Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials
<p><span class="html-italic">S. laevipila</span>, (<b>A</b>)—Habit of dry plant, (<b>B</b>)—Habit of wet plant, (<b>C</b>)—Specialized asexual propagule. The drawing was made by the authors.</p> "> Figure 2
<p>Flowchart of process of obtention of <span class="html-italic">S. laevipila</span> extracts and its characterization.</p> "> Figure 3
<p>UHPLC/ESI/MS/MS chromatogram of <span class="html-italic">S. laevipila</span> extract. The numbers above the peaks correspond to major components identified in the extract.</p> "> Figure 4
<p>Structures of some representative compounds detected in <span class="html-italic">S. laevipila</span>: peak 5, pinellic acid; peak 6, 2’,4’-Dihydroxychalcone; peak 12, hederagenin; peak 16, maslinic acid; peak 17, piperochromenoic acid; peak 21, mogroside I-A1; peak 22, recurvoside A; peak 23, oleanolic acid; and peak 27, cirsimaritin.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Composition of S. laevipila Extracts
2.1.1. Quantitative Analysis
2.1.2. Metabolomics in S. laevipila Extracts
2.2. Biological Properties
2.2.1. Antioxidant Activity
2.2.2. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals, Reagents, and Materials
3.2. Plant Material
3.3. Plant Extract Preparation
3.4. Determination of Chemical Composition
3.4.1. Total Polyphenols and Flavonoids Quantification
3.4.2. Reducing and Total Sugars Quantification
3.4.3. Soluble Protein Quantification
3.4.4. UHPLC-Q TOF-ESI-MS
LC Parameters and MS Parameters
3.5. Biological Properties
3.5.1. Antioxidant Activity
Total Antioxidant Capacity Assay
Hydrogen Peroxide (H2O2) Scavenging
Stabilization of Human Red Blood Cell Membrane
Hydroxyl Radical Scavenging Assay
3.5.2. Antibacterial Activity
Bacterial Strain
Bioautographic Assay
Minimal Inhibitory Concentration (MIC)
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.; Schneider, H.; Donoghue, P.C.J. The Timescale of Early Land Plant Evolution. Proc. Natl. Acad. Sci. USA 2018, 115, E2274–E2283. [Google Scholar] [CrossRef] [PubMed]
- Dziwak, M.; Wróblewska, K.; Szumny, A.; Galek, R. Modern Use of Bryophytes as a Source of Secondary Metabolites. Agronomy 2022, 12, 1456. [Google Scholar] [CrossRef]
- Horn, A.; Pascal, A.; Lončarević, I.; Volpatto Marques, R.; Lu, Y.; Miguel, S.; Simonsen, H.T. Natural Products from Bryophytes: From Basic Biology to Biotechnological Applications. CRC Crit. Rev. Plant Sci. 2021, 40, 191–217. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Dey, A. The Ethno-Medicinal and Pharmaceutical Attributes of Bryophytes: A Review. Phytomed. Plus 2022, 2, 100255. [Google Scholar] [CrossRef]
- Ellis, L.T.; Asthana, A.K.; Sahu, V.; Srivastava, A.; Bednarek-Ochyra, H.; Ochyra, R.; Chlachula, J.; Colotti, M.T.; Schiavone, M.M.; Hradilek, Z.; et al. New National and Regional Bryophyte Records, 28. J. Bryol. 2011, 33, 237–247. [Google Scholar] [CrossRef]
- Smolińska-Kondla, D.; Zych, M.; Ramos, P.; Wacławek, S.; Stebel, A. Antioxidant Potential of Various Extracts from 5 Common European Mosses and Its Correlation with Phenolic Compounds. Herba Pol. 2022, 68, 54–68. [Google Scholar] [CrossRef]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef]
- Stark, L.R. Phenology of patch hydration, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. J. Bryol. 2005, 27, 231–240. [Google Scholar] [CrossRef]
