A Predictive Model for Perinatal Brain Injury Using Machine Learning Based on Early Birth Data
<p>ROC curves for each model and technique. The gradient boosting model using the ADASYN technique showed the highest ROC AUC at 0.82. SVC, support vector classifier; KNN, K-nearest neighbors; SMOTE, synthetic minority over-sampling technique; and ADASYN, adaptive synthetic sampling method.</p> "> Figure 2
<p>Top 15 features selected using gradient boosting. (<b>A</b>) Feature importance. The X-axis indicates the feature importance score. This score reflects how much each feature contributes to the model’s predictive accuracy. A higher score suggests that the feature plays a more significant role in making accurate predictions. (<b>B</b>) SHAP values. The X-axis indicates the mean |SHAP value|. This value represents the average magnitude of each feature’s impact on the model’s predictions across all samples. Higher SHAP values signify that the feature has a greater influence on the model’s output. Hb, hemoglobin; LDH, lactate dehydrogenase; Plt, platelet; MAS, meconium aspiration syndrome; PPHN, persistent pulmonary hypertension of the newborn; GA, gestational age; TTN, transient tachypnea of the newborn; RDS, respiratory distress syndrome; and SHAP, Shapley additive explanations.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Participants and Sample Collection
3.2. Statistical Analysis
3.3. Model Selection and Hyperparameter Tuning
3.4. Imbalanced Datasets Processing
3.5. Hyperparameter Tuning and Cross-Validation
3.6. Performance Evaluation
4. Results
4.1. Demographics of Patients
4.2. Performance Evaluation Based on Models and Oversampling Techniques
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leavy, A.; Jimenez Mateos, E.M. Perinatal brain injury and inflammation: Lessons from experimental murine models. Cells 2020, 9, 2640. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.W.; Sheldon, R.A.; Ferriero, D.M. Hypoxia-inducible factor: Role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia. Korean J. Pediatr. 2019, 62, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, C.; Levene, M. Epidemiology and aetiology of neonatal seizures. Semin. Fetal Neonatal Med. 2013, 18, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Molloy, E.J.; Branagan, A.; Hurley, T.; Quirke, F.; Devane, D.; Taneri, P.E.; El-Dib, M.; Bloomfield, F.H.; Maeson, B.; Pilon, B.; et al. Neonatal encephalopathy and hypoxic-ischemic encephalopathy: Moving from controversy to consensus definitions and subclassification. Pediatr. Res. 2023, 94, 1860–1863. [Google Scholar] [CrossRef]
- Reinboth, B.S.; Köster, C.; Abberger, H.; Prager, S.; Bendix, I.; Felderhoff-Müser, U.; Herz, J. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice. Exp. Neurol. 2016, 283, 264–275. [Google Scholar] [CrossRef]
- Cainelli, E.; Vedovelli, L.; Mastretta, E.; Gregori, D.; Suppiej, A.; Bisiacchi, P.S. Long-term outcomes after neonatal hypoxic-ischemic encephalopathy in the era of therapeutic hypothermia: A longitudinal, prospective, multicenter case-control study in children without overt brain damage. Children 2021, 8, 1076. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Windsor, C.; Lu, F.; Stewart, N.R.; Jiang, X.; Ferriero, D.M. Hypothermia treatment after hypoxia-ischemia in glutathione peroxidase-1 overexpressing mice. Dev. Neurosci. 2024, 46, 98–111. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Gulati, A. Advances in therapies to treat neonatal hypoxic-ischemic encephalopathy. J. Clin. Med. 2023, 12, 6653. [Google Scholar] [CrossRef]
