Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit
<p>Schematics of metasurface structure and optical configuration in this study. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section view of unit cell of metasurface of Si-nanogap unit (purple). The gap <span class="html-italic">g</span> is indicated with a both-end arrow. The center line along the <span class="html-italic">x</span> axis is drawn with a broken line, which goes across the central point of the unit cell. (<b>b</b>) Asymmetry introduced in the unit cell is indicated by a quantity <math display="inline"><semantics> <mi>α</mi> </semantics></math>, which is offset from the center line (broken line) to the middle line (dotted line) in the gap. (<b>c</b>) Three-dimensional illustration of unit cell of metasurface of an asymmetric Si-nanogap pair. Optical configuration is shown together. The unit cells in (<b>a</b>–<b>c</b>) are set to have dimensions of <math display="inline"><semantics> <mrow> <mn>600</mn> <mo>×</mo> <mn>600</mn> </mrow> </semantics></math> nm<sup>2</sup> in the <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> plane. Length of the Si nanoblock along the <span class="html-italic">x</span> axis is 400 nm and the sum of <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>g</mi> </mrow> </semantics></math> is 400 nm. Height of the Si nanoblock is set to 200 nm. (<b>d</b>) Three-dimensional illustration of a metasurface of periodic array of asymmetric Si-nanogap units, which are assumed to be infinitely periodic in the computations.</p> "> Figure 2
<p>Optical resonances emerged in the Si-nanogap unit metasurfaces. (<b>a</b>) Computed reflectance spectra at two incident polarizations, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>x</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>y</mi> </mrow> </mrow> </semantics></math> for various asymmetric parameters <math display="inline"><semantics> <mi>α</mi> </semantics></math>, defined in <a href="#photonics-11-01053-f001" class="html-fig">Figure 1</a>, and a fixed gap <span class="html-italic">g</span> of 50 nm. The reflectance spectra are shown with offset, changing color from black to blue for <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>x</mi> </mrow> </mrow> </semantics></math> and from red to brown for <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>y</mi> </mrow> </mrow> </semantics></math>, in accordance with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>–25, respectively. EQ, MD, and MQ denote electric quadrupole, magnetic dipole, and magnetic quadrupole, respectively, indicated by arrows. (<b>b,c</b>) Asymmetric parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> and estimated quality (Q) factors of the MD (closed blue circles) and EQ modes (red diamonds), respectively. The Q factor is defined as Equation (<a href="#FD3-photonics-11-01053" class="html-disp-formula">3</a>). Black lines denote fitted lines using a power function (see the text).</p> "> Figure 3
<p>Resonant electromagnetic (EM)-field distributions on the qBIC resonances. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section view of <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math> distribution at 1.272 eV. The <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> axes are shown together and the <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> sections were taken at the half height of the Si-nanogap pair. These settings are in common with the other panels in this figure. (<b>b</b>) Snapshot of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msub> <mi>E</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> </semantics></math> component, corresponding to (<b>a</b>), presents a signature of electric quadrupole (EQ) mode. (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math> distribution, corresponding to (<b>a</b>). The incident polarization was set to be <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>x</mi> </mrow> </mrow> </semantics></math> in (<b>a</b>–<b>c</b>). (<b>d</b>–<b>f</b>) <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msub> <mi>H</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> </semantics></math> distributions at 1.236 eV, respectively. The magnetic-field distribution shows a signature of magnetic dipole (MD) mode. (<b>g</b>–<b>i</b>) <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msub> <mi>H</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> </semantics></math> distributions at 1.402 eV, respectively. The magnetic-field distribution shows a signature of magnetic quadrupole (MQ) mode. The incident polarization was set to be <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>y</mi> </mrow> </mrow> </semantics></math> in (<b>d</b>–<b>i</b>). The color bars indicate values of resonantly enhanced EM fields, when the absolute values of incident fields were set to unity, that is, <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>1</mn> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi mathvariant="bold">H</mi> <mi>in</mi> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>1</mn> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>(<b>a</b>) Reflectance spectra dependent on refractive index <span class="html-italic">n</span> in the medium contacting the metasurface. Black