- Takács, Z.; Csintalan, Z.; Sass, L.; Laitat, E.; Vass, I.; Tuba, Z. UV-B Tolerance of Bryophyte Species with Different Degrees of Desiccation Tolerance. J. Photochem. Photobiol. B Biol. 1999, 48, 210–215. [Google Scholar] [CrossRef]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New Roles for Old Molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Liu, S.; Ju, J.; Xia, G. Identification of the Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes from Antarctic Moss and Their Regulation During Abiotic Stress. Gene 2014, 543, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Rajčić, M.V.; Ćosić, M.V.; Tosti, T.B.; Mišić, D.M.; Sabovljević, A.D.; Sabovljević, M.S.; Vujičić, M.M. An Insight into Seasonal Changes of Carbohydrates and Phenolic Compounds within the Moss Polytrichum formosum (Polytrichaceae). Bot. Serbica 2023, 47, 125–133. [Google Scholar] [CrossRef]
- Bianchi, G.; Murelli, C.; Bochicchio, A.; Vazzana, C. Changes of Low Molecular Weight Substances in Boea hygroscopica in Response to Desiccation and Rehydration. Phytochemistry 1991, 30, 461–466. [Google Scholar] [CrossRef]
- Hoekstra, F.A.; van Roekel, T. Desiccation Tolerance of Papaver dubium During Its Development in the Anther. Possible Role of Phospholipid Composition and Sucrose Content. Plant Physiol. 1988, 88, 626–632. [Google Scholar] [CrossRef]
- Koster, L.L.; Leopold, A.C. Sugars and Desiccation Tolerance in Seeds. Plant Physiol. 1988, 88, 829–832. [Google Scholar] [CrossRef]
- Leprince, O.; Bronchart, R.; Deltour, R. Changes in Starch and Soluble Sugars in Relation to the Acquisition of Desiccation Tolerance During Maturation of Brassica campestris Seed. Plant Cell Environ. 1990, 13, 539–546. [Google Scholar] [CrossRef]
- Smirnoff, N. The Carbohydrates of Bryophytes in Relation to Desiccation Tolerance. J. Bryol. 1992, 17, 185–191. [Google Scholar] [CrossRef]
- Wettlaufer, S.H.; Leopold, A.C. Relevance of Amadori and Maillard Products to Seed Deterioration. Plant Physiol. 1991, 97, 165–169. [Google Scholar] [CrossRef]
- Bu, C.; Wang, C.; Yang, Y.; Zhang, L.; Bowker, M.A. Physiological Responses of Artificial Moss Biocrusts to Dehydration-Rehydration Process and Heat Stress on the Loess Plateau, China. J. Arid Land 2017, 9, 419–431. [Google Scholar] [CrossRef]
- Zaghloul, A.M.; Gohar, A.A.; Ahmad, M.M.; Baraka, H.N.; El-Bassuony, A.A. Phenylpropanoids from the stem bark of Jacaranda mimosaefolia. Nat. Prod. Res. 2011, 25, 68–76. [Google Scholar] [CrossRef]
- Sidjui, L.C.; Toghueo, R.M.K.; Zeuko’o, E.M.; Mbouna, C.D.J.; Mahiou-Leddet, V.; Herbette, G.; Folefoc, G.N. Antibacterial activity of the crude extracts, fractions and compounds from the stem barks of Jacaranda mimosifolia and Kigelia africana (Bignoniaceae). Pharmacologia 2016, 7, 22–31. [Google Scholar] [CrossRef]
- Gachet, M.S.; Schühly, W. Jacaranda—An ethnopharmacological and phytochemical review. J. Ethnopharm. 2009, 121, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Shoukry, S.M.; El-Hawiet, A.; El-Mezayen, N.S.; Ghazy, N.M.; Ibrahim, R.S. Unraveling putative antiulcer phytoconstituents against Helicobacter pylori urease and human H+/K+-ATPase from Jacaranda mimosifolia using UPLC-MS/MS coupled to chemometrics and molecular docking. Microchem. J. 2023, 189, 108550. [Google Scholar] [CrossRef]
- Commisso, M.; Guarino, F.; Marchi, L.; Muto, A.; Piro, A.; Degola, F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. Plants 2021, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Chemical Constituents of Bryophytes; Bio- and Chemical Diversity, Biological Activity, and Chemosystematics. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Kobayashi, J., Eds.; Springer: Vienna, Austria, 2013; pp. 1–796. [Google Scholar] [CrossRef]
