Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana
<p>GmERF105 protein sequence and phylogenetic tree analysis. (<b>a</b>) Protein structure of the GmERF105; (<b>b</b>) The sequence alignments generated by DNAMAN software. The red box indicates the AP2 DNA-binding domain. The amphipathic α-helix and three β-sheets are labeled above the corresponding sequence. The YRG and RAYD elements are represented by the blue bar below the alignment; (<b>c</b>) Phylogenetic relationships between GmERF105 and other ERFs from various species. The phylogenetic tree was generated by the neighbor-joining method using MEGA 6.0. GmERF105 is indicated by the red triangles. The protein sequences of the selected ERF genes were obtained from Phytozome or Genebank; the Accession Numbers are as follows: GsERF7 (GLYMA_07G044300), JERF3 (AAQ91334.1), GmERF75 (GLYMA_10G016500), OsERF106MZ (OSNPB_080537900), StERF3 (XP_006365342.1), AtERF105 (AT5G51190), GmERF105 (GLYMA_20G070000), AtERF4 (AT3G15210), OsERF922 (Os01g0752500), AtERF98 (AT3G23230), TaERF87 (XP_044360011.1), AtERF1 (AT3G23240), and MdERF4 (XP_008364034.2), IDS1 (OSNPB_030818800).</p> "> Figure 2
<p>Expression of <span class="html-italic">GmERF105</span> in soybean tissues under different abiotic stress treatments. (<b>a</b>) the expression levels of <span class="html-italic">GmERF105</span> in different soybean tissues were detected. When the first trifoliate leaves are fully unfolded, the roots, stems, and leaves are selected as samples. (<b>b</b>–<b>f</b>) patterns of <span class="html-italic">GmERF105</span> expression under the different treatments of abiotic stresses; (<b>b</b>) 150 mM NaCl; (<b>c</b>) dehydration; (<b>d</b>) 50 mM NaHCO<sub>3</sub>; (<b>e</b>) 100 µm ABA; (<b>f</b>) 50 µm ACC. Roots were collected at 0, 2, 6, 12, and 24 h after different treatments, respectively. The values are the means ± SDs (<span class="html-italic">n</span> = 3). The asterisks show significant differences between the control and salt treatments according to Student’s <span class="html-italic">t</span>-test: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>GmERF105 is a nuclear protein. Nuclear localization of the GmERF105 protein in leaf epidermal cells of <span class="html-italic">Nicotiana benthamiana</span>. Nicotiana leaves transiently expressing GFP alone (<b>upper</b>) and GmERF105-GFP (<b>bottom</b>) proteins were observed with a confocal microscope (Olympus FluoView FV1000, Tokyo, Japan).</p> "> Figure 4
<p>Characterization of the DNA binding affinity of the recombinant GmERF105 protein. (<b>a</b>) western about the recombinant GmERF105 protein. (<b>b</b>) sequence of the oligonucleotides used in the DNA binding studies. (<b>c</b>) gel retardation assay showing sequence-specific binding of the recombinant GmERF105 protein. The black band indicates the position of a protein–DNA complex after the incubation of 6 ‘FAM-labeled DNA probes and the GmERF105 protein. The bottom part is the free probe. Hot probe, a probe labeled with 6 ‘FAM. Cold probe, is the same as the labeled probe, but it is not labeled, as a competitor. Mutant Probe: unlabeled DNA probe containing the mutated motif.</p> "> Figure 5
<p>Overexpression of <span class="html-italic">GmERF105</span> repressed the germination rates of Arabidopsis under salt stress. Seed germination under the treatment of salt. The photo was taken on the fourth day. Error bars represent ± SD. The observation values were the averages of three repetitions (<span class="html-italic">n</span> = 3). Three independent biological experiments were carried out to investigate the seed germination of WT and <span class="html-italic">GmERF105</span> transgenic lines under salt stress. WT, wild type; OX4, 7, 10: <span class="html-italic">GmERF105</span> Arabidopsis transgenic lines of T3 generations.</p> "> Figure 6