- Bach, A.M.; Fang, A.Y.; Bonifacio, S.; Rogers, E.E.; Scheffler, A.; Partridge, J.C.; Xu, D.; Barkovich, A.J.; Ferriero, D.M.; Glass, H.C.; et al. Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy. J. Pediatr. 2021, 238, 94–101. [Google Scholar] [CrossRef]
- Bang, S.J.; Lee, J.; Jeon, G.W.; Jun, Y.H. Erythropoietin reduces death and neurodevelopmental impairment in neonatal hypoxic-ischemic encephalopathy. Neonatal. Med. 2022, 29, 123–129. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Chang, Y.S.; Sung, D.K.; Sung, S.I.; Park, W.S. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy. Sci. Rep. 2018, 8, 7665. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, C.J.; Cianfaglione, R.; Cornforth, C.; Vollmer, B. Children with neonatal hypoxic ischaemic encephalopathy (HIE) treated with therapeutic hypothermia are not as school ready as their peers. Acta Paediatr. 2021, 110, 2756–2765. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, M.; Mineyko, A.; Hill, M.; Hodge, J.; Floer, A.; Kirton, A. Population based birth prevalence of disease-specific perinatal stroke. Pediatrics 2020, 146, e2020013201. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Mailo, J.; Dunbar, M. Perinatal stroke in fetuses, preterm and term infants. Semin. Pediatr. Neurol. 2022, 43, 100988. [Google Scholar] [CrossRef]
- Ferriero, D.M.; Fullerton, H.J.; Bernard, T.J.; Billinghurst, L.; Daniels, S.R.; DeBaun, M.R.; deVeber, G.; Ichord, R.N.; Jordan, L.C.; Massicotte, P.; et al. Management of stroke in neonates and children: A scientific statement from the American Heart Association/American Stroke Association. Stroke 2019, 50, e51–e96. [Google Scholar] [CrossRef]
- Rees, P.; Callan, C.; Chadda, K.; Vaal, M.; Diviney, J.; Sabti, S.; Harnden, F.; Gardiner, J.; Battersby, C.; Gale, C. School-age outcomes of children after perinatal brain injury: A systematic review and meta-analysis. BMJ Paediatr. Open 2023, 7, e001810. [Google Scholar] [CrossRef]
- Srivastava, R.; Kirton, A. Perinatal stroke: A practical approach to diagnosis and management. NeoReviews 2021, 22, e163–e176. [Google Scholar] [CrossRef]
- Kim, H.H.; Kim, J.K.; Park, S.Y. Predicting severe intraventricular hemorrhage or early death using machine learning algorithms in VLBWI of the Korean Neonatal Network Database. Sci. Rep. 2024, 14, 11113. [Google Scholar] [CrossRef]
- Kim, S.H.; Oh, Y.J.; Son, J.; Jung, D.; Kim, D.; Ryu, S.R.; Na, J.Y.; Hwang, J.k.; Kim, T.H.; Park, H.K. Machine learning-based analysis for prediction of surgical necrotizing enterocolitis in very low birth weight infants using perinatal factors: A nationwide cohort study. Eur. J. Pediatr. 2024, 183, 2743–2751. [Google Scholar] [CrossRef]
- Robi, Y.G.; Sitote, T.M. Neonatal disease prediction using machine learning techniques. J. Healthc. Eng. 2023, 2023, 3567194. [Google Scholar] [CrossRef]
