Selection of Stable Reference Genes for QRT-PCR in Tree Peony ‘Doulv’ and Functional Analysis of PsCUC3
<p>Floral characteristics of ‘Doulv’ peony. (<b>a</b>) Developmental stages of ‘Doulv’ flowers. Stage I: sepals crack open, exposing the outer petals. Stage II: inner petals become visible as the buds fluff up. Stage III: outer petals fully expand, inner petals loosen, though the innermost petals remain closed. Stage IV: inner petals expand fully, revealing the carpels. Stage V: all inner petals are fully expanded, with carpels completely exposed. Stage VI: outer petals start to dehydrate and undergo senescence. (<b>b</b>) Tissue differentiation in ‘Doulv’ flower at Stage III and Stage V. Stage III features fully expanded outer petals and loosened inner petals, while innermost petals are still closed, maintaining overall green coloration. By Stage V, all inner petals are fully expanded, and carpels are entirely exposed, with a shift from green to white in color.</p> "> Figure 2
<p>The agarose gel electrophoresis map of candidate reference genes in ‘Doulv’.</p> "> Figure 3
<p>Melting curve of candidate reference genes.</p> "> Figure 4
<p>Paired difference analysis (V<span class="html-italic">n</span>/<span class="html-italic">n</span> + 1) of candidate reference genes by GeNorm. (<b>a</b>) Pairwise variation value (V value) of reference genes in petaloid stamens at different developmental stages of ‘Doulv’; (<b>b</b>) V value of reference genes in different tissues of ‘Doulv’ flower.</p> "> Figure 5
<p>Nucleotide sequence and deduced amino acid sequence of the <span class="html-italic">PsCUC3</span> from ‘Doulv’ peony. Yellow: initiation codon and termination codon, respectively. Blue: NAC domain (23-148 aa). *: biosynthesis termination of PsCUC3 protein.</p> "> Figure 6
<p>Alignment of the amino acid sequences of PsCUC3 with NAM/CUC3 proteins from 11 different plant species, including <span class="html-italic">Arabidopsis thaliana</span>. The NAC domain is highlighted in rose red. Boxes denote positions where conserved amino acids in PsCUC3 from ‘Doulv’ peony differ from those in other species.</p> "> Figure 7
<p>Protein secondary structures of PsCUC3 from ‘Doulv’ peony and CfNAM from <span class="html-italic">Cephalotus follicularis</span> were predicted using SOPMA. Blue boxes highlight regions where the secondary structures of PsCUC3 and CfNAM are identical. Green and red boxes denote regions where the secondary structures of PsCUC3 have altered. h: alpha helix; e: extended strand; t: beta turn; c: random coil.</p> "> Figure 8
<p>Interaction network analysis of CUC3 protein in <span class="html-italic">Arabidopsis thaliana</span>.</p> "> Figure 9
<p>Chlorophyll contents and expression analysis of <span class="html-italic">PsCUC3</span>. (<b>a</b>) Chlorophyll contents and relative expression levels of <span class="html-italic">PsCUC3</span> in petaloid stamens at different developmental stages of ‘Doulv’. (<b>b</b>) Relative expression levels of <span class="html-italic">PsCUC3</span> in different tissues of ‘Doulv’ flower. Different letters indicate significant differences at <span class="html-italic">p</span> < 0.05 (lower case letters) or <span class="html-italic">p</span> < 0.01 (capital letters), respectively (based on the one-way ANOVA test).</p> "> Figure 9 Cont.