and red curves show <span class="html-italic">x</span>- and <span class="html-italic">y</span>-polarized spectra, respectively, which are displayed with offset. Red arrows indicate a pair of resonances responsive to the index <span class="html-italic">n</span> over a wide range of <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>–2.0. (<b>b</b>) Resonance shift of the pair of resonances. The first and second ones are shown with closed and open red circles, respectively. The slopes, fitted using a linear function and shown with dashed black lines, approximating performance as optical sensors in the units of nm/RIU. See more details in the text. (<b>c</b>) Schematic of a <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math>-section-view metasurface and medium of refractive index <span class="html-italic">n</span>. Dotted lines section the unit cell along the <span class="html-italic">y</span> axis.</p> "> Figure 5
<p>Resonant EM-field distributions on the two resonances responsive to surrounding refractive index, which is set to <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>. (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>- and <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math>-section views of <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math> distributions, respectively. The <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math> section cuts across the center of Si nanoblocks in the <span class="html-italic">x</span> direction. (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math> distribution in <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section view. The photon energy is 1.124 eV in (<b>a</b>–<b>c</b>). (<b>d</b>–<b>f</b>) <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math> distributions at 1.167 eV, displayed in a similar manner to (<b>a</b>–<b>c</b>). The incident polarization was set to <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>y</mi> </mrow> </mrow> </semantics></math> in common. These <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> sections are taken at the half-height of the Si-nanogap pair. The <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math> sections are through the center of the unit cell.</p> "> Figure 6
<p>Optical resonances in an asymmetric metasurface of narrow gap <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm. (<b>a</b>) Reflectance spectra at <span class="html-italic">x</span> and <span class="html-italic">y</span> polarizations for refractive index <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>, shown with black and red curves, respectively. (<b>b</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section views of <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math>, and snapshot of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msub> <mi>H</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> </semantics></math> at 1.178 eV, respectively. (<b>e</b>–<b>g</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section views of <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">H</mi> <mo>|</mo> </mrow> </semantics></math>, and snapshot of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msub> <mi>H</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> </semantics></math> at 1.233 eV, respectively. The incident polarization was set to <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">E</mi> <mi>in</mi> </msub> <mrow> <mo>‖</mo> <mi>y</mi> </mrow> </mrow> </semantics></math> in common. The <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> sections were taken at the half-height of the Si-nanogap pair.</p> "> Figure A1
<p>Reflectance spectra of metasurface of a single symmetric Si-nanoblock unit. The spectra depend on refractive index <span class="html-italic">n</span>. (<b>a</b>) Unit cell in <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section view. (<b>b</b>) Reflectance spectra dependent on refractive index <span class="html-italic">n</span> in the contacting medium. They are displayed with offset.</p> "> Figure A2
<p>Reflectance spectra of metasurface of symmetric Si-nanogap unit. The spectra depend on refractive index <span class="html-italic">n</span>. (<b>a</b>) Unit cell in <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>-section view. (<b>b</b>) Reflectance spectra dependent on refractive index <span class="html-italic">n</span> in the contacting medium. Solid and dashed curves indicate <span class="html-italic">x</span>- and <span class="html-italic">y</span>-polarized spectra, respectively. They are displayed with offset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Asymmetric Metasurfaces and qBIC Modes
- 1.
- EM-field intensity is significantly enhanced on the resonance. For the incident intensities of and , the maxima of and reach 420 and 841 in Figure 3a,c, respectively. Note that the nanogap does not contribute to the large EM-field enhancement in this mode.
- 2.
- The field pattern of in Figure 3b indicates that the mode has quadratic oscillation on and around the Si-nanogap unit. Therefore, this mode is attributed to an EQ mode.
- 3.
- Anisotropy is introduced in the unit structure along the y axis and results in the anisotropy of the EM-field distributions, as observed in Figure 3a–c.
- 4.