<p><span class="html-italic">GmERF105</span> decreased the resistance of Arabidopsis thaliana to salt stress. (<b>a</b>) the phenotypes of WT and <span class="html-italic">GmERF105</span> transgenic lines under normal and salt stress. (<b>b</b>) the determination of fresh weight (aboveground). (<b>c</b>) the determination of Na<sup>+</sup> contents. The wild-type controls and <span class="html-italic">GmERF105</span> transgenic line plants were grown in pots for two weeks and then irrigated with a solution of 150 mM NaCl for 16 days. WT, wild type; OX4, 7, 10: <span class="html-italic">GmERF105</span> Arabidopsis transgenic lines of T3 generations. The data are mean values ± SDs (** <span class="html-italic">p</span> < 0.01; Student’s <span class="html-italic">t</span>-test). All the experiments included three biological replications.</p> "> Figure 7
<p>Analysis of H<sub>2</sub>O<sub>2</sub>, MDA, and antioxidant enzyme activity of WT and <span class="html-italic">GmERF105</span>-overexpressing plants. (<b>a</b>) H<sub>2</sub>O<sub>2</sub> contents of WT and <span class="html-italic">GmERF105</span> OE lines after 150 mM NaCl treatment. (<b>b</b>) MDA contents of WT and <span class="html-italic">GmERF105</span> OE lines after 150 mM NaCl treatment. (<b>c</b>) SOD activity of WT and <span class="html-italic">GmERF105</span> OE lines after 150 mM NaCl treatment. (<b>d</b>) CAT activity of WT and <span class="html-italic">GmERF105</span> OE lines after 150 mM NaCl treatment. After 16 days of salt treatment, the leaves were selected as samples. The data are mean values ± SDs (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01; Student’s <span class="html-italic">t</span>-test). All the experiments included three biological replications.</p> "> Figure 8
<p>Transcription levels of SOD isoforms and CAT isoforms in WT and <span class="html-italic">GmERF105</span> overexpressing plants. The wild-type controls and <span class="html-italic">GmERF105</span> transgenic lines plants were grown in pots for two weeks and then irrigated with a solution of 150 mM NaCl for 16 days. Samples were taken from the aboveground part of the Arabidopsis plant. The transcription levels of each gene were analyzed by qRT-PCR using <span class="html-italic">actin</span>2 as the reference gene. The data are mean values ± SDs (** <span class="html-italic">p</span> < 0.01; Student’s <span class="html-italic">t</span>-test). All the experiments included three biological replications.</p> "> Figure 9
<p>Expression levels of stress-related genes in WT and GmERF105 overexpressing plants. The transcription levels of <span class="html-italic">KIN1</span>, <span class="html-italic">LEA14</span>, <span class="html-italic">NCED3</span>, <span class="html-italic">RD29A</span>, <span class="html-italic">COR15A</span>, and <span class="html-italic">COR15B</span> were analyzed by qRT-PCR using <span class="html-italic">actin2</span> as the reference gene. The data are mean values ± SDs (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01; Student’s <span class="html-italic">t</span>-test). All the experiments included three biological replications.</p> "> Figure 10
<p>The molecular mechanism model for the regulation of plant salt stress by <span class="html-italic">GmERF105</span>. When plants are under salt stress conditions, the transcription level of <span class="html-italic">GmERF105</span> increases. <span class="html-italic">GmERF105</span> inhibits ROS scavenging capacity and reduces the transcription of stress-related genes in plants, resulting in an increased sensitivity of plants to salt stress.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Isolation and Sequence Analysis of the GmERF105 Gene