<p>Chlorophyll contents and expression analysis of <span class="html-italic">PsCUC3</span>. (<b>a</b>) Chlorophyll contents and relative expression levels of <span class="html-italic">PsCUC3</span> in petaloid stamens at different developmental stages of ‘Doulv’. (<b>b</b>) Relative expression levels of <span class="html-italic">PsCUC3</span> in different tissues of ‘Doulv’ flower. Different letters indicate significant differences at <span class="html-italic">p</span> < 0.05 (lower case letters) or <span class="html-italic">p</span> < 0.01 (capital letters), respectively (based on the one-way ANOVA test).</p> "> Figure 10
<p>Subcellular localization analysis of PsCUC3 protein.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Flower Characteristics of ‘Doulv’ Peony
2.2. Gene-Specific PCR Amplification Efficiency Analysis
2.3. Expression Stability Analysis of Candidate Reference Genes
2.4. Cloning and Bioinformatics Analysis of PsCUC3 from ‘Doulv’ Peony
2.5. Protein–Protein Interaction Analysis of PsCUC3
2.6. Chlorophyll Contents in the Petaloid Stamens of ‘Doulv’ and Expression Patterns of PsCUC3 Gene
2.7. Subcellular Localization of PsCUC3 Protein
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. RNA Extraction and Reverse Transcription
4.3. Selection of Candidate Reference Genes and Primer Design
4.4. PCR Amplification and Amplification Efficiency for QRT-PCR
4.5. QRT-PCR Analysis
4.6. Gene Cloning and Bioinformatics Analysis of PsCUC3 in ‘Doulv’ Peony
4.7. Chlorophyll Content Determination of Petaloid Stamens in ‘Doulv’ Peony
4.8. Gene Expression Analysis
4.9. Subcellular Localization Analysis of the PsCUC3 Protein
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, S.L.; Zou, X.H.; Zhou, Z.Q.; Liu, J.; Xu, C.; Yu, J.; Wang, Q.; Zhang, D.M.; Wang, X.Q.; Ge, S.; et al. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews. Proc. R. Soc. B 2014, 281, 20141687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Yan, L.; Zhang, C.; Kong, X.; Zheng, Y.Q.; Dong, L. Glucose supply induces PsMYB2-mediated anthocyanin accumulation in Paeonia suffruticosa ‘Tai Yang’ cut flower. Front. Plant Sci. 2022, 13, 874526. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhou, L.; Han, L.L.; Zou, H.Z.; Miao, K.; Wang, Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiol. Biochem. 2020, 154, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Zhang, Y.; Duan, X.J.; Liu, X.; Yuan, S.Q.; Han, J.M.; Cheng, Y.W. Anthocyanins in tree peony (Paeonia suffruticosa) and their relationship with flower color. Hortic. Sci. Technol. 2020, 38, 776–784. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Yu, C.Y.; Lu, X.; Cheng, Y.W. Transcriptome profiling of flower development reveals key genes mediating yellow formation in tree peony. Phyton-Int. J. Exp. Bot. 2022, 91, 2505–2518. [Google Scholar] [CrossRef]
- Zhang, X.P.; Jia, J.S.; Zhao, M.Y.; Li, C.; Han, X.; Xu, Z.D. Identification and characterization of microRNAs involved in double-color formation in Paeonia suffruticosa ‘Shima Nishiki’ by high-throughput sequencing. Hortic. Environ. Biotechnol. 2022, 63, 125–135. [Google Scholar] [CrossRef]
- Zhang, X.P.; Xu, Z.D.; Yu, X.Y.; Zhao, L.Y.; Zhao, M.Y.; Han, X.; Qi, S. Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa. Int. J. Mol. Sci. 2019, 20, 1055. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Z.; Cheng, Y.W.; Xu, S.Z.; Ma, H.P.; Han, J.M.; Zhang, Y. Tree peony variegated flowers show a small insertion in the F3’H gene of the acyanic flower parts. BMC Plant Biol. 2020, 20, 211. [Google Scholar]