- The resonant EM fields predominantly consist of near-field distributions in and around the Si-nanogap unit. As a result, the imaginary parts of EM fields contribute to the enhanced intensities. This is verified from the fact that the maximum of in Figure 3b is approximately two-fold smaller than that of in Figure 3a.
3.2. Resonant Shift for Refractive Index
3.3. Nanogap Modes with Hugely Enhanced Electric Fields
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
qBIC | quasi-bound state in the continuum |
SOI | Si-on-insulator |
RCWA | rigrously coupled-wave analysis |
S matrix | scattering matrix |
MPI | multiparallel implementation |
EM | electromagnetic |
EQ | electric quadrupole |
MD | magnetic dipole |
MQ | magnetic quadrupole |
FWHM | full-wave half maximum |
Q factor | quality factor |
Appendix A. Reflectance Spectra of Symmetric Metasurfaces
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Shcherbakov, M.R.; Allen, M.; Allen, J.; Wenner, B.; Shvets, G. Perfect Diffraction with Multiresonant Bianisotropic Metagratings. ACS Photonics 2018, 5, 4303–4311. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Huang, Y.W.; Yousef, K.M.A.; Lee, E.; Qiu, C.W.; Capasso, F. Broadband Achromatic Metasurface-Refractive Optics. Nano Lett. 2018, 18, 7801–7808. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- She, A.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Large area metalenses: Design, characterization, and mass manufacturing. Opt. Express 2018, 26, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, F.; Velev, V.; Jiang, S.; Sahakian, A.V.; Kumar, P.; Aydin, K. Inverse-designed stretchable metalens with tunable focal distance. Appl. Phys. Lett. 2018, 112, 091102. [Google Scholar] [CrossRef]
- Aiello, M.D.; Backer, A.S.; Sapon, A.J.; Smits, J.; Perreault, J.D.; Llull, P.; Acosta, V.M. Achromatic Varifocal Metalens for the Visible Spectrum. ACS Photonics 2019, 6, 2432–2440. [Google Scholar] [CrossRef]
- Meem, M.; Banerji, S.; Pies, C.; Oberbiermann, T.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 2020, 7, 252–253. [Google Scholar] [CrossRef]
- Horie, Y.; Han, S.; Lee, J.Y.; Kim, J.; Kim, Y.; Arbabi, A.; Shin, C.; Shi, L.; Arbabi, E.; Kamali, S.M.; et al. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies. Nano Lett. 2017, 17, 3159–3164. [Google Scholar] [CrossRef]
- Chen, B.H.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Lee, I.C.; Chen, J.W.; Chen, Y.H.; Lan, Y.C.; Kuan, C.H.; et al. GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. Nano Lett. 2017, 17, 6345–6352. [Google Scholar] [CrossRef]
- Miyata, M.; Nakajima, M.; Hashimoto, T. High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces. ACS Photonics 2019, 6, 1442–1450. [Google Scholar] [CrossRef]
- Zheng, R.; Wei, Y.; Zhang, Z.C.; Wang, Z.Y.; Ma, L.L.; Wang, Y.; Huang, L.; Lu, Y.Q. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 2023, 1, e20230017. [Google Scholar] [CrossRef]
- Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Lett. 2017, 17, 4421–4426. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef]
- Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J.Y.; Li, Y.; Liu, Q.H. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluid. Nanophotonics 2019, 8, 307–316. [Google Scholar] [CrossRef]