2.2. The Expression Patterns of GmERF105 in Soybean
2.3. GmERF105 Is a Nuclear Protein
2.4. GmERF105 Binds Specifically to the GCC-Box
2.5. GmERF105 Represses Seed Germination of Transgenic Plants under Salt Condition
2.6. GmERF105 of Transgenic Plants Plays a Negative Role in Combating Salt Tolerance
2.7. GmERF105 Represses Antioxidant Capacity under Salt Stress
2.8. Altered Expression of Stress-Responsive Genes in Transgenic GmERF105 Plants
3. Discussion
3.1. Transcription Factor GmERF105 Acts as a Negative Regulator in Plant Salt Tolerance Pathways
3.2. GmERF105 Inhibits the ROS Scavenging Systems under Salt Stress
3.3. GmERF105 Downregulated the Expression of Stress-Related Genes under Salt Stress
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Experimental Design
4.3. RNA Isolation, cDNA Synthesis, and Quantitative Real-Time PCR
4.4. GmERF105 Gene Isolation and Sequence Analysis
4.5. Subcellular Localization Analysis
4.6. Purification of Fusion Proteins and Electrophoretic Mobility Shift Assays
4.7. Plant Transformation
4.8. Phenotypic Analysis of Arabidopsis Tolerance to Salt Stress
4.9. Oxidative Stress Analyses
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2018, 21 (Suppl. 1), 31–38. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef] [PubMed]
- Stuart, J. Roy SNNO. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Khan, A.L.; Waqas, M.; Lee, I.-J. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Front. Plant Sci. 2017, 8, 510. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali Wani, O.; Lone, J.K.; Manhas, S.; Kour, N.; Alam, P.; Ahmad, A.; Ahmad, P. Reactive Oxygen Species in Plants: From Source to Sink. Antioxidants 2022, 11, 225. [Google Scholar] [CrossRef]
- Nadarajah, K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Alché, J.D.D. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol. 2019, 23, 101136. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Khaliq, A.; Tanveer, M.; Matloob, A.; Hussain, H.A. Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol. Plant. 2018, 40, 68. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, Y.; Li, X.; Han, W.-Y.; Chen, S. Epigallocatechin-3-Gallate Alleviates Salinity-Retarded Seed Germination and Oxidative Stress in Tomato. J. Plant Growth Regul. 2018, 37, 1349–1356. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Strader, L.; Weijers, D.; Wagner, D. Plant transcription factors—Being in the right place with the right company. Curr. Opin. Plant Biol. 2022, 65, 102136. [Google Scholar] [CrossRef] [PubMed]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Zhang, J.; Zhao, H.; Tan, S.; Xu, W.; Pan, J.; Yang, F.; Pi, E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front. Plant Sci. 2022, 13, 1042084. [Google Scholar] [CrossRef]
- Fang, X.; Ma, J.; Guo, F.; Qi, D.; Zhao, M.; Zhang, C.; Wang, L.; Song, B.; Liu, S.; He, S.; et al. The AP2/ERF GmERF113 positively regulates the drought response by activating GmPR10-1 in soybean. Int. J. Mol. Sci. 2022, 23, 8159. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, M.; Li, L.; Xu, Z.; Chen, X.; Guo, J.; Ma, Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009, 60, 3781–3796. [Google Scholar] [CrossRef]
- Chen, N.; Tong, S.; Tang, H.; Zhang, Z.; Liu, B.; Lou, S.; Liu, J.; Liu, H.; Ma, T.; Jiang, Y. The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1;2 in Populus alba var. pyramidalis. Tree Physiol. 2020, 40, 717–730. [Google Scholar] [CrossRef]
