Potato Beetle Detection with Real-Time and Deep Learning
<p>General working principle of the system.</p> "> Figure 2
<p>The original image and the image divided into 6 equal parts.</p> "> Figure 3
<p>Average blur filters in 3 × 3 and 5 × 5 sizes.</p> "> Figure 4
<p>Applying a 3 × 3 median filter on the image.</p> "> Figure 5
<p>Sharpening filter examples.</p> "> Figure 6
<p>Horizontal and vertical weight coefficients for Sobel, Prewitt, and Roberts edge detection methods.</p> "> Figure 7
<p>(<b>a</b>) Original image, (<b>b</b>) Grayscale, (<b>c</b>) Add noise, (<b>d</b>) Add blur, (<b>e</b>) Rotate left and right, (<b>f</b>) Increase and decrease brightness, (<b>g</b>) Add crop, (<b>h</b>) Rotate clockwise and counterclockwise.</p> "> Figure 8
<p>AlexNet architecture.</p> "> Figure 9
<p>Residual block, which is the building block of the ResNet model.</p> "> Figure 10
<p>Accuracy graphs of deep learning architectures; (<b>a</b>) AlexNet, (<b>b</b>) InceptionV3, (<b>c</b>) ResNet101, (<b>d</b>) DenseNet121, (<b>e</b>) MobileNet, (<b>f</b>) Xception.</p> "> Figure 11
<p>Complexity matrices of the test results with the highest success of the six different deep learning models used in this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.1.1. Blurring and Noise Removal
2.1.2. Sharpening
2.1.3. Edge Detection
2.1.4. Rotation
2.1.5. Data Duplication
2.2. Deep Learning
2.2.1. AlexNet
2.2.2. ResNet
2.2.3. Xception
2.2.4. MobileNet
2.2.5. DenseNet
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boiteau, G. Efficiency of Flight Interception Traps for Adult Colorado Potato Beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2020, 93, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, T.P.; Mori, K.; Dickens, J.C. Potential of a synthetic aggregation pheromone for integrated pest management of Colorado potato beetle. Agric. For. Entomol. 2006, 8, 77–81. [Google Scholar] [CrossRef]
- Worner, S.P. Ecoclimatic assessment of potential establishment of exotic pests. J. Econ. Entomol. 1998, 81, 973–983. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104–906. [Google Scholar] [CrossRef]
- Roldán-Serrato, K.L.; Escalante-Estrada, J.A.S.; Rodríguez-González, M.T. Automatic pest detection on bean and potato crops by applying neural classifiers. Eng. Agric. Environ. Food 2018, 11, 245–255. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Xie, C.; Yang, P.; Wang, F.; Sudirman, S.; Liu, W. PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification. IEEE Access 2019, 7, 45301–45312. [Google Scholar] [CrossRef]
- Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer learning-based framework for classification of pest in tomato plants. Appl. Artif. Intell. 2020, 34, 981–993. [Google Scholar] [CrossRef]
- Cheeti, S.; Kumar, G.S.; Priyanka, J.S.; Firdous, G.; Ranjeeva, P.R. Pest Detection and Classification Using YOLO AND CNN. Ann. Rom. Soc. Cell Biol. 2021, 25, 15295–15300. [Google Scholar]
- Chan, Y.K.; Lee, W.C.; Chen, W.X.; Chen, Y.C.; Tu, W.C.; Yeh, Z.H. Insect Species Identification System Based on Deep Learning. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SNPD 2021; Studies in Computational Intelligence; Springer: Cham, Switzerland, 2021; Volume 1012. [Google Scholar]
- Wang, R.; Li, R.; Chen, T.; Zhang, J.; Xie, C.; Qiu, K.; Chen, P.; Du, J.; Chen, H.; Shao, F.; et al. An automatic system for pest recognition and forecasting. Pest. Manag. Sci. 2022, 78, 711–721. [Google Scholar] [CrossRef]
