Assessing the Predictive Capabilities of Autoregressive Integrated Moving Average and Linear Regression Models for Acute Changes in Clinical and Selected Laboratory Parameters in Children After Cardiac Surgery in the ICU
<p>Workflow diagram.</p> "> Figure 2
<p>Causal graph after expert evaluations were utilized to include domain knowledge. Amiodarone is a medication that prevents and treats an irregular heartbeat.</p> "> Figure 3
<p>Forecasting patients’ conditions for the next hour using the ARIMA model.</p> "> Figure 4
<p>Forecasting patients’ conditions for the next hour using the linear regression model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.2. Cause-And-Effect Relationship
2.3. Linear Model and ARIMA Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iyer, P.U. Management issues in intensive care units for infants and children with heart disease. Indian J. Pediatr. 2015, 82, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; De Simone, G.; Ford, E.S.; et al. Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 2011, 123, e18–e209. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, Z.; Babaoglu, K.; Deveci, M.; Tugral, O.; Uyan, Z. A study of mortality in cardiac patients in a pediatric intensive care unit. Cureus 2019, 11, e6052. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, S.M.; Salemi, J.L.; Nembhard, W.N.; Fixler, D.E.; Correa, A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 2010, 122, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Kula, S.; Cevik, A.; Olguntürk, F.R.; Tunaoğlu, F.S.; Oğuz, A.D.; İlhan, M.N. Distribution of congenital heart disease in Turkey. Turk. J. Med Sci. 2011, 41, 889–893. [Google Scholar] [CrossRef]
- McShane, P.; Draper, E.S.; McKinney, P.A.; McFadzean, J.; Parslow, R.C.; Network, P.I.C.A. Effects of out-of-hours and winter admissions and number of patients per unit on mortality in pediatric intensive care. J. Pediatr. 2013, 163, 1039–1044. [Google Scholar] [CrossRef]
- Murthy, S.; Leligdowicz, A.; Adhikari, N.K. Intensive care unit capacity in low-income countries: A systematic review. PLoS ONE 2015, 10, e0116949. [Google Scholar] [CrossRef]
- Kennedy, C.E.; Turley, J.P. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric ICU. Theor. Biol. Med Model. 2011, 8, 40. [Google Scholar] [CrossRef]
- Capan, M.; Hoover, S.; Jackson, E.V.; Paul, D.; Locke, R. Time series analysis for forecasting hospital census: Application to the neonatal intensive care unit. Appl. Clin. Informatics 2016, 7, 275–289. [Google Scholar]
- Xu, Y.; Han, D.; Huang, T.; Zhang, X.; Lu, H.; Shen, S.; Lyu, J.; Wang, H. Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost and Logistic Regression. Front. Cardiovasc. Med. 2022, 9, 847206. [Google Scholar] [CrossRef]
- Matam, B.; Duncan, H.; Lowe, D. Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit. J. Clin. Monit. Comput. 2019, 33, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Pishgar, M.; Theis, J.; Del Rios, M.; Ardati, A.; Anahideh, H.; Darabi, H. Prediction of unplanned 30-day readmission for ICU patients with heart failure. BMC Med Inform. Decis. Mak. 2022, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Kim, K.; Hwang, H.; Kim, Y.S.; Chung, E.H.; Yoon, J.S.; Cho, H.J.; Park, J.D. Development of a machine learning model for predicting pediatric mortality in the early stages of intensive care unit admission. Sci. Rep. 2021, 11, 1263. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, V.M.; Saenz, L.; Lopez-Magallon, A.; Shields, A.; Ogoe, H.A.; Suresh, S.; Munoz, R.; Tsui, F.R. Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data. J. Thorac. Cardiovasc. Surg. 2019, 158, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.O.; Kethireddy, S.; Adib, R.; Hasan, U.; Griffin, P.; Adibuzzaman, M. Structural causal model with expert augmented knowledge to estimate the effect of oxygen therapy on mortality in the icu. Artif. Intell. Med. 2023, 137, 102493. [Google Scholar] [CrossRef]
- Linear-Regression Description. Available online: https://www.machinelearningplus.com/machine-learning/complete-introduction-linear-regression-r/ (accessed on 23 July 2018).
