Determination of Antioxidant, Antimicrobial Activity, Heavy Metals and Elements Content of Seaweed Extracts
<p>Antimicrobial activity of kombu.</p> "> Figure 2
<p>MIC 50 and MIC 90 of kombu.</p> "> Figure 3
<p>Antimicrobial activity of laminaria.</p> "> Figure 4
<p>MIC 50 and MIC 90 of laminaria.</p> "> Figure 5
<p>Antimicrobial activity of wakame.</p> "> Figure 6
<p>MIC 50 and MIC 90 of wakame.</p> "> Figure 7
<p>Antimicrobial activity of dulse.</p> "> Figure 8
<p>MIC 50 and MIC 90 of dulse.</p> "> Figure 9
<p>Antimicrobial activity of hijiki.</p> "> Figure 10
<p>MIC 50 and MIC 90 of hijiki.</p> "> Figure 11
<p>Antimicrobial activity of arame.</p> "> Figure 12
<p>MIC 50 and MIC 90 of arame.</p> "> Figure 13
<p>Principal component analysis of elements.</p> "> Figure 14
<p>Principal component analysis of seaweeds.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity of Seaweeds
2.2. Antimicrobial Activity and Minimal Inhibition Concentration of Kombu
2.3. Antimicrobial Activity and Minimal Inhibition Concentration of Laminaria
2.4. Antimicrobial Activity and Minimal Inhibition Concentration of Wakame
2.5. Antimicrobial Activity and Minimal Inhibition Concentration of Dulse
2.6. Antimicrobial Activity and Minimal Inhibition Concentration of Hijiki
2.7. Antimicrobial Activity and Minimal Inhibition Concentration of Arame
2.8. Determination of Chemical Elements and Heavy Metals in Seaweeds
2.9. Determination of Chemical Elements and Heavy Metals by Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Tested Seaweed
4.2. Microorganisms
4.3. Preparation of Extracts
4.4. Determination of Antioxidant Activity
4.5. Disk Diffusion Method
4.6. Minimum Inhibitory Concentration (MIC)
4.7. Determination of Heavy Metals
4.8. Statistical Data Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fakayode, O.A.; Aboagarib, E.A.A.; Zhou, C.; Ma, H. Co-Pyrolysis of Lignocellulosic and Macroalgae Biomasses for the Production of Biochar—A Review. Bioresour. Technol. 2020, 297, 122408. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoek, C.; Mann, D.G.; Jahns, H.M. Algae: An Introduction to Phycology; Cambridge University Press: Cambridge, NY, USA, 1995; ISBN 978-0-521-30419-1. [Google Scholar]
- Ristivojević, P.; Jovanović, V.; Opsenica, D.M.; Park, J.; Rollinger, J.M.; Velicković, T.Ć. Rapid Analytical Approach for Bioprofiling Compounds with Radical Scavenging and Antimicrobial Activities from Seaweeds. Food Chem. 2021, 334, 127562. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Čagalj, M.; Skroza, D.; del Razola-Díaz, M.C.; Verardo, V.; Bassi, D.; Frleta, R.; Generalić Mekinić, I.; Tabanelli, G.; Šimat, V. Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira Compressa during Seasonal Growth. Mar. Drugs 2022, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Vipin, C.; Aiyappan, A. Biological Importance of Marine Algae—An Overview. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 222–227. [Google Scholar]
