High-Performance Vis–NIR Photodetectors Based on Two-Dimensional Bi2Te3 Thin Film and Applications
<p>(<b>a</b>) Lattice structure of Bi<sub>2</sub>Te<sub>3</sub>. (<b>b</b>) Structure diagram of Bi<sub>2</sub>Te<sub>3</sub> PD. (<b>c</b>) Surface SEM of Bi<sub>2</sub>Te<sub>3</sub> thin film. (<b>d</b>) Energy band diagram of Bi<sub>2</sub>Te<sub>3</sub> PD, arrows indicate the direction of electron and hole flow.</p> "> Figure 2
<p>(<b>a</b>) AFM of Bi<sub>2</sub>Te<sub>3</sub> thin film samples. (<b>b</b>) Thickness of Bi<sub>2</sub>Te<sub>3</sub> thin film samples. (<b>c</b>) Raman spectrum of Bi<sub>2</sub>Te<sub>3</sub> thin film samples. (<b>d</b>) X-ray diffraction pattern of Bi<sub>2</sub>Te<sub>3</sub> thin film samples.</p> "> Figure 3
<p>(<b>a</b>) I-V curves of Bi<sub>2</sub>Te<sub>3</sub> PD under 405 nm illumination. (<b>b</b>) I-V curves of Bi<sub>2</sub>Te<sub>3</sub> PD under 532 nm illumination. (<b>c</b>) I-V curves of Bi<sub>2</sub>Te<sub>3</sub> PD under 808 nm illumination.</p> "> Figure 4
<p>Time-dependent photoresponse of the Bi<sub>2</sub>Te<sub>3</sub> PD under (<b>a</b>) 405 nm, (<b>b</b>) 532 nm and (<b>c</b>) 808 nm laser irradiation. Single-period response for rise and fall times under (<b>d</b>) 405 nm, (<b>e</b>) 532 nm and (<b>f</b>) 808 nm laser irradiation.</p> "> Figure 5
<p><span class="html-italic">R</span> and <span class="html-italic">D*</span> of Bi<sub>2</sub>Te<sub>3</sub> PD under (<b>a</b>) 405 nm, (<b>b</b>) 532 nm and (<b>c</b>) 808 nm laser irradiation at <span class="html-italic">V<sub>DS</sub></span> = 2 V.</p> "> Figure 6
<p>(<b>a</b>) Single-point scanning imaging system based on Bi<sub>2</sub>Te<sub>3</sub> PD. (<b>b</b>) Imaging results of digital images at a 532 nm wavelength.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Material Synthesis and Device Preparation
2.2. Material Characterization and Device Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.; Fuentes-Hernandez, C.; Vijayan, R.; Zhang, Y.; Li, Y.; Park, J.W.; Wang, Y.; Zhao, Y.; Arora, N.; Mirzazadeh, A.; et al. Flexible computational photodetectors for self-powered activity sensing. npj Flex. Electron. 2022, 6, 7. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, C.; Zhang, J.; Liu, H.; Fang, X. A Paper-Based Wearable Photodetector for Simultaneous UV Intensity and Dosage Measurement. Adv. Funct. Mater. 2021, 31, 2100026. [Google Scholar] [CrossRef]
- Deng, M.; Li, Z.; Deng, X.; Hu, Y.; Fang, X. Wafer-scale heterogeneous integration of self-powered lead-free metal halide UV photodetectors with ultrahigh stability and homogeneity. J. Mater. Sci. Technol. 2023, 164, 150–159. [Google Scholar] [CrossRef]
- Wang, P.; Xue, W.; Ci, W.; Yang, R.; Xu, X. Intrinsic vacancy in 2D defective semiconductor In2S3 for artificial photonic nociceptor. Mater. Futures 2023, 2, 035301. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, Z.; Liang, H.; Guan, X.; Zheng, Z.; Yao, J.; Yang, G. Wafer-Scale Fabrication of Broadband Sb2Se3 Photodetectors and their Multifunctional Optoelectronic Applications. Laser Photonics Rev. 2024, 2024, 2400669. [Google Scholar] [CrossRef]
