Guo L, Xu L, Fan C, Zhang Y, Yang H, Li M, Xin C. Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects. Photonics. 2024; 11(11):1068. https://doi.org/10.3390/photonics11111068
Chicago/Turabian StyleGuo, Lijun, Lihao Xu, Changjiang Fan, Yunfei Zhang, Hao Yang, Mengwei Li, and Chenguang Xin. 2024. "Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects" Photonics 11, no. 11: 1068. https://doi.org/10.3390/photonics11111068