- Iwanaga, M. All-Dielectric Metasurface Fluorescence Biosensors for High-Sensitivity Antibody/Antigen Detection. ACS Nano 2020, 14, 17458–17467. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M. Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors. Biosensors 2023, 13, 377. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M.; Hironaka, T.; Ikeda, N.; Sugasawa, T.; Takekoshi, K. Metasurface Biosensors Enabling Single-Molecule Sensing of Cell-Free DNA. Nano Lett. 2023, 23, 5755–5761. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Iwanaga, M.; Tang, Y. Metasurface Platform Incorporating Aggregation Induced Emission Based Biosensor for Enhanced Human Serum Albumin Detection. Adv. Opt. Mater. 2024, 12, 2400868. [Google Scholar] [CrossRef]
- Von Neumann, J.; Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 1929, 30, 465–467. [Google Scholar]
- Hsu, C.W.; Zhen, B.; Lee, J.; Chua, S.L.; Johnson, S.G.; Joannopoulos, J.D.; Soljacčić, M. Observation of trapped light within the radiation continuum. Nature 2013, 499, 188–191. [Google Scholar] [CrossRef]
- Ndao, A.; Hsu, L.; Cai, W.; Ha, J.; Park, J.; Contractor, R.; Lo, Y.; Kanté, B. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum. Nanophotonics 2020, 9, 1081–1086. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Hsu, Y.C.; Liu, A.Y.; Hsieh, J.C.; Lin, Y.H. Ultrasensitive Refractive Index Sensing Based on the Quasi-Bound States in the Continuum of All-Dielectric Metasurfaces. Adv. Opt. Mater. 2022, 10, 2200812. [Google Scholar] [CrossRef]
- Watanabe, K.; Iwanaga, M. Nanogap enhancement of the refractometric sensitivity at quasi-bound states in the continuum in all-dielectric metasurfaces. Nanophotonics 2023, 12, 99–109. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef]
- Ha, S.T.; Fu, Y.H.; Emani, N.K.; Pan, Z.; Bakker, R.M.; Paniagua-Domínguez, R.; Kuznetsov, A.I. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 2018, 13, 1042–1047. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M. A Design Strategy for Surface Nanostructures to Realize Sensitive Refractive-Index Optical Sensors. Nanomaterials 2023, 13, 3081. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids II; Academic: San Diego, CA, USA, 1991. [Google Scholar]
- Li, L. New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 1997, 14, 2758–2767. [Google Scholar] [CrossRef]
- Li, L. Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings. J. Opt. Soc. Am. A 1996, 13, 1024–1035. [Google Scholar] [CrossRef]
- Christ, A.; Tikhodeev, S.G.; Gippius, N.A.; Kuhl, J.; Giessen, H. Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Phys. Rev. Lett. 2003, 91, 183901. [Google Scholar] [CrossRef]
- Christ, A.; Zentgraf, T.; Tikhodeev, S.G.; Gippius, N.A.; Kuhl, J.; Giessen, H. Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations. Phys. Rev. B 2006, 74, 155435. [Google Scholar] [CrossRef]
- Christ, A.; Ekinci, Y.; Solak, H.H.; Gippius, N.A.; Tikhodeev, S.G.; Martin, O.J.F. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B 2007, 76, 201405. [Google Scholar] [CrossRef]
- Iwanaga, M. Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs. Appl. Phys. Lett. 2010, 96, 083106. [Google Scholar] [CrossRef]
- Iwanaga, M.; Choi, B. Heteroplasmon Hybridization in Stacked Complementary Plasmo–Photonic Crystals. Nano Lett. 2015, 15, 1904–1910. [Google Scholar] [CrossRef]
- Iwanaga, M. All-Dielectric Metasurfaces with High-Fluorescence-Enhancing Capability. Appl. Sci. 2018, 8, 1328. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Iwanaga, M. Optimum asymmetry for nanofabricated refractometric sensors at quasi-bound states in the continuum. Appl. Phys. Lett. 2024, 124, 111705. [Google Scholar] [CrossRef]
- Homola, J.; Koudela, I.; Yee, S.S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sens. Actuator B-Chem. 1999, 54, 16–24. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2017, 5, 5753. [Google Scholar] [CrossRef]