- Yan, T.; Li, Z.; Su, L.; Wu, L.; Fang, X. Bidirectional and Dual-Mode Organic Photodetector Enables Secure Ultraviolet Communication. Adv. Funct. Mater. 2023, 33, 2302746. [Google Scholar] [CrossRef]
- Xing, R.; Li, Z.; Zhao, W.; Wang, D.; Xie, R.; Chen, Y.; Wu, L.; Fang, X. Waterproof and Flexible Perovskite Photodetector Enabled By P-type Organic Molecular Rubrene with High Moisture and Mechanical Stability. Adv. Mater. 2024, 36, 2310248. [Google Scholar] [CrossRef]
- Zou, T.; Choi, T.; Liu, A.; Zhu, H.; Noh, Y.-Y. Printed quantum dot photodetectors for applications from the high-energy to the infrared region. Nano Energy 2024, 125, 109539. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, D.; He, W.; Liu, D.; Cao, J.; Zhang, X.; Liu, S.; Zhang, B.; Pan, J.; Zeng, Z.; et al. Photothermal synergistic high-sensitivity self-driven vertical asymmetric Te/Bi2Te3/In2O3 heterojunction near-infrared imaging photodetector. Chem. Eng. J. 2024, 486, 150183. [Google Scholar] [CrossRef]
- Lu, C.; Luo, M.; Dong, W.; Ge, Y.; Han, T.; Liu, Y.; Xue, X.; Ma, N.; Huang, Y.; Zhou, Y.; et al. Bi2Te3/Bi2Se3/Bi2S3 Cascade Heterostructure for Fast-Response and High-Photoresponsivity Photodetector and High-Efficiency Water Splitting with a Small Bias Voltage. Adv. Sci. 2023, 10, 2205460. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, H.; Li, X.; Chen, H.; Zhang, Z.K.; Pan, W.W.; Luo, G.Q.; Yuan, C.L.; Ren, Y.L.; Lei, W. Ultrasensitive flexible near-infrared photodetectors based on Van der Waals Bi2Te3 nanoplates. Appl. Surf. Sci. 2019, 484, 542–550. [Google Scholar] [CrossRef]
- Pei, J.; Cai, B.; Zhuang, H.-L.; Li, J.-F. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges. Natl. Sci. Rev. 2020, 7, 1856–1858. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Kodan, N.; Ghosh, A.; Mehta, B.R. The nature of 2D:3D SnS:Bi2Te3 interface and its effect on enhanced electrical and thermoelectric properties. J. Alloys Compd. 2020, 847, 156233. [Google Scholar] [CrossRef]
- Tang, X.; Li, Z.; Liu, W.; Zhang, Q.; Uher, C. A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond. Interdiscip. Mater. 2022, 1, 88–115. [Google Scholar] [CrossRef]
- Culcer, D.; Cem Keser, A.; Li, Y.; Tkachov, G. Transport in two-dimensional topological materials: Recent developments in experiment and theory. 2d Mater. 2020, 7, 022007. [Google Scholar] [CrossRef]
- Jeong, K.; Park, D.; Maeng, I.; Kim, D.; Kwon, H.; Kang, C.; Cho, M.-H. Modulation of optoelectronic properties of the Bi2Te3 nanowire by controlling the formation of selective surface oxidation. Appl. Surf. Sci. 2021, 548, 149069. [Google Scholar] [CrossRef]
- Zhao, T.; Zhong, F.; Wang, S.; Wang, Y.; Xu, T.; Chen, Y.; Yu, Y.; Guo, J.; Wang, Z.; Yu, J.; et al. Hydrogen-Assisted Synthesis of Large-Size 2D Bismuth Telluride Flakes for Broadband Photodetection up to 2 µm. Adv. Opt. Mater. 2023, 11, 2202208. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, D.; Cao, J.; Zeng, Z.; Zhang, B.; Pan, J.; Liu, D.; Liu, S.; Jiao, S.; Chen, T.; et al. Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector. Nano Res. 2024, 17, 1864–1874. [Google Scholar] [CrossRef]
- Ren, X.; Zheng, W.; Qiao, H.; Ren, L.; Liu, S.; Huang, Z.; Qi, X.; Wang, Z.; Zhong, J.; Zhang, H. Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface. Mater. Today Energy 2020, 16, 100401. [Google Scholar] [CrossRef]