- Sheikhtaheri, A.; Zarkesh, R.; Moradi, R.; Kermani, F. Prediction of neonatal deaths in NICUs: Development and validation of machine learning models. BMC Med. Inform. Decis. Mak. 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Lee, E.H.; Lee, K.S.; Heo, J.S. Machine learning-based risk factor analysis of adverse birth outcomes in very low birth weight infants. Sci. Rep. 2022, 12, 12119. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, A. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.I. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Wang, J.; Tao, E.; Mo, M.; Ding, W.; Yuan, J.; Wang, M.; Zheng, C.; Zheng, H. Perinatal risk factors influencing neonatal hypoxic ischemic encephalopathy in Southern China: A case-control study. Am. J. Perinatol. 2020, 38, e182–e186. [Google Scholar] [CrossRef]
- Roy, B.; Webb, A.; Walker, K.; Morgan, C.; Badawi, N.; Nunez, C.; Eslick, G.; Kent, A.L.; Hunt, R.W.; Mackay, M.T.; et al. Prevalence & risk factors for perinatal stroke: A population-based study. Child. Neurol. Open 2023, 10, 2329048X231217691. [Google Scholar]
- Chen, X.; Chen, H.; Jiang, D. Maternal and fetal risk factors for neonatal hypoxic-ischemic encephalopathy: A retrospective study. Int. J. Gen. Med. 2023, 16, 537–545. [Google Scholar] [CrossRef]
- Munoz, D.; Hidalgo, M.J.; Balut, F.; Troncoso, M.; Lara, S.; Barrios, A.; Parra, P. Risk factors for perinatal arterial ischemic stroke. Cell Med. 2018, 10, 2155179018785341. [Google Scholar] [CrossRef]
- Aliyu, I.; Lawal, T.O.; Onankpa, B. Hypoxic-ischemic encephalopathy and the apgar scoring system: The experience in a resource-limited setting. J. Clin. Sci. 2018, 15, 18–21. [Google Scholar] [CrossRef]
- Bogavac, I.; Jeličić, L.; Marisavljević, M.; Bošković Matić, T.; Subotić, M. Arterial presumed perinatal ischemic stroke: A mini review and case report of cognitive and speech-language profiles in a 5-year-old girl. Children 2024, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Barrois, M.; Patkai, J.; Delorme, P.; Chollat, C.; Goffinet, F.; Le Ray, C. Factors associated with neonatal hypoxic ischemic encephalopathy in infants with an umbilical artery pH less than 7.00. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, K.M.; Roshan, P.M.A.; Nedunchezhian, P.; Sulekha, C. Sorrelation of serum creatinine kinase muscle-brain fraction and lactage dehydrogenase with severity of hypoxic ischemic encephalopathy in perinatal asphyxia in term neonates. Int. J. Contemp. Pediatr. 2018, 5, 405–410. [Google Scholar]
- Orovas, C.; Orovou, E.; Dagla, M.; Daponte, A.; Rigas, N.; Ougiaroglou, S.; Iatrakis, G.; Antoniou, E. Neural networks for early diagnosis of postpartum PTSD in women after cesarean section. Appl. Sci. 2022, 12, 7492. [Google Scholar] [CrossRef]
Variables | Sub Variables |
---|---|
Gestational age | |
Birth weight | |
Delivery method | Vaginal delivery, cesarean section |
Apgar scores | 1 min, 5 min |
Maternal placental disease | Placental abruption, cord prolapse |
Fetal heart rate abnormalities | Absent baseline fetal heart rate variability, recurrent late decelerations, recurrent variable decelerations, bradycardia |
Neonatal symptoms | Hypotonia, apneic or periodic breathing, seizure |
Blood pressure | Systolic, diastolic |
Laboratory study | pH, pCO2, base excess, hemoglobin, platelet count, uric acid, albumin, LDH |
Mode of ventilation | No ventilatory support, non-invasive ventilation, conventional ventilation, HFOV |
FiO2 | |
Diagnosis | TTN, MAS, pneumothorax, RDS, PPHN |
Therapeutic hypothermia † |
No Brain Injury | Brain Injury | p Value | |
---|---|---|---|
Subjects, No. | 137 (78) | 39 (22) | |
Sex | 0.928 | ||
Male | 88 (64.2) | 26 (66.7) | |
Female | 49 (35.8) | 13 (33.3) | |