- Talukder, M.S.H.; Chowdhury, M.R.; Sourav, M.S.U.; Al Rakin, A.; Shuvo, S.A.; Sulaiman, R.B.; Nipun, M.S.; Islam, M.; Islam, M.R.; Islam, M.A.; et al. JutePestDetect: An intelligent approach for jute pest identification using fine-tuned transfer learning. Smart Agric. Technol. 2023, 5, 100279. [Google Scholar] [CrossRef]
- Abdullahil, B.B.; Hasan, M.A.; Shifat, E.A.; Sayed, S.R.; Kaies, A.M. BananaSqueezeNet: A very fast, lightweight convolutional neural network for the diagnosis of three prominent banana leaf diseases. Smart Agric. Technol. 2023, 4, 100214. [Google Scholar] [CrossRef]
- Shifat, E.A.; Abdullahil, B.B.; Hasan, M.A.; Shariful, I.; Tahsin, T.C.; Arban, H. BananaLSD: A banana leaf images dataset for classification of banana leaf diseases using machine learning. Data Brief 2023, 50, 109608. [Google Scholar] [CrossRef]
- Redwan, A.R.; Tasnim, H.O.; Adil, A.; Ahsan, K.; Mohammad, R.A.R.; Mohammad, M.I.; Maheen, I.; Taskeed, J.; Sawkat, A. LeafNet: A proficient convolutional neural network for detecting seven prominent mango leaf diseases. J. Agric. Food Res. 2023, 14, 100787. [Google Scholar] [CrossRef]
- Christopher, A.H.; Sarah, M.H.; Aimee, C.; James, A.F.; Matthew, L.F. Milkweed plants bought at nurseries may expose monarch caterpillars to harmful pesticide residues. Biol. Conserv. 2022, 273, 109699. [Google Scholar] [CrossRef]
- Zeba, A.; Sarfaraz, M. Exploring Deep Ensemble Model for Insect and Pest Detection from Images. Procedia Comput. Sci. 2023, 218, 2328–2337. [Google Scholar] [CrossRef]
- Gabriel, S.V.; Bruno, M.R.; Afonso, U.F.; Naiane, M.S.; Julio, C.F.; Christian, D.C.; Fabrizzio, S. Automatic detection of insect predation through the segmentation of damaged leaves. Smart Agric. Technol. 2022, 2, 100056. [Google Scholar] [CrossRef]
- Goswami, M.; Mohanty, S.; Pattnaik, P.K. Optimization of machine learning models through quantization and data bit reduction in healthcare datasets. Frankl. Open 2024, 8, 100136. [Google Scholar] [CrossRef]
- Mahum, R.; Munir, H.; Mughal, Z.; Awais, M.; Khan, F.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. An. Int. J. 2023, 29, 303–326. [Google Scholar] [CrossRef]
- Arya, S.; Singh, R. A Comparative Study of CNN and AlexNet for Detection of Disease in Potato and Mango leaf. In Proceedings of the 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27–28 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Sarker, M.R.K.R.; Borsha, N.A.; Sefatullah, M.; Khan, A.R.; Jannat, S.; Ali, H. A deep transfer learning-based approach to detect potato leaf disease at an earlier stage. In Proceedings of the 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 21–22 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 13–16 May 2017. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef]
- Park, K.; Hong, Y.; Kim, G.; Lee, J. Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network. Comput. Electron. Agric. 2018, 148, 179–187. [Google Scholar] [CrossRef]
- Vijayalata, Y.; Billakanti, N.; Veeravalli, K.; Deepa, A.; Kota, L. Detection, Early, of Casava Plant Leaf Diseases using EfficientNet-B0, 2022. In Proceedings of the IEEE Delhi section conference (DELCON), New Delhi, India, 24–26 February 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Freitas, E.; Lemos, B.; Ana Carla, O.; Saulo, S.; Alves, O.; Eder, J. Early diagnosis of cassava frog skin disease in powdered tissue samples using near-infrared spec-troscopy. Eur. J. Plant Pathol. 2020, 156, 547–558. [Google Scholar] [CrossRef]