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Al-Chalabi, H.; Al-Douri, Y.K.; Lundberg, J. Time series forecasting using ARIMA model: A case study of mining face drilling rig. In Proceedings of the 12th International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP 2018), International Academy, Research and Industry Association (IARIA), Athens, Greece, 18–22 November 2018; pp. 1–3. [Google Scholar]
- Mehrmolaei, S.; Keyvanpour, M.R. Time series forecasting using improved ARIMA. In Proceedings of the 2016 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2016; pp. 92–97. [Google Scholar] [CrossRef]
- Jadon, A.; Patil, A.; Jadon, S. A Comprehensive Survey of Regression-Based Loss Functions for Time Series Forecasting. In Proceedings of the International Conference on Data Management, Analytics & Innovation; Springer: Singapore, 2024; pp. 117–147. [Google Scholar]
- Sinha, A.; Bagga, A. Pediatric Nephrology: Update for Clinicians. Indian J. Pediatr. 2020, 87, 598–599. [Google Scholar] [CrossRef]
- Abbott, M.B.; Vlasses, C.H. Nelson textbook of pediatrics. Jama 2011, 306, 2387–2388. [Google Scholar] [CrossRef]
- Pacheco, L.D.; Saad, A.F. Ventilator management in critical illness. In Critical Care Obstetrics; Wiley: Hoboken, NJ, USA, 2024; pp. 233–266. [Google Scholar]
- Tài, P.; Laurent, J.; Arthur, S. Mechanical ventilation: State of the art. In Mayo Clinic Proceedings; Mayo Foundation for Medical Education and Research: Toronto, ON, Canada, 2017. [Google Scholar]
- Wu, X.; Peng, S.; Li, J.; Zhang, J.; Sun, Q.; Li, W.; Qian, Q.; Liu, Y.; Guo, Y. Causal inference in the medical domain: A survey. Appl. Intell. 2024, 54, 4911–4934. [Google Scholar] [CrossRef]
- Keller, B.; Branson, Z. Defining, identifying, and estimating effects with the rubin causal model: A review for education research. Asia Pac. Educ. Rev. 2023. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Rubin causal model. In Microeconometrics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 229–241. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Causal Inference in Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lederer, D.J.; Bell, S.C.; Branson, R.D.; Chalmers, J.D.; Marshall, R.; Maslove, D.M.; Ost, D.E.; Punjabi, N.M.; Schatz, M.; Smyth, A.R.; et al. Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals. Ann. Am. Thorac. Soc. 2019, 16, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Raghu, V.K.; Poon, A.; Benos, P.V. Evaluation of causal structure learning methods on mixed data types. In Proceedings of the 2018 ACM SIGKDDWorkshop on Causal Discovery, PMLR, London, UK, 20 August 2018; pp. 48–65. [Google Scholar]
- Schlüter, D.K.; Griffiths, R.; Adam, A.; Akbari, A.; Heaven, M.L.; Paranjothy, S.; Andersen, A.M.N.; Carr, S.B.; Pressler, T.; Diggle, P.J.; et al. Impact of cystic fibrosis on birthweight: A population based study of children in Denmark and Wales. Thorax 2019, 74, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Vitolo, C.; Scutari, M.; Ghalaieny, M.; Tucker, A.; Russell, A. Modeling air pollution, climate, and health data using Bayesian Networks: A case study of the English regions. Earth Space Sci. 2018, 5, 76–88. [Google Scholar] [CrossRef]
- Tiao, G.C. Time series: ARIMA methods. In International Encyclopedia of the Social, Behavioral Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 316–321. [Google Scholar]
- Liu, J. Navigating the Financial Landscape: The Power and Limitations of the ARIMA Model. Highlights Sci. Eng. Technol. 2024, 88, 747–752. [Google Scholar] [CrossRef]
- Clifford, G.D.; Long, W.J.; Moody, G.B.; Szolovits, P. Robust parameter extraction for decision support using multimodal intensive care data. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 411–429. [Google Scholar] [CrossRef]