- Tognazzi, A.; Rocco, D.; Gandolfi, M.; Locatelli, A.; Carletti, L.; De Angelis, C. High Quality Factor Silicon Membrane Metasurface for Intensity-Based Refractive Index Sensing. Optics 2021, 2, 193–199. [Google Scholar] [CrossRef]
- Beliaev, L.Y.; Stounbjerg, P.G.; Finco, G.; Bunea, A.I.; Malureanu, R.; Lindvold, L.R.; Takayama, O.; Andersen, P.E.; Lavrinenko, A.V. Pedestal High-Contrast Gratings for Biosensing. Nanomaterials 2022, 12, 1748. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, T.; Tan, Q.; Hu, Z.; Sun, Y.; Fan, H.; Zhang, Z.; Jin, Y.; He, S. Phase Interrogation Sensor Based on All-Dielectric BIC Metasurface. Nano Lett. 2023, 23, 10441–10448. [Google Scholar] [CrossRef]
- Van Loon, T.; Liang, M.; Delplace, T.; Maes, B.; Murai, S.; Zijlstra, P.; Rivas, J.G. Refractive index sensing using quasi-bound states in the continuum in silicon metasurfaces. Opt. Express 2024, 32, 14289–14299. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
Structure | Feature | Detected n | Response | Reference |
---|---|---|---|---|
Si MSF | 2D array of 50 nm height pellets. | 1.33–1.35, Exp | Linear | [17] |
Shift at 840–850 nm. 227 nm/RIU | ||||
Si MSF | qBIC at C band. Asymmetric | 1.0–1.1 | Linear | [26] |
Si bars. 440 nm/RIU | ||||
Si MSF | 2D array of 450 nm height pairs. | 1.3–1.7 | Linear | [27] |
Shift at 1330–1600 nm. | ||||
612 nm/RIU | ||||
Si MSF | qBIC MD mode at C band. | 1.0–1.4 | Linear | [28] |
30 nm nanogap. 258 nm/RIU | ||||
Si MSF | qBIC MD mode at C band. | 1.33–1.36, Exp | Linear | [28] |
30 nm nanogap. 317 nm/RIU | ||||
Si lattice | 1D line and space. | 1.0–1.5 (wide) | Quadratic | [32] |
Large R change at 900–1000 nm | ||||
Si lattice | 2D square nanoblocks. | 1.0–1.5 (wide) | Quadratic | [32] |
Large R change at 745–790 nm | ||||
Si MSF | qBIC MD mode at C band. | 1.33–1.36, Exp | Linear | [43] |
Long-short bar pair. 231 nm/RIU | ||||
Si MSF | 2D ring and bar unit. Shift at | 1.40–1.44, Exp | Linear | [45] |
1340–1360 nm. 289 nm/RIU | ||||
Si MSF | 2D cylinders with thin spokes. | 1.000–1.005 | Linear | [46] |
Shift at 1381.99–1382.82 nm. | ||||
166 nm/RIU | ||||
Si lattice | 1D grating of pedestal unit. | 1.33–1.47 | Linear | [47] |
Shift at 1480–1555 nm. | ||||
536 nm/RIU | ||||
Si MSF | qBIC at C band. 2D bar-pair unit. | 1.33–1.48 | Linear | [48] |
Shift at 1340–1360 nm. | ||||
501 nm/RIU | ||||
Si MSF | qBIC. Asymmetric Dimer. | 1.4–1.6, Exp | Linear | [49] |
Shift at 710–760 nm. 140 nm/RIU | ||||
Si MSF | Asymmetric Si-nanogap unit. | 1.0–1.5 (wide) | Linear | This study |
Shift at 950–1120 nm. | ||||
286, 231 nm/RIU | ||||
Si MSF | Asymmetric Si-nanogap unit. | 1.0–2.0 (wide) | Quadratic | This study |
Shift at 950–1270 nm. | ||||
Traceable double R peaks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanaga, M. Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit. Photonics 2024, 11, 1053. https://doi.org/10.3390/photonics11111053
Iwanaga M. Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit. Photonics. 2024; 11(11):1053. https://doi.org/10.3390/photonics11111053
Chicago/Turabian StyleIwanaga, Masanobu. 2024. "Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit" Photonics 11, no. 11: 1053. https://doi.org/10.3390/photonics11111053
APA StyleIwanaga, M. (2024). Comprehensive Analysis of Optical Resonances and Sensing Performance in Metasurfaces of Silicon Nanogap Unit. Photonics, 11(11), 1053. https://doi.org/10.3390/photonics11111053