- Asakawa, Y. Polyphenols in Bryophytes. In Recent Advances in Polyphenol Research; Yoshida, K., Cheynier, V., Quideau, S., Eds.; Wiley-Blackwell: Oxford, UK, 2017; Volume 5, pp. 36–66. [Google Scholar] [CrossRef]
- Patras, M.A.; Jaiswal, R.; McDougall, G.J.; Kuhnert, N. Profiling and quantification of regioisomeric caffeoyl glucoses in berry fruits. J. Agric. Food Chem. 2018, 66, 1096–1104. [Google Scholar] [CrossRef]
- Provenzano, F.; Sánchez, J.L.; Rao, E.; Santonocito, R.; Ditta, L.A.; Borrás Linares, I.; Passantino, R.; Campisi, P.; Dia, M.G.; Costa, M.A.; et al. Water Extract of Cryphaea heteromalla (Hedw.) D. Mohr Bryophyte as a Natural Powerful Source of Biologically Active Compounds. Int. J. Mol. Sci. 2019, 20, 5560. [Google Scholar] [CrossRef]
- Chao, C.Y.; Mong, M.C.; Chan, K.C.; Yin, M.C. Anti-Glycative and Anti-Inflammatory Effects of Caffeic Acid and Ellagic Acid in Kidney of Diabetic Mice. Mol. Nutr. Food Res. 2010, 54, 388–395. [Google Scholar] [CrossRef]
- Paciello, F.; Di Pino, A.; Rolesi, R.; Troiani, D.; Paludetti, G.; Grassi, C.; Fetoni, A.R. Anti-Oxidant and Anti-Inflammatory Effects of Caffeic Acid: In Vivo Evidences in a Model of Noise-Induced Hearing Loss. Food Chem. Toxicol. 2020, 143, 111555. [Google Scholar] [CrossRef]
- Muhammad Abdul Kadar, N.N.; Ahmad, F.; Teoh, S.L.; Yahaya, M.F. Caffeic Acid on Metabolic Syndrome: A Review. Molecules 2021, 26, 5490. [Google Scholar] [CrossRef]
- Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021, 13, 554. [Google Scholar] [CrossRef]
- Gao, J.; Xiong, K.; Li, W.; Zhou, W. Differential Metabolome Landscape of Kadsura coccinea Fruit Tissues and Potential Valorization of the Peel and Seed Tissues. Biocell 2022, 46, 285. [Google Scholar] [CrossRef]
- Isla, M.I.; Moreno, M.A.; Álvarez, M.; Zampini, I.C. Zuccagnia punctata Cav. In Medicinal and Aromatic Plants of South America Volume 2: Argentina, Chile and Uruguay; Máthé, Á., Bandoni, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 537–551. ISBN 978-3-030-62817-8. [Google Scholar]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.-E.; Omari, N.E.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef] [PubMed]
- Benali, T.; Jaouadi, I.; Ghchime, R.; El Omari, N.; Harboul, K.; Hammani, K.; Rebezov, M.; Shariati, M.A.; Mubarak, M.S.; Simal-Gandara, J.; et al. The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants 2022, 11, 1842. [Google Scholar] [CrossRef] [PubMed]
- Majma Sanaye, P.; Mojaveri, M.R.; Ahmadian, R.; Sabet Jahromi, M.; Bahramsoltani, R. Apigenin and Its Dermatological Applications: A Comprehensive Review. Phytochemistry 2022, 203, 113390. [Google Scholar] [CrossRef]
- Kumar, S.; Madaan, R.; Gahlot, K.; Sharma, A. The Genus Bryonia: A Review. Pharmacogn. Rev. 2008, 2, 392. [Google Scholar]
- Kim, H.J.; Kim, P.; Shin, C.Y. A Comprehensive Review of the Therapeutic and Pharmacological Effects of Ginseng and Ginsenosides in the Central Nervous System. J. Ginseng Res. 2013, 37, 8. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, T.; Xue, M.; Chen, J.; Feng, L.; Du, R.; Feng, Y. Current Knowledge and Development of Hederagenin as a Promising Medicinal Agent: A Comprehensive Review. RSC Adv. 2018, 8, 24188–24202. [Google Scholar] [CrossRef]