- Zhang, Y.Z.; Xu, S.Z.; Ma, H.P.; Duan, X.J.; Gao, S.X.; Zhou, X.J.; Cheng, Y.W. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. Plant Physiol. Biochem. 2021, 164, 279–288. [Google Scholar] [CrossRef]
- Luan, Y.T.; Tang, Y.H.; Wang, X.; Xu, C.; Tao, J.; Zhao, D.Q. Tree peony R2R3-MYB transcription factor PsMYB30 promotes petal blotch formation by activating the transcription of the anthocyanin synthase gene. Plant Cell Physiol. 2022, 63, 1101–1116. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Yuan, M.; Wang, S.; Luo, X.N.; Luo, S.; Fu, Y.Q.; Li, X.; Zhang, Y.L.; Li, L. PrMYB5 activates anthocyanin biosynthetic PrDFR to promote the distinct pigmentation pattern in the petal of Paeonia rockii. Front. Plant Sci. 2022, 13, 955590. [Google Scholar] [CrossRef]
- Lv, S.Z.; Cheng, S.; Wang, Z.Y.; Li, S.M.; Jin, X.; Lan, L.; Yang, B.; Yu, K.; Ni, X.M.; Li, N.; et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecol. Evol. 2020, 10, 4518–4530. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Q.Q.; Wang, Y.; Li, K.; Zheng, B.Q.; Miao, K. Evaluation of candidate reference genes for quantitative gene expression studies in tree peony. J. Am. Soc. Hortic. Sci. 2016, 141, 99–111. [Google Scholar] [CrossRef]
- Li, J.; Han, J.G.; Hu, Y.H.; Yang, J. Selection of reference genes for quantitative real-time PCR during flower development in tree peony (Paeonia suffruticosa Andr.). Front. Plant Sci. 2016, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Q.; Hu, L.Z.; Wang, X.Q.; Liu, H.Z.; Tian, H.H.; Wang, J.S. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii. Mol. Biol. Rep. 2019, 46, 6003–6011. [Google Scholar] [CrossRef]
- Liu, H.F.; Gao, L.X.; Hu, Y.H. Reference genes discovery and selection for quantitative real-time PCR in tree peony seed and petal tissue of different development stages. J. Agric. Biotechnol. 2015, 23, 1639–1648. (In Chinese) [Google Scholar]
- Shang, S.S.; Fan, L.T.; Zhou, S.; Xu, M.Q.; Gao, S.C.; Shi, G.A. Screening of reference genes and expression analysis of petal senes cence associated genes in Itoh peony ‘Bartzella’ cut flowers. Plant Physiol. J. 2023, 59, 153–164. (In Chinese) [Google Scholar]
- Souer, E.; Houwelingen, A.V.; Kloos, D.; Mol, J.; Koes, R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996, 85, 159–170. [Google Scholar] [CrossRef]
- Aida, M.; Ishida, T.; Fukaki, H.; Fujisawa, H.; Tasaka, M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 1997, 9, 841–857. [Google Scholar] [CrossRef]
- Hibara, K.; Karim, M.R.; Takada, S.; Taoka, K.; Furutani, M.; Aida, M.; Tasaka, M. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 2006, 18, 2946–2957. [Google Scholar] [CrossRef]
- Li, X.G.; Su, Y.H.; Zhao, X.Y.; Li, W.; Gao, X.Q.; Zhang, X.S. Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 2010, 450, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.S.; Powell, S.; Preston, J.C. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion. Plant Biol. 2016, 18, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Xu, J.; Wang, Q.; Li, J.; Li, Y.D.; Dong, M.; Sun, H.Y. Transcriptome-based identification of the optimal reference genes for quantitative real-time polymerase chain reaction analyses of lingonberry fruits throughout the growth cycle. Plants 2023, 12, 4180. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Jiang, S.J.; Jian, J.B.; Liu, M.Y.; Yue, Z.; Xu, J.B.; Li, J.; Xu, C.Y.; Lin, L.H.; Jing, Y.; et al. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nat. Commun. 2022, 13, 7328. [Google Scholar] [CrossRef] [PubMed]