- Yao, W.; Wang, S.; Zhou, B.; Jiang, T. Transgenic poplar overexpressing the endogenous transcription factorERF76 gene improves salinity tolerance. Tree Physiol. 2016, 36, 896–908. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Zhang, H.; Wang, X.-C.; Huang, R. Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Plant Physiol. 2008, 148, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, X.; Liu, J.; Ye, J.; Guo, Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J. Exp. Bot. 2012, 63, 3899–3911. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, D.; Zhou, S.; Gu, J.; Wang, F.; Dong, J.; Huang, R. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 2016, 254, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; He, Q.; Wang, H.; Liu, Y.; Zhang, Y.; Shao, F.; Xie, C. The potato erf transcription factor StERF3 negatively regulates resistance to phytophthora infectants and salt tolerance in potato. Plant Cell Physiol. 2015, 56, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wu, Z.; Xiang, J.; Zhang, D.; Teng, N. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. Plant Sci. 2022, 319, 111246. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Ren, Z.; Abou-Elwafa, S.F.; Pu, X.; Zhu, Y.; Dou, D.; Su, H.; Cheng, H.; Liu, Z.; et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ. 2022, 45, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Yuan, L. ERF Gene Clusters: Working Together to Regulate Metabolism. Trends Plant Sci. 2021, 26, 23–32. [Google Scholar] [CrossRef]
- Yao, Y.; He, R.J.; Xie, Q.L.; Zhao, X.H.; Deng, X.M.; He, J.B.; Song, L.; He, J.; Marchant, A.; Chen, X.Y.; et al. Ethylene response factor 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RBOHD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017, 213, 1667–1681. [Google Scholar] [CrossRef]
- Mao, C.; Ding, J.; Zhang, B.; Xi, D.; Ming, F. OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. Plant J. 2018, 94, 454–468. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, C.; Wang, C.; Liu, L.; Shen, Q.; Xu, D.; Wang, Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 159, 257–267. [Google Scholar] [CrossRef]
- Makhloufi, E.; Yousfi, F.-E.; Marande, W.; Mila, I.; Hanana, M.; Bergès, H.; Mzid, R.; Bouzayen, M. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses. J. Exp. Bot. 2014, 65, 6359–6371. [Google Scholar] [CrossRef]
- Phukan, U.J.; Jeena, G.S.; Tripathi, V.; Shukla, R.K. Regulation of apetala2/ethylene response factors in plants. Front. Plant Sci. 2017, 8, 150. [Google Scholar] [CrossRef]
- Park, S.J.; Park, S.; Kim, Y.; Hyeon, D.Y.; Park, H.; Jeong, J.; Jeong, U.; Yoon, Y.S.; You, D.; Kwak, J.; et al. Ethylene responsive factor34 mediates stress-induced leaf senescence by regulating salt stress-responsive genes. Plant Cell Environ. 2022, 45, 1719–1733. [Google Scholar] [CrossRef]
- Cheng, M.C.; Liao, P.-M.; Kuo, W.-W.; Lin, T.-P. The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to Different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Luo, Q.; Wang, R.; Zhang, F.; He, Y.; Zhang, Y.; Qiu, D.; Li, K.; Chang, J.; Yang, G.; et al. A Wheat R2R3-type MYB Transcription Factor TaODORANT1 Positively Regulates Drought and Salt Stress Responses in Transgenic Tobacco Plants. Front. Plant Sci. 2017, 8, 1374. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, M.; Cao, L.; Dang, Z.; Ruan, N.; Wang, Y.; Huang, Y.; Wu, J.; Zhang, M.; Xu, Z.; et al. OsUGE3 -mediated cell wall polysaccharides accumulation improves biomass production, mechanical strength, and salt tolerance. Plant Cell Environ. 2022, 45, 2492–2507. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noe, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Meng, X.; Cai, J.; Deng, L.; Li, G.; Sun, J.; Han, Y.; Dong, T.; Liu, Y.; Xu, T.; Liu, S.; et al. SlSTE1promotes abscisic acid-dependent salt stress-responsive pathways via improving ion homeostasis and reactive oxygen species scavenging in tomato. J. Integr. Plant Biol. 2020, 62, 1942–1966. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Hu, D.; Wang, Y.; Shao, C.; Liu, T.; Zhang, C.; Cheng, F.; Hou, X.; Li, Y. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging. Plant Mol. Biol. 2022, 109, 741–759. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Z.; Hu, X.; Xiong, J.; Hu, L.; Xu, Y.; Tang, Y.; Wu, Y. The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC Plant Biol. 2021, 21, 605. [Google Scholar] [CrossRef]