- Gavalás-Olea, A.; Siol, A.; Sakka, Y.; Köser, J.; Nentwig, N.; Hauser, T.; Filser, J.; Thöming, J.; Lang, I. Potential of the Red Alga Dixoniella Grisea for the Production of Additives for Lubricants. Plants 2021, 10, 1836. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martín, R.P.; Carcedo-Forés, M.; Camacho-Bolós, P.; García-Aljaro, C.; Angulo-Preckler, C.; Avila, C.; Lluch, J.R.; Garreta, A.G. Experimental Evidence of Antimicrobial Activity in Antarctic Seaweeds: Ecological Role and Antibiotic Potential. Polar Biol. 2022, 45, 923–936. [Google Scholar] [CrossRef]
- Shalaby, E. Algae as Promising Organisms for Environment and Health. Plant Signal. Behav. 2011, 6, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Noorjahan, A.; Mahesh, S.; Anantharaman, P.; Aiyamperumal, B. Antimicrobial Potential of Seaweeds: Critical Review. In Sustainable Global Resources Of Seaweeds Volume 1: Bioresources, Cultivation, Trade and Multifarious Applications; Ranga Rao, A., Ravishankar, G.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 399–420. ISBN 978-3-030-91955-9. [Google Scholar]
- García-Casal, M.N.; Pereira, A.C.; Leets, I.; Ramírez, J.; Quiroga, M.F. High Iron Content and Bioavailability in Humans from Four Species of Marine Algae. J. Nutr. 2007, 137, 2691–2695. [Google Scholar] [CrossRef]
- Masoud, M.S.; El-Sarraf, W.M.; Harfoush, A.A.; El-Said, G.F. The Effect of Fluoride and Other Ions on Algae and Fish of Coastal Water of Mediterranean Sea, Egypt. Am. J. Environ. Sci. 2006, 2, 49–59. [Google Scholar] [CrossRef]
- Biancacci, C.; Sanderson, J.C.; Evans, B.; Callahan, D.L.; Francis, D.S.; Skrzypczyk, V.M.; Cumming, E.E.; Bellgrove, A. Nutritional Composition and Heavy Metal Profiling of Australian Kelps Cultured in Proximity to Salmon and Mussel Farms. Algal Res. 2022, 64, 102672. [Google Scholar] [CrossRef]
- Znad, H.; Awual, M.R.; Martini, S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules 2022, 27, 1275. [Google Scholar] [CrossRef] [PubMed]
- Żbikowski, R.; Szefer, P.; Latała, A. Distribution and Relationships between Selected Chemical Elements in Green Alga Enteromorpha Sp. from the Southern Baltic. Environ. Pollut. 2006, 143, 435–448. [Google Scholar] [CrossRef]
- Besada, V.; Andrade, J.M.; Schultze, F.; González, J.J. Heavy Metals in Edible Seaweeds Commercialised for Human Consumption. J. Mar. Syst. 2009, 75, 305–313. [Google Scholar] [CrossRef]
- Amorim, K.; Lage-Yusty, M.-A.; López-Hernández, J. Changes in Bioactive Compounds Content and Antioxidant Activity of Seaweed after Cooking Processing. CyTA J. Food 2012, 10, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Del Olmo, A.; Picon, A.; Nuñez, M. High Pressure Processing for the Extension of Laminaria Ochroleuca (Kombu) Shelf-Life: A Comparative Study with Seaweed Salting and Freezing. Innov. Food Sci. Emerg. Technol. 2019, 52, 420–428. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential Antioxidant and Anticoagulant Capacity of Low Molecular Weight Fucoidan Fractions Extracted from Laminaria Japonica. Int. J. Biol. Macromol. 2010, 46, 6–12. [Google Scholar] [CrossRef]
- Yan, X.; Chuda, Y.; Suzuki, M.; Nagata, T. Fucoxanthin as the Major Antioxidant in Hijikia Fusiformis, a Common Edible Seaweed. Biosci. Biotechnol. Biochem. 1999, 63, 605–607. [Google Scholar] [CrossRef]
- Ismail, A.; Tan, S. Antioxidant Activity of Selected Commercial Seaweeds. Malays. J. Nutr. 2002, 8, 167–177. [Google Scholar]