- Riechmann, J.L.; Ratcliffe, O.J. A genomic perspective on plant transcription factors. Curr. Opin. Plant Biol. 2000, 3, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Ooka, H.; Satoh, K.; Doi, K.; Nagata, T.; Otomo, Y.; Murakami, K.; Matsubara, K.; Osato, N.; Kawai, J.; Carninci, P.; et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003, 10, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.J.; You, J.; Xie, K.B.; Xie, W.B.; Xiong, L.Z. Systematic sequence analysis and identification of tissue-specific or stress-respon sive genes of NAC transcription factor family in rice. Mol. Genet. Genom. 2008, 280, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Ernst, H.A.; Olsen, A.N.; Skriver, K.; Larsen, S.; Leggio, L.L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 2004, 5, 297–303. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.Y.; Park, C.M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOW ERING LOCUS T in Arabidopsis. Planta 2007, 226, 647–654. [Google Scholar] [CrossRef]
- Kou, X.H.; Wang, S.; Wu, M.S.; Guo, R.Z.; Xue, Z.H.; Meng, N.; Tao, X.M.; Chen, M.M.; Zhang, Y.F. Molecular characterization and expression analysis of NAC family transcription factors in tomato. Plant Mol. Biol. Rep. 2014, 32, 501–516. [Google Scholar] [CrossRef]
- Saimi, G.; Wang, Z.Y.; Liusui, Y.H.; Guo, Y.J.; Huang, G.Q.; Zhao, H.X.; Zhang, J.B. The functions of an NAC transcription factor, GhNAC2-A06, in cotton response to drought stress. Plants 2023, 12, 3755. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Wang, H.F.; Su, M.X.; Li, Q.Q.; Xu, H.L.; Song, J.Q.; Li, C.P.; Li, Q.L. A transcription factor SlNAC4 gene of Suaeda liaotungensis enhances salt and drought tolerance through regulating ABA synthesis. Plants 2023, 12, 2951. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Wu, F.; Zhang, J.Y. NAC and MYB families and lignin biosynthesis-related members identification and expression analysis in Melilotus albus. Plants 2021, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Wang, N.Y.; She, W.Q.; Guo, Z.X.; Pan, H.L.; Yu, Y.; Ye, J.W.; Pan, D.M.; Pan, T.F. Identification and functional analysis of the CgNAC043 gene involved in lignin synthesis from Citrus grandis “San Hong”. Plants 2022, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.H.; Zhou, J.Q.; Wu, C.E.; Yang, S.; Liu, Y.F.; Chai, L.P.; Xue, Z.H. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: A review. Plant Mol. Biol. 2021, 106, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Li, H.L.; Grierson, D.; Fu, D.Q. NAC transcription factor family regulation of fruit ripening and quality: A review. Cells 2022, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Nam, H.G.; Lim, P.O. Regulatory network of NAC transcription factors in leaf senescence. Curr. Opin. Plant Biol. 2016, 33, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhang, Y.; Wang, T.; Yang, Q.; Yang, Y.L.; Li, Z.; Li, B.S.; Wen, X.; Li, W.Y.; Yin, W.L.; et al. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. Plant Cell 2021, 33, 1594–1614. [Google Scholar] [CrossRef] [PubMed]
- Nagahage, I.S.P.; Matsuda, K.; Miyashita, K.; Fujiwara, S.; Mannapperuma, C.; Yamada, T.; Sakamoto, S.; Ishikawa, T.; Nagano, M.; Ohtani, M.; et al. NAC domain transcription factors VNI2 and ATAF2 form protein complexes and regulate leaf senescence. Plant Direct 2023, 7, e529. [Google Scholar] [CrossRef] [PubMed]