- Kao, Q.; Xiao, Y.; Jia, Y.; Wang, J.; Wang, C. Infrared photoelectric detection of polycrystalline Bi2Te3 thin films prepared by pulsed laser deposition. J. Vac. Sci. Technol. A 2024, 42, 023421. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhang, C.; Peng, S.; Zhou, H.; He, L.; Gou, J.; Wang, X.; Wang, J. Epitaxial Topological Insulator Bi2Te3 for Fast Visible to Mid-Infrared Heterojunction Photodetector by Graphene As Charge Collection Medium. ACS Nano 2022, 16, 4851–4860. [Google Scholar] [CrossRef] [PubMed]
- Huo, N.; Konstantatos, G. Recent Progress and Future Prospects of 2D-Based Photodetectors. Adv. Mater. 2018, 30, 1801164. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, A.; Noh, J.-S. Realization of electrolyte interface effect on Bi2Te3 implanted flake-like ZnO thin films for understanding the highly stable PEC water splitting under simulated solar light and visible light. Mater. Res. Express 2021, 8, 016405. [Google Scholar] [CrossRef]
- Yu, L.; Tian, P.; Tang, L.; Zuo, W.; Zhong, H.; Hao, Q.; Teng, K.S.; Zhao, G.; Su, R.; Gong, X.; et al. Room Temperature Broadband Bi2Te3/PbS Colloidal Quantum Dots Infrared Photodetectors. Sensors 2023, 23, 4328. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Meng, F.; Chen, Y.; Lotnyk, A.; Shen, X. Boosting Thermoelectric Performance of Bi2Te3 Material by Microstructure Engineering. Adv. Sci. 2024, 11, 2308056. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Goyal, V.; Rahman, M.; Balandin, A.A. Atomically-thin crystalline films and ribbons of bismuth telluride. Appl. Phys. Lett. 2010, 96, 053107. [Google Scholar] [CrossRef]
- Liang, S.-J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; Xie, R.; Liu, A.; Dai, F.; Chen, Y.; Xu, T.; Wang, H.; Wang, Z.; Liao, L.; et al. Next-Generation Photodetectors beyond Van Der Waals Junctions. Adv. Mater. 2024, 36, 2301197. [Google Scholar] [CrossRef]
- Dang, V.Q.; Han, G.-S.; Trung, T.Q.; Duy, L.T.; Jin, Y.-U.; Hwang, B.-U.; Jung, H.-S.; Lee, N.-E. Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. Carbon 2016, 105, 353–361. [Google Scholar] [CrossRef]
- Bansal, P.; Zhang, X.; Wang, H.; Kar, P.; Yu, W.W. Charge transfer between lead halide perovskite nanocrystals and single-walled carbon nanotubes. Nanoscale Adv. 2020, 2, 808–813. [Google Scholar] [CrossRef]
- He, R.; Sucharitakul, S.; Ye, Z.; Keiser, C.; Kidd, T.E.; Gao, X.P.A. Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates. Nano Res. 2015, 8, 851–859. [Google Scholar] [CrossRef]
- Hu, L.; Liu, C.; Zhang, F.; Wang, H.; Wang, B. Vacancy-Defect Ternary Topological Insulators Bi2Se2Te Encapsulated in Mesoporous Carbon Spheres for High Performance Sodium Ion Batteries and Hybrid Capacitors. Small 2024, 20, 2311079. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Teng, F.; He, J.-H.; Fang, X. Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Charge-Carrier Engineering. Adv. Funct. Mater. 2019, 29, 1807672. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Song, Y.; Ma, Y.; Chen, Q.; Zhu, Z.; Lu, P.; Wang, S. Bi2Te3 photoconductive detectors on Si. Appl. Phys. Lett. 2017, 110, 141109. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Zhang, Z.; Zhang, H.; Song, X.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Wang, J.; et al. Broadband Phototransistor Based on CH3NH3PbI3 Perovskite and PbSe Quantum Dot Heterojunction. J. Phys. Chem. Lett. 2017, 8, 445–451. [Google Scholar] [CrossRef]