- Priya, D. Cotton leaf disease detection using faster R-CNNwith region proposal Network. Int. J. Biol. Biomed. 2021, 6, 23–35. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recogn. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef]
- Kukreja, V.; Baliyan, A.; Salonki, V.; Kaushal, R.K. Potato blight: Deep learning model for binary and multi-classification. In Proceedings of the 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Park, I.T.; Panganiban, E.B.; Alado, D.B.; Taracatac, A.C.; Bartolome, B.B.; Labuanan, F.R.E. Comparative Performance Analysis of Real-Time Methods for Cassava Phytoplasma Disease (CPD) Detection based on Deep Learning Neural Networks. Int. J. Emerg. Technol. Adv. Eng. 2022, 12, 55–64. [Google Scholar] [CrossRef]
- Eser, S. A deep learning based approach for the detection of diseases in pepper and potato leaves. Anadolu Tarım Bilim. Derg. 2021, 36, 167–178. [Google Scholar] [CrossRef]
- Asif, K.R.; Rahman, A.; Hena, M.H. CNN based disease detection approach on potato leaves. In Proceedings of the 2020 3rd International Conference on Intelligent Sus-Tainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Hang, J.; Zhang, D.; Chen, P.; Zhang, J.; Wang, B. Classification of plant leaf diseases based on improved convolutional neural network. Sensors 2019, 19, 4161. [Google Scholar] [CrossRef]
- Habib, M.; Mia, M.; Uddin, M.S.; Ahmed, F. A computer vision approach for jackfruit disease recognition. In Proceedings of the International Joint Conference on Computational Intelligence, Rome, Italy, 13–15 November 2023; pp. 343–353. [Google Scholar]
- Kumar, S.D.; Esakkirajan, S.; Vimalraj, C.; Veena, B.K. Design of disease prediction method based on whale optimization employed artificial neural network in tomato fruits. Mater. Today Proc. 2020, 33, 4907–4918. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A. Automatic detection and grading of multiple fruits by machine learning. Food Anal. Methods 2020, 13, 751–761. [Google Scholar] [CrossRef]
- Doh, B.; Zhang, D.; Shen, Y.; Hussain, F.; Doh, R.F.; Ayepah, K. Automatic citrus fruit disease detection by phenotyping using machine learning. In Proceedings of the 2019 25th International Conference on Automation and Computing (ICAC), Lancaster, UK, 5–7 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kumari, N.; Belwal, R. Hybridized approach of image segmentation in classification of fruit mango using BPNN and discriminant analyzer. Multimed. Tools Appl. 2021, 80, 4943–4973. [Google Scholar] [CrossRef]
Class Number | Class Description | Number of Images |
---|---|---|
1 | It covers the first and second instars of the potato bugs. In these stages, the potato bugs are black. In the first stage, they feed on their shells. In the second phase, they disperse over the plant. They consume leaves irregularly from their edges. | 17,925 |
2 | In the third and fourth periods, the potato beetles spread further on the plant and cause significant damage by feeding on the leaf stems and trunk. At this stage, the front edge of the insect turns orange-brown. | 12,700 |
3 | There are no potato bugs. | 7195 |
Optimization Method | |||||
---|---|---|---|---|---|
Models | Adam | Sgd | Rmsprop | Time for Training | |
AlexNet | Loss | 0.0321 | 0.0821 | 0.0035 | 713 min |
Truth | 98.375 | 97.613 | 97.521 | ||
InceptionV3 | Loss | 0.6024 | 0.0011 | 0.0251 | 878 min |