- Veith, N.; Steele, R. Machine learning-based prediction of ICU patient mortality at time of admission. In Proceedings of the 2nd International Conference on Information System and Data Mining, New York, NY, USA, 9–11 April 2018; pp. 34–38. [Google Scholar]
- Yousaf, M.; Zahir, S.; Riaz, M.; Hussain, S.M.; Shah, K. Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan. Chaos Solitons Fractals 2020, 138, 109926. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Qiu, R.G. Patients’ disease risk predictive modeling using MIMIC data. Procedia Comput. Sci. 2020, 168, 112–117. [Google Scholar] [CrossRef]
Evidence | ||
---|---|---|
Weight | BP | Domain Expert [21] |
BP | HR | Domain Expert [21] |
CVP | BP | Domain Expert [22] |
BP | Urine output | Domain Expert [21] |
Age | HR | Domain Expert |
Age | BP | Domain Expert [21] |
BP | Domain Expert | |
BP | Domain Expert | |
Na | HR | Domain Expert |
Cl | HR | Domain Expert |
PEEP | Domain Expert [23] | |
Domain Expert | ||
Domain Expert [24] | ||
HR | Amiodarone | Domain Expert |
K | BP | Domain Expert |
K | HR | Domain Expert |
PH | Domain Expert | |
pH | TV | Domain Expert |
pH | HR | Domain Expert |
pH | BP | Domain Expert |
Domain Expert [24] |
Predictor | Independent Variable | p Value | Correlation | t-Test |
---|---|---|---|---|
HR | BP | 0.7631 | 0.01191929 | 0.30156 |
HR | Na | 0.07837 | 0.0695229 | 1.7631 |
HR | Cl | 0.1415 | 0.05808523 | 1.4719 |
HR | K | 0.1022 | −0.06456345 | −1.6368 |
HR | PH | 0.725 | −0.01390998 | −0.35193 |
BP | CVP | <0.001 * | 0.2841249 | 7.4968 |
BP | K | 0.5047 | −0.02637669 | −0.66752 |
BP | pH | 0.002025 * | −0.1216032 | −3.0993 |
Urine output | BP | 0.0001217 * | 0.151079 | 3.8664 |
BP | 0.7896 | −0.0105502 | −0.26692 | |
BP | 0.5382 | −0.02433762 | −0.61588 | |
PEEP | <0.001 * | 0.7367744 | 27.567 | |
0.7339 | 0.01344123 | 0.34007 | ||
0.0002411 * | −0.1444255 | −3.6924 | ||
pH | <0.001 * | 0.2362575 | 6.151 | |
TV | pH | 0.01845 | 0.09298063 | 2.3625 |
0.5347 | 0.2362575 | 0.62112 |
Model | Neonate Patients | Infant Patients | Ventilation Patients | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
LR Model (BP) | 5.973879 | 8.0574 | 2.795142 | 6.707442 | 4.47021 | 4.974626 |
LR Model () | 38.5670 | 49.01 | 81.72645 | 99.54716 | - | - |
LR Model () | - | - | - | - | 0.0122449 | 01503418 |
ARIMA Model (BP) | 5.2724 | 7.0011 | 4.435455 | 6.362786 | 2.176254 | 2.618761 |
ARIMA Model () | 10.8366 | 16.0403 | 16.065 | 27.812 | - | - |
ARIMA Model () | - | - | - | - | 0.0095 | 0.01941237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharwardy, S.N.; Sarwar, H.; Hasan, M.N.A.; Rahman, M.Z. Assessing the Predictive Capabilities of Autoregressive Integrated Moving Average and Linear Regression Models for Acute Changes in Clinical and Selected Laboratory Parameters in Children After Cardiac Surgery in the ICU. Children 2024, 11, 1312. https://doi.org/10.3390/children11111312
Sharwardy SN, Sarwar H, Hasan MNA, Rahman MZ. Assessing the Predictive Capabilities of Autoregressive Integrated Moving Average and Linear Regression Models for Acute Changes in Clinical and Selected Laboratory Parameters in Children After Cardiac Surgery in the ICU. Children. 2024; 11(11):1312. https://doi.org/10.3390/children11111312
Chicago/Turabian StyleSharwardy, Sharmin Nahar, Hasan Sarwar, Mohammad Nurul Akhtar Hasan, and Mohammad Zahidur Rahman. 2024. "Assessing the Predictive Capabilities of Autoregressive Integrated Moving Average and Linear Regression Models for Acute Changes in Clinical and Selected Laboratory Parameters in Children After Cardiac Surgery in the ICU" Children 11, no. 11: 1312. https://doi.org/10.3390/children11111312