- Vroemen, C.W.; Mordhorst, A.P.; Albrecht, C.; Kwaaitaal, M.A.C.J.; de Vries, S.C. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 2003, 15, 1563–1577. [Google Scholar] [CrossRef]
- Hasson, A.; Plessis, A.; Blein, T.; Adroher, B.; Grigg, S.; Tsiantis, M.; Boudaoud, A.; Damerval, C.; Laufs, P. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 2011, 23, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Liu, Y.L.; Li, J.R. Studies on the blossom physiology in the different development stage of peony and Chinese peony flower. Acta Hortic. Sin. 2005, 32, 861–865. (In Chinese) [Google Scholar]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
Reference Gene | Primer Sequence (5′-3′) | Product Length | Tm/°C | Efficiency | R2 |
---|---|---|---|---|---|
ACT | F: GAGAGATTCCGTTGCCCTGA | 211 | 60 | 99.88% | 0.9979 |
R: TAGGTGCAAGAGCCGTGATT | |||||
TUB | F: CATTTCTTCATGGTTGGGTTCG | 183 | 62 | 101.57% | 0.9928 |
R: CTTTGTGCTCATCTTTCCTCGG | |||||
UPL | F: CTTTATCACCTCCATTGTTTCGC | 207 | 60 | No band | |
R: ACACTATTTGTTTCCACCCGTCT | |||||
PP2A | F: TGTTTGGATGTTCTCAAGGCAG | 147 | 60 | 165.38% | 0.9911 |
R: CAGAATTATCCGCTCCTCGTC | |||||
PP2C | F: GTTGGTGGCGTTCTTGCTGTTT | 233 | 63 | 96.76% | 0.9949 |
R: CCTCGTGCGTAGGCTTCTTGTAT | |||||
MBF1A | F: GCGTTGACGACTTTCTCATCCTTC | 140 | 63 | 97.04% | 0.9976 |
R: CGCACATCCTTGACAAACCCTA | |||||
GAPDH | F: TGTTCACTCCATCACTGCTAC | 189 | 55 | 98.70% | 0.9968 |
R: ACATCCACAGTAGGAACACGA | |||||
UBQ | F: AAGACGCTGACTGGCAAGACA | 199 | 61 | 102.94% | 0.9973 |
R: GCAAGACGAGATGAAGGGTAGACT | |||||
UBC | F: ACCTCCCGAAACTCTCTATGACG | 171 | 56 | 90.63% | 0.9962 |
R: GGGTCTTCACCAGGAGGATGTAG |
Reference Gene | GeNorm M Value | NormFinder S Value | BestKeeper SD | Geomean of Ranking Values | Ranking |
---|---|---|---|---|---|
GAPDH | 0.567 | 0.132 | 0.96 | 0.416 | 1 |
ACT | 0.661 | 0.205 | 0.98 | 0.510 | 2 |
UBC | 0.638 | 0.271 | 0.91 | 0.540 | 3 |
UBQ | 0.682 | 0.308 | 0.98 | 0.590 | 4 |
MBF1A | 0.824 | 0.487 | 0.79 | 0.682 | 5 |
PP2C | 0.734 | 0.323 | 1.39 | 0.691 | SD > 1 |
TUB | 1.102 | 0.723 | 1.55 | 1.073 | SD > 1 |
Reference Gene | GeNorm M Value | NormFinder S Value | BestKeeper SD | Geomean of Ranking Values | Ranking |
---|---|---|---|---|---|
UBC | 0.73 | 0.058 | 0.28 | 0.228 | 1 |
MBF1A | 0.723 | 0.132 | 0.33 | 0.316 | 2 |
PP2C | 0.788 | 0.356 | 0.24 | 0.407 | r = 0.034 |
UBQ | 0.931 | 0.533 | 0.14 | 0.411 | r = −0.315 |
ACT | 0.898 | 0.162 | 0.84 | 0.496 | 3 |
GAPDH | 0.868 | 0.244 | 0.69 | 0.527 | 4 |
TUB | 2.248 | 1.538 | 1.74 | 1.819 | M value > 1.5, SD > 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Ma, C.; Zhou, W.; Gao, S.; Hou, D.; Guo, L.; Shi, G. Selection of Stable Reference Genes for QRT-PCR in Tree Peony ‘Doulv’ and Functional Analysis of PsCUC3. Plants 2024, 13, 1741. https://doi.org/10.3390/plants13131741
Zhou S, Ma C, Zhou W, Gao S, Hou D, Guo L, Shi G. Selection of Stable Reference Genes for QRT-PCR in Tree Peony ‘Doulv’ and Functional Analysis of PsCUC3. Plants. 2024; 13(13):1741. https://doi.org/10.3390/plants13131741
Chicago/Turabian StyleZhou, Shuang, Chao Ma, Wenbin Zhou, Shuangcheng Gao, Dianyun Hou, Lili Guo, and Guoan Shi. 2024. "Selection of Stable Reference Genes for QRT-PCR in Tree Peony ‘Doulv’ and Functional Analysis of PsCUC3" Plants 13, no. 13: 1741. https://doi.org/10.3390/plants13131741