Gestational age (weeks +days) | 38 +0 ± 1 +2 | 38 +1 ± 1 +3 | 0.836 |
Birth weight (g) | 3110 ± 533 | 2987 ± 472 | 0.137 |
Mode of delivery | 0.01 * | ||
Vaginal | 31 (18.5) | 17 (43.6) | |
Cesarean section | 106 (73) | 22 (56.4) | |
Apgar score | |||
1 min | 7 ± 2 | 6 ± 3 | 0.001 * |
5 min | 9 ± 2 | 8 ± 3 | 0.048 * |
Intrapartum complications | |||
Placental disease | 6 (4) | 1 (2.6) | 1.0 |
Fetal heart rate abnormalities | 12 (8.8) | 5 (12.8) | 0.538 |
Neonatal | |||
Hypotonia | 12 (8.8) | 6 (15.4) | 0.238 |
Apneotic or periodic breathing | 2 (2) | 0 (0) | 1.0 |
Seizure | 32 (23.4) | 6 (15.4) | 0.397 |
Blood pressure | |||
Systolic (mmHg) | 59 ± 7 | 58 ± 8 | 0.451 |
Diastolic (mmHg) | 32 ± 7 | 32 ± 6 | 0.999 |
Laboratory study | |||
pH | 7.22 ± 0.13 | 7.15 ± 0.15 | 0.004 * |
pCO2 (mmHg) | 59.2 ± 17.8 | 63.8 ± 20.4 | 0.185 |
Base excess (mmol/L) | −5.0 ± 5.4 | −6.8 ± 6.9 | 0.156 |
Hemoglobin (g/dL) | 17.3 ± 4.1 | 17.2 ± 2.3 | 0.755 |
Platelet count (/μL) | 273,766 ± 73,407 | 256,333 ± 79,504 | 0.257 |
Uric acid (mg/dL) | 6.0 ± 1.3 | 5.9 ± 1.5 | 0.546 |
Albumin (g/dL) | 3.5 ± 0.4 | 3.6 ± 0.5 | 0.392 |
LDH (U/L) | 695.3 ± 349.2 | 828.2 ± 329.7 | 0.005 * |
Mode of ventilation | 0.0860 | ||
No ventilatory support | 39 (28.5) | 5 (12.8) | |
Noninvasive | 27 (19.7) | 9 (23.1) | |
Conventional | 48 (35.0) | 16 (41.0) | |
HFOV | 23 (16.8) | 9 (23.1) | |
FiO2 | 0.35 ± 0.18 | 0.38 ± 0.24 | 0.429 |
Diagnosis | |||
TTN | 32 (23.4) | 7 (17.9) | 0.473 |
MAS | 10 (7.3) | 6 (15.4) | 0.126 |
Pneumothorax | 5 (3.6) | 4 (10.3) | 0.111 |
RDS | 25 (18.2) | 6 (15.4) | 0.814 |
PPHN | 26 (19.0) | 7 (17.9) | 1.0 |
Therapeutic hypothermia | 13 (9.5) | 9 (23.1) | 0.024 * |
Models | Accuracy (95% CI) | F1 Score (95% CI) |
---|---|---|
SVC | 0.72 (0.61–0.81) | 0.54 (0.35–0.55) |
Randomf orest | 0.69 (0.58–0.78) | 0.15 (0.00–0.20) |
KNN | 0.64 (0.41–0.69) | 0.52 (0.35–0.56) |
Naive Bayes | 0.50 (0.38–0.56) | 0.44 (0.24–0.58) |
Gradient boosting | 0.72 (0.60–0.78) | 0.58 (0.36–0.63) |
Decision tree | 0.56 (0.48–0.67) | 0.27 (0.18–0.50) |
AdaBoost | 0.67 (0.41–0.69) | 0.57 (0.34–0.63) |
Extra trees | 0.69 (0.58–0.78) | 0.15 (0.00–0.20) |
Easyensemble | 0.72 (0.54–0.75) | 0.44 (0.38–0.52) |
Models | Accuracy (95% CI) | F1 score (95% CI) |
---|---|---|
SVC | 0.72 (0.45–0.79) | 0.58 (0.39–0.59) |
Random forest | 0.64 (0.55–0.74) | 0.13 (0.00–0.23) |
KNN | 0.58 (0.42–0.62) | 0.48 (0.31–0.61) |
Naive Bayes | 0.47 (0.36–0.56) | 0.39 (0.24–0.58) |
Gradient boosting | 0.78 (0.64–0.83) | 0.64 (0.49–0.66) |
Decision tree | 0.67 (0.54–0.72) | 0.54 (0.38–0.56) |
AdaBoost | 0.56 (0.41–0.58) | 0.50 (0.35–0.59) |
Extra trees | 0.67 (0.58–0.76) | 0.14 (0.00–0.23) |
Easyensemble | 0.64 (0.57–0.75) | 0.32 (0.10–0.47) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, G.W.; Lee, Y.S.; Hahn, W.-H.; Jun, Y.H. A Predictive Model for Perinatal Brain Injury Using Machine Learning Based on Early Birth Data. Children 2024, 11, 1313. https://doi.org/10.3390/children11111313
Jeon GW, Lee YS, Hahn W-H, Jun YH. A Predictive Model for Perinatal Brain Injury Using Machine Learning Based on Early Birth Data. Children. 2024; 11(11):1313. https://doi.org/10.3390/children11111313
Chicago/Turabian StyleJeon, Ga Won, Yeong Seok Lee, Won-Ho Hahn, and Yong Hoon Jun. 2024. "A Predictive Model for Perinatal Brain Injury Using Machine Learning Based on Early Birth Data" Children 11, no. 11: 1313. https://doi.org/10.3390/children11111313