- Hussain, H.; Ali, I.; Wang, D.; Hakkim, F.L.; Westermann, B.; Ahmed, I.; Shah, S.T.A. Glycyrrhetinic Acid: A Promising Scaffold for the Discovery of Anticancer Agents. Expert Opin. Drug Discov. 2021, 16, 1497–1516. [Google Scholar] [CrossRef]
- Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022, 14, 623. [Google Scholar] [CrossRef]
- Aghofack-Nguemezi, J.; Schwab, W. Spatiotemporal Changes in the Content and Metabolism of 9, 12, 13-Trihydroxy-10 (E)-Octadecenoic Acid in Tomato (Solanum Lycopersicum L. CV Balkonsar) Fruits. J. Sci. Technol. 2013, 33, 12–22. [Google Scholar] [CrossRef]
- Sowa, I.; Paduch, R.; Mołdoch, J.; Szczepanek, D.; Szkutnik, J.; Sowa, P.; Wójciak, M. Antioxidant and Cytotoxic Potential of Carlina vulgaris Extract and Bioactivity-Guided Isolation of Cytotoxic Components. Antioxidants 2023, 12, 1704. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Arai, Y.; Emori, M.; Nunome, S.Y.; Yabe, T.; Takeda, T.; Yamada, H. Anti-Allergic Activity of a Kampo (Japanese Herbal) Medicine Sho-seiryu-to (Xiao-Qing-Long-Tang) on Airway Inflammation in a Mouse Model. Int. Immunopharmacol. 2004, 4, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Park, Y.M.; Lu, Y.; Chang, H.W.; Na, M.; Lee, S.H. Inhibition of Prostaglandin D2 Production by Trihydroxy Fatty Acids Isolated from Ulmus davidiana var. japonica. Phytother. Res. 2013, 27, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.C.; Choi, H.S.; Kim, J.H.; Kim, S.L.; Yun, B.S.; Lee, D.S. Coriolic Acid (13-(S)-Hydroxy-9Z, 11E-octadecadienoic Acid) from Glasswort (Salicornia herbacea L.) Suppresses Breast Cancer Stem Cell through the Regulation of c-Myc. Molecules 2020, 25, 4950. [Google Scholar] [CrossRef]
- Yokota, T.; Ohnishi, T.; Shibata, K.; Asahina, M.; Nomura, T.; Fujita, T.; Kohchi, T. Occurrence of Brassinosteroids in Non-Flowering Land Plants, Liverwort, Moss, Lycophyte and Fern. Phytochemistry 2017, 136, 46–55. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yun, H.S.; Kim, T.W.; Joo, S.H.; Kim, S.K. Identification of a Brassinosteroid, Castasterone from Marchantia polymorpha. Bull. Korean Chem. Soc. 2002, 23, 941–942. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and Radical Scavenging Properties of Curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Oyedapo, O.O.; Makinde, A.M.; Ilesanmi, G.M.; Abimbola, E.O.; Akinwunmi, K.F.; Akinpelu, B.A. Biological Activities (Anti-Inflammatory and Anti-Oxidant) of Fractions and Methanolic Extract of Philonotis hastate (Duby Wijk & Margadant). Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 50–55. [Google Scholar] [CrossRef]
- Chobot, V.; Kubicová, L.; Nabbout, S.; Jahodár, L.; Vytlacilová, J. Antioxidant and Free Radical Scavenging Activities of Five Moss Species. Fitoterapia 2006, 77, 598–600. [Google Scholar] [CrossRef]
- Mohandas, G.G.; Kumaraswamy, M. Antioxidant Activities of Terpenoids from Thuidium tamariscellum (C. Muell.) Bosch and Sande-Lac., a Moss. Pharmacogn. J. 2018, 10, 645–649. [Google Scholar] [CrossRef]
- Barrera, G.; Pizzimenti, S.; Dianzani, M.U. Lipid Peroxidation: Control of Cell Proliferation, Cell Differentiation, and Cell Death. Mol. Asp. Med. 2008, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dawé, A.; Mbiantcha, M.; Yakai, F.; Jabeen, A.; Ali, M.S.; Lateef, M.; Ngadjui, B.T. Flavonoids and Triterpenes from Combretum fragrans with Anti-Inflammatory, Antioxidant and Antidiabetic Potential. Z. Nat.-Sect. C J. Biosci. 2018, 73, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health Functionality of Apigenin: A Review. Int. J. Food Prop. 2016, 20, 1197–1238. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A Current Review on Its Beneficial Biological Activities. J. Food Biochem. 2017, 41, e12376. [Google Scholar] [CrossRef]