Truth | 89.251 | 97.192 | 98.471 | ||
ResNet101 | Loss | 0.0021 | 0.0071 | 0.0301 | 813 min |
Truth | 99.435 | 99.103 | 99.375 | ||
DenseNet121 | Loss | 0.0902 | 0.0058 | 0.0032 | 751 min |
Truth | 97.469 | 98.832 | 98.909 | ||
MobileNet | Loss | 0.5500 | 0.0038 | 0.0059 | 921 min |
Truth | 88.602 | 97.918 | 97.752 | ||
Xception | Loss | 0.0679 | 0.0031 | 0.0082 | 681 min |
Truth | 98.153 | 98.945 | 98.679 |
Optimization Method | |||||
---|---|---|---|---|---|
Models | Lost | Truth | Precision | Recall | F1 Score |
AlexNet (Rmsprop) | 0.0903 | 85.72 | 0.87 | 0.84 | 0.82 |
InceptionV3 (Sgd) | 0.9503 | 85.37 | 0.89 | 0.85 | 0.83 |
ResNet101 (Adam) | 0.8509 | 87.93 | 0.91 | 0.88 | 086 |
DenseNet121 (Rmsprop) | 0.9716 | 80.13 | 0.81 | 0.79 | 0.74 |
MobileNet (Sgd) | 0.8412 | 81.59 | 0.85 | 0.82 | 0.80 |
Xception (Sgd) | 0.6848 | 86.51 | 0.88 | 0.87 | 0.84 |
Applied Filter | Models | Truth First Test | Truth Second Test | Truth Average |
---|---|---|---|---|
AlexNet | 93.19 | 76.80 | 84.99 | |
InceptionV3 | 99.15 | 84.32 | 91.73 | |
ResNet101 | 93.17 | 77.96 | 85.56 | |
DenseNet121 | 99.71 | 86.69 | 93.26 | |
MobileNet | 99.77 | 81.37 | 90.57 | |
Xception | 99.80 | 88.45 | 94.12 | |
Median (3 × 3) | AlexNet | 92.95 | 77.13 | 85.04 |
InceptionV3 | 99.67 | 84.21 | 91.94 | |
ResNet101 | 91.95 | 79.08 | 85.51 | |
DenseNet121 | 99.81 | 92.95 | 96.30 | |
MobileNet | 99.70 | 81.51 | 90.60 | |
Xception | 99.95 | 88.85 | 94.40 | |
Median (7 × 7) | AlexNet | 94.96 | 77.85 | 86.40 |
InceptionV3 | 99.81 | 89.54 | 94.67 | |
ResNet101 | 92.11 | 77.18 | 84.6 | |
DenseNet121 | 99.81 | 87.15 | 93.48 | |
MobileNet | 99.79 | 81.80 | 90.79 | |
Xception | 99.89 | 88.38 | 94.08 |
Writer | Herb | Architectural | Accuracy Rate (%) |
---|---|---|---|
Mahum et al. [20] | Potato | Efficient DenseNet CNN | 97.60 |
Arya and Rajeev [21] | Potato | CNN and AlexNet | 97 |
Sarker et al. [22] | Potato | ResNet50 CNN | 98.90 |
Islam et al. [23] | Potato | Support vector machines (SVMs) | 97 |
Wang et al. [24] | Potato | VGG16 CNN | 84 |
Park et al. [25] | Potato | VGG16 CNN | 91 |
Vijayalata et al. [26] | Cassava | EfficientNet-B0 CNN | 83 |
Feriates et al. [27] | Cassava | SVM | 99.70 |
Periya et al. [28] | Cotton | Faster R-CNN | 94 |
Whang et al. [29] | Apple | VGG16 CNN | 86 |
Kukreja et al. [30] | Potato | CNN | 86.39 |
Park et al. [31] | Apple | CNN | 99 |
Eser et al. [32] | Potato | Faster R-CNN | 98.92 |
Asif et al. [33] | Potato | CNN | 80 |
Hang et al. [34] | Potato | VGG16 | 91 |
Habib et al. [35] | Jack fruit | K-means and linear SVM | 92.92 |
Kumar et al. [36] | Tomato | Firefly algorithm, whale-optimization-based ANN | 96.75 |
Baharvaga et al. [37] | Banana | SVM, ANN, KNN | 95.72 |
Doh et al. [38] | Citrus | K-means, ANN, SVM | 93.12 |
Kumari et al. [39] | Mango | Fuzzy K-means, GLCM, PCA, backpropagation | 98.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakan, A. Potato Beetle Detection with Real-Time and Deep Learning. Processes 2024, 12, 2038. https://doi.org/10.3390/pr12092038
Karakan A. Potato Beetle Detection with Real-Time and Deep Learning. Processes. 2024; 12(9):2038. https://doi.org/10.3390/pr12092038
Chicago/Turabian StyleKarakan, Abdil. 2024. "Potato Beetle Detection with Real-Time and Deep Learning" Processes 12, no. 9: 2038. https://doi.org/10.3390/pr12092038
APA StyleKarakan, A. (2024). Potato Beetle Detection with Real-Time and Deep Learning. Processes, 12(9), 2038. https://doi.org/10.3390/pr12092038