- Cai, J.; Yang, D.; Zhang, J.; Guo, J.; Jiang, L. Evaluation of Bio-Guided Fraction from Laminaria Japonica as a Natural Food Preservative Based on Antimicrobial Activity. J. Food Meas. Charact. 2020, 14, 735–748. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, J.H.; Jin, H.-J.; Lee, S.Y. Antimicrobial Activity of Ethanol Extracts of Laminaria Japonica against Oral Microorganisms. Anaerobe 2013, 21, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Lee, S.-W.; Park, J.G.; Baek, K.-H. Antioxidant and Antibacterial Properties of Essential Oil Extracted from an Edible Seaweed Undaria Pinnatifida: Antioxidant Potential of Essential Oil from Undaria Pinnatifida. J. Food Biochem. 2017, 41, e12278. [Google Scholar] [CrossRef]
- Phull, A.; Ali, A.; Ahmed, M.; Zia, M.; Haq, I.; Kim, S. In Vitro Antileishmanial, Antibacterial, Antifungal and Anticancer Activity of Fucoidan from Undaria Pinnatifida. Int. J. Biosci. 2017, 11, 219–227. [Google Scholar] [CrossRef]
- Oumaskour, K.; Boujaber, N.; Etahiri, S.; Assobhei, O. Anti-Inflammatory and Antimicrobial Activities of Twenty-Tree Marine Red Algae from the Coast of Sidi Bouzid (El Jadida-Morocco). Int. J. Pharm. Pharm. Sci. 2013, 5, 145–149. [Google Scholar]
- Abu-Ghannam, N.; Rajauria, G. 8—Antimicrobial Activity of Compounds Isolated from Algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Thorston, UK, 2013; pp. 287–306. ISBN 978-0-85709-512-1. [Google Scholar]
- Li, Y.-T.; Chen, B.-J.; Wu, W.-D.; Ge, K.; Wei, X.-Y.; Kong, L.-M.; Xie, Y.-Y.; Gu, J.-P.; Zhang, J.-C.; Zhou, T. Antioxidant and Antimicrobial Evaluation of Carboxymethylated and Hydroxamated Degraded Polysaccharides from Sargassum Fusiforme. Int. J. Biol. Macromol. 2018, 118, 1550–1557. [Google Scholar] [CrossRef]
- El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.M. Antimicrobial Activity of Some Seaweeds Species from Red Sea, against Multidrug Resistant Bacteria. Egypt. J. Aquat. Res. 2016, 42, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.-H.; Park, J.-H.; Yu, D.-U.; Choi, J.-I.; Choi, J.-D.; Lee, M.-S.; Kim, Y.-M. Antimicrobial Activity of Brown Alga Eisenia Bicyclis against Methicillin-Resistant Staphylococcus Aureus. Fish. Aquat. Sci. 2011, 14, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Yu, D.; Eom, S.-H.; Kim, H.-J.; Kim, D.-H.; Song, H.-S.; Kim, D.-M.; Kim, Y.-M. Fucofuroeckol-A from Edible Marine Alga Eisenia Bicyclis to Restore Antifungal Activity of Fluconazole against Fluconazole-Resistant Candida Albicans. J. Appl. Phycol. 2018, 30, 605–609. [Google Scholar] [CrossRef]
- Hoe, K.J.; Seog, L.D.; Won, L.C.; Yeon, P.H.; Heum, P.J. Antibacterial Activity of Sea-mustard, Laminaria japonica Extracts on the Cariogenic Bacteria, Streptococcus mutans. Korean J. Fish. Aquat. Sci. 2002, 35, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, Y.; Cao, M.-J.; Liu, G.-M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial Activity and Mechanisms of Depolymerized Fucoidans Isolated from Laminaria Japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef]