- Liu, J.L.; Chen, H.; Li, X.; Wang, H.; Zhang, Z.K.; Pan, W.W.; Yuan, G.; Yuan, C.L.; Ren, Y.L.; Lei, W. Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3 nanobelts grown via catalyst-free van der Waals epitaxy. J. Alloys Compd. 2020, 818, 152819. [Google Scholar] [CrossRef]
- Cao, R.; Wang, H.-D.; Guo, Z.-N.; Sang, D.K.; Zhang, L.-Y.; Xiao, Q.-L.; Zhang, Y.-P.; Fan, D.-Y.; Li, J.-Q.; Zhang, H. Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Near-Infrared Light with High Sensitivity. Adv. Opt. Mater. 2019, 7, 1900020. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; Xie, R.; Wang, Z.; Hu, W. How to characterize figures of merit of two-dimensional photodetectors. Nat. Commun. 2023, 14, 2224. [Google Scholar] [CrossRef]
- Yang, D.; Ma, D. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications. Adv. Opt. Mater. 2019, 7, 1800522. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Shao, P.; Sun, H.; Fang, S.; Kang, Y.; Liang, K.; Jia, H.; Luo, Y.; Xue, J.; et al. Achieving Record High External Quantum Efficiency >86.7% in Solar-Blind Photoelectrochemical Photodetection. Adv. Funct. Mater. 2022, 32, 2201604. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Huang, W.; Hu, L.; Ju, J.; Ge, Y.; Zhang, H. Few-layer hexagonal bismuth telluride (Bi2Te3) nanoplates with high-performance UV-Vis photodetection. Nanoscale Adv. 2020, 2, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Qi, X.; Ren, L.; Hao, G.; Liu, Y.; Li, J.; Zhong, J.J. Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route. Appl. Surf. Sci. 2014, 316, 341–347. [Google Scholar] [CrossRef]
- Yang, S.; Jiao, S.; Nie, Y.; Zhao, Y.; Gao, S.; Wang, D.; Wang, J.; Li, Y. Boosting photoresponse and stability of a self-powered photoelectrochemical-type Bi2Te3 imaging photodetector by a novel quasi-solid-state gel electrolyte. J. Alloys Compd. 2024, 982, 173718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Liu, X.; Wang, F.; Du, L.; Sun, W.; Sun, Y.; Song, X.; Zhang, H.; Yao, J. High-Performance Vis–NIR Photodetectors Based on Two-Dimensional Bi2Te3 Thin Film and Applications. Photonics 2024, 11, 1052. https://doi.org/10.3390/photonics11111052
Fu Z, Liu X, Wang F, Du L, Sun W, Sun Y, Song X, Zhang H, Yao J. High-Performance Vis–NIR Photodetectors Based on Two-Dimensional Bi2Te3 Thin Film and Applications. Photonics. 2024; 11(11):1052. https://doi.org/10.3390/photonics11111052
Chicago/Turabian StyleFu, Zhendong, Xuefang Liu, Fuguo Wang, Langlang Du, Wenbao Sun, Yueyu Sun, Xiaoxian Song, Haiting Zhang, and Jianquan Yao. 2024. "High-Performance Vis–NIR Photodetectors Based on Two-Dimensional Bi2Te3 Thin Film and Applications" Photonics 11, no. 11: 1052. https://doi.org/10.3390/photonics11111052
APA StyleFu, Z., Liu, X., Wang, F., Du, L., Sun, W., Sun, Y., Song, X., Zhang, H., & Yao, J. (2024). High-Performance Vis–NIR Photodetectors Based on Two-Dimensional Bi2Te3 Thin Film and Applications. Photonics, 11(11), 1052. https://doi.org/10.3390/photonics11111052