- Mkhwanazi, B.N.; Serumula, M.R.; Myburg, R.B.; Van Heerden, F.R.; Musabayane, C.T. Antioxidant Effects of Maslinic Acid in Livers, Hearts and Kidneys of Streptozotocin-Induced Diabetic Rats: Effects on Kidney Function. Ren. Fail. 2014, 36, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Singh, N.; Singh, A.P.; Singh, A.P. Medicinal Uses of Maslinic Acid: A Review. J. Drug Deliv. Ther. 2021, 11, 237–240. [Google Scholar] [CrossRef]
- Rasigade, J.P.; Dumitrescu, O.; Lina, G. New epidemiology of Staphylococcus aureus infections. Clin. Microbiol. Infect. 2014, 20, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Sevim, E.; Baş, Y.; Çelik, G.; Pınarbaş, M.; Bozdeveci, A.; Özdemir, T.; Akpınar, R.; Yaylı, N.; Alpay Karaoğlu, S. Antibacterial Activity of Bryophyte Species Against Paenibacillus larvae Isolates. Turk. J. Vet. Anim. Sci. 2017, 41, 521–531. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Elibo, B.; Ezer, T.; Kara, R.; Çelik, G.Y.; Çolak, E. Antifungal and Antibacterial Effects of Some Acrocarpic Mosses. Afr. J. Biotechnol. 2011, 10, 986–989. [Google Scholar]
- Karpiński, T.M.; Adamczak, A. Antibacterial Activity of Ethanolic Extracts of Some Moss Species. Herba Pol. 2017, 63, 169–176. [Google Scholar] [CrossRef]
- Peters, K.; Treutler, H.; Döll, S.; Kindt, A.S.; Hankemeier, T.; Neumann, S. Chemical Diversity and Classification of Secondary Metabolites in Nine Bryophyte Species. Metabolites 2019, 9, 222. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Suire, C.; Toyota, M.; Tokunaga, N.; Takemoto, T.; Hattori, S.; Mizutani, M. Chemosystematics of Bryophytes V. The Distribution of Terpenoids and Aromatic Compounds in European and Japanese Hepaticae. J. Hattori Bot. Lab. 1980, 48, 285–303. [Google Scholar]
- Pappano, N.B.; Puig de Centorbi, O.; Debattista, N.B.; Calleri de Milan, M.C.; Borkowski, E.J.; Ferretti, F.H. Cinética de la Acción Bacteriostática de Chalconas Naturales y de Síntesis Sobre una Cepa de Staphylococcus aureus. Rev. Argent. Microbiol. 1985, 17, 27–32. [Google Scholar]
- Olivella, M.S.; Zarelli, V.E.P.; Pappano, N.B.; Debattista, N.B. A Comparative Study of Bacteriostatic Activity of Synthetic Hydroxylated Flavonoids. Braz. J. Microbiol. 2001, 32, 229–232. [Google Scholar] [CrossRef]
- Nuño, G.; Alberto, M.R.; Arena, M.E.; Zampini, I.C.; Isla, M.I. Effect of Zuccagnia punctata Cav. (Fabaceae) extract on pro-inflammatory enzymes and on planktonic cells and biofilm from Staphylococcus aureus. Toxicity studies. Saudi J. Biol. Sci. 2018, 25, 1713–1719. [Google Scholar] [CrossRef]
- Miski, M.; Ulubelen, A.; Johansson, C.; Mabry, T.J. Antibacterial Activity Studies of Flavonoids from Salvia palaestina. J. Nat. Prod. 1983, 46, 874–875. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Yuan, M.; Zhou, J.; Tu, Q.; Liu, J.J.; Wang, J. Synthesis and Biological Evaluation of Apigenin Derivatives as Antibacterial and Antiproliferative Agents. Molecules 2013, 18, 11496–11511. [Google Scholar] [CrossRef]
- Zander, R.H. Genera of the Pottiaceae: Mosses of Harsh Environments. Bull. Buff. Soc. Nat. Sci. 1993, 32, 1–378. [Google Scholar]
- Singleton, A.V. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1994, 153, 375–380. [Google Scholar] [CrossRef]
- Somogyi, M. A New Reagent for the Determination of