- Patra, J.; Das, G.; Baek, K.-H. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L. Molecules 2015, 20, 12093–12113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellio, C.; De La Broise, D.; Dufossé, L.; Le Gal, Y.; Bourgougnon, N. Inhibition of Marine Bacteria by Extracts of Macroalgae: Potential Use for Environmentally Friendly Antifouling Paints. Mar. Environ. Res. 2001, 52, 231–247. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Carreira-Casais, A.; Caleja, C.; Pereira, E.; Calhelha, R.C.; Sokovic, M.; Simal-Gandara, J.; Ferreira, I.C.F.R.; Prieto, M.A.; Barros, L. Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential. Proceedings 2020, 70, 46. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Martyasari, N.W.R.; Abidin, A.S.; Pebriani, S.A.; Ilhami, B.T.K.; Frediansyah, A.; Sunarwidhi, A.L.; Widyastuti, S.; Sunarpi, H. Macroalgae Sargassum Cristaefolium Extract Inhibits Proinflammatory Cytokine Expression in BALB/C Mice. Scientifica 2020, 2020, e9769454. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kwon, Y.M.; Kim, I.-S.; Kim, J.-A.; Yu, D.-Y.; Adhikari, B.; Lee, S.-S.; Choi, I.-S.; Cho, K.-K. Effects of the Brown Seaweed Laminaria Japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and Intestinal Microbiota Composition in Rats. Front. Nutr. 2018, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Mania, M.; Rebeniak, M.; Szynal, T.; Wojciechowska-Mazurek, M.; Starska, K.; Ledzion, E.; Postupolski, J. Total and Inorganic Arsenic in Fish, Seafood and Seaweeds-Exposure Assessment. Rocz. Panstw. Zakl. Hig. 2015, 66, 203–210. [Google Scholar]
- Almela, C.; Jesús Clemente, M.; Vélez, D.; Montoro, R. Total Arsenic, Inorganic Arsenic, Lead and Cadmium Contents in Edible Seaweed Sold in Spain. Food Chem. Toxicol. 2006, 44, 1901–1908. [Google Scholar] [CrossRef]
- Choi, J.-S.; Shin, S.-H.; Ha, Y.-M.; Kim, Y.-C.; Kim, T.-B.; Park, S.-M.; Choi, I.-S.; Song, H.-J.; Choi, Y.-J. Mineral Contents and Physiological Activities of Dried Sea Tangle (Laminaria japonica) Collected from Gijang and Wando in Korea. J. Life Sci. 2008, 18, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Truus, K.; Viitak, A.; Vaher, M.; Muinasmaa, U.; Paasrand, K.; Tuvikene, R.; Levandi, T. Comparative Determination of Microelements in Baltic Seawater and Brown Algae Samples by Atomic Absorption Spectrometric and Inductively Coupled Plasma Methods. Proc. Estonian Acad. Sci. Chem. 2007, 56, 122–133. [Google Scholar]
- Bhat, R.; Kiran, K.; Arun, A.B.; Karim, A.A. Determination of Mineral Composition and Heavy Metal Content of Some Nutraceutically Valued Plant Products. Food Anal. Methods 2010, 3, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Asensio, J.P.; Arnaiz Uceda, D.; Navarro, P.J. Studying Inorganic Arsenic, Heavy Metals, and Iodine in Dried Seaweed. ICP-OES and ICP-MS Tech. Today’s Spectrosc. 2021, S9, 24–34. [Google Scholar]
- Chen, Q.; Pan, X.-D.; Huang, B.-F.; Han, J.-L. Distribution of Metals and Metalloids in Dried Seaweeds and Health Risk to Population in Southeastern China. Sci. Rep. 2018, 8, 3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, S.; Rubio, C.; Frías, I.; Gutiérrez, Á.J.; González-Weller, D.; Martín, V.; Revert, C.; Hardisson, A. Toxic Metals (Al, Cd, Pb and Hg) in the Most Consumed Edible Seaweeds in Europe. Chemosphere 2019, 218, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Kovacik, A.; Tvrda, E.; Miskeje, M.; Arvay, J.; Tomka, M.; Zbynovska, K.; Andreji, J.; Hleba, L.; Kovacikova, E.; Fik, M.; et al. Trace Metals in the Freshwater Fish Cyprinus Carpio: Effect to Serum Biochemistry and Oxidative Status Markers. Biol. Trace Elem. Res. 2019, 188, 494–507. [Google Scholar] [CrossRef]