- Sunkar, R.; Kapoor, A.; Zhu, J. Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance. Plant Cell 2006, 18, 2051–2065. [Google Scholar] [CrossRef] [PubMed]
- Tsang, E.W.; Bowler, C.; Herouart, D.; Van Camp, W.; Villarroel, R.; Genetello, C.; Van Montagu, M.; Inze, D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991, 3, 783–792. [Google Scholar] [PubMed]
- Kurepa, J.; Herouart, D.; Van Montagu, M.; Inze, D. Differential Expression of CuZn- and Fe-Superoxide Dismutase Genes of Tobacco during Development, Oxidative Stress, and Hormonal Treatments. Plant Cell Physiol. 1997, 38, 463–470. [Google Scholar] [CrossRef]
- Vij, S.; Tyagi, A.K. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J. 2007, 5, 361–380. [Google Scholar] [CrossRef]
- Nair, A.U.; Bhukya, D.P.N.; Sunkar, R.; Chavali, S.; Allu, A.D. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J. Exp. Bot. 2022, 73, 3355–3371. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, P.; Verma, V.; Sharma, R.; Bhargava, B.; Irfan, M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiol. Biochem. 2022, 179, 10–24. [Google Scholar] [CrossRef]
- Narusaka, Y.; Nakashima, K.; Shinwari, Z.K.; Sakuma, Y.; Furihata, T.; Abe, H.; Narusaka, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis RD29A gene in response to dehydration and high-salinity stresses. Plant J. 2003, 34, 137–148. [Google Scholar] [CrossRef]
- Wang, H.; Datla, R.; Georges, F.; Loewen, M.; Cutler, A.J. Promoters from KINl and COR6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol. Biol. 1995, 28, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Qi, S.; Li, H.; Liu, P.; Li, P.; Wu, C.; Zheng, C.; Huang, J. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem. Biophys. Res. Commun. 2014, 454, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Bremer, A.; Kent, B.; Hauß, T.; Thalhammer, A.; Yepuri, N.R.; Darwish, T.A.; Garvey, C.J.; Bryant, G.; Hincha, D.K. Intrinsically Disordered Stress Protein COR15A Resides at the Membrane Surface during Dehydration. Biophys. J. 2017, 113, 572–579. [Google Scholar] [CrossRef]
- Thalhammer, A.; Hundertmark, M.; Popova, A.V.; Seckler, R.; Hincha, D.K. Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Biochim. Biophys. Acta BBA Biomembr. 2010, 1798, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Takasaki, H.; Takahashi, F.; Suzuki, T.; Iuchi, S.; Mitsuda, N.; Ohme-Takagi, M.; Ikeda, M.; Seo, M.; Yamaguchi-Shinozaki, K.; et al. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc. Natl. Acad. Sci. USA 2018, 115, E11178–E11187. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhu, Z.; Liu, J.; Zhang, Y.; Lu, Y.; Zhao, J.; Xing, H.; Guo, N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. Plants 2023, 12, 3007. https://doi.org/10.3390/plants12163007
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. Plants. 2023; 12(16):3007. https://doi.org/10.3390/plants12163007
Chicago/Turabian StyleLi, Lu, Zhen Zhu, Juan Liu, Yu Zhang, Yang Lu, Jinming Zhao, Han Xing, and Na Guo. 2023. "Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana" Plants 12, no. 16: 3007. https://doi.org/10.3390/plants12163007
APA StyleLi, L., Zhu, Z., Liu, J., Zhang, Y., Lu, Y., Zhao, J., Xing, H., & Guo, N. (2023). Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. Plants, 12(16), 3007. https://doi.org/10.3390/plants12163007