Samples | DPPH (%) | TEAC | TEACb |
---|---|---|---|
kombu (Laminaria japonica) | 60.11 | 2641.34 | 2.64 |
laminaria (Laminaria japonica) | - | - | - |
hijiki (Sargassum fusiforme | 9.09 | 755.26 | 0.76 |
wakame (Undaria pinnatifida) | 11.38 | 170.01 | 0.17 |
dulse (Palmaria palmata) | 13.08 | 56.31 | 0.06 |
arame (Eisenia bicyclis) | 46.64 | 2457.5 | 2.46 |
Elements | Absorbance (nm) | Hijiki (S. fusiforme) (mg/kg) | Wakame (U. pinnatifida) (mg/kg) | Laminaria (L. japonica) (mg/kg) | Dulse (P. palmata) (mg/kg) | Arame (E. bicyclis) (mg/kg) | Kombu (L. japonica) (mg/kg) |
---|---|---|---|---|---|---|---|
Ag | 328.07 | ND | ND | ND | 0.06 | 0.138 | ND |
Al | 167.02 | 21.30 | 46.37 | 274.58 | 72.95 | 21.02 | 56.59 |
As | 188.98 | 76.48 | 23.14 | 27.95 | 6.66 | 18.54 | 66.76 |
Ba | 455.40 | 4.36 | 6.90 | 13.08 | 0.14 | 8.10 | 3.14 |
Ca | 315.89 | 8853.82 | 6002.98 | 8184.28 | 1244.91 | 8374.60 | 4670.21 |
Cd | 226.50 | 0.69 | 0.14 | 0.53 | ND | 0.43 | 0.36 |
Co | 228.62 | 0.22 | ND | ND | ND | ND | 0.32 |
Cr | 267.72 | ND | ND | ND | ND | ND | ND |
Cu | 324.75 | 1.16 | 0.68 | 1.71 | 1.24 | 2.08 | 0.78 |
Fe | 234.35 | 11.44 | 43.33 | 78.44 | 35.51 | 15.87 | 18.58 |
K | 766.49 | 29,581.10 | 29,181.05 | 18,390.50 | 29,609.10 | 12,412.15 | 29,609.10 |
Li | 670.78 | 0.48 | 1.53 | 0.32 | 0.44 | 0.20 | 0.56 |
Mg | 383.83 | 5553.73 | 9545.75 | 5838.97 | 2472.84 | 4385.13 | 5116.46 |
Mn | 257.61 | 5.16 | 4.45 | 14.78 | 7.62 | 1.89 | 1.48 |
Mo | 204.60 | ND | ND | ND | 0.40 | ND | ND |
Na | 589.59 | 11,222.05 | 15,349.30 | 9430.59 | 15,346.05 | 9455.70 | 15,349.30 |
Ni | 231.60 | 2.28 | ND | 0.73 | 0.84 | ND | ND |
Pb | 220.35 | ND | ND | ND | ND | ND | ND |
Sb | 206.83 | ND | ND | ND | ND | ND | ND |
Se | 196.03 | ND | ND | ND | ND | ND | ND |
Sr | 407.77 | 586.64 | 482.04 | 454.33 | 17.33 | 505.57 | 252.14 |
Zn | 206.20 | 6.40 | 7.63 | 9.13 | 7.24 | 8.44 | 5.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čmiková, N.; Galovičová, L.; Miškeje, M.; Borotová, P.; Kluz, M.; Kačániová, M. Determination of Antioxidant, Antimicrobial Activity, Heavy Metals and Elements Content of Seaweed Extracts. Plants 2022, 11, 1493. https://doi.org/10.3390/plants11111493
Čmiková N, Galovičová L, Miškeje M, Borotová P, Kluz M, Kačániová M. Determination of Antioxidant, Antimicrobial Activity, Heavy Metals and Elements Content of Seaweed Extracts. Plants. 2022; 11(11):1493. https://doi.org/10.3390/plants11111493
Chicago/Turabian StyleČmiková, Natália, Lucia Galovičová, Michal Miškeje, Petra Borotová, Maciej Kluz, and Miroslava Kačániová. 2022. "Determination of Antioxidant, Antimicrobial Activity, Heavy Metals and Elements Content of Seaweed Extracts" Plants 11, no. 11: 1493. https://doi.org/10.3390/plants11111493
APA StyleČmiková, N., Galovičová, L., Miškeje, M., Borotová, P., Kluz, M., & Kačániová, M. (2022). Determination of Antioxidant, Antimicrobial Activity, Heavy Metals and Elements Content of Seaweed Extracts. Plants, 11(11), 1493. https://doi.org/10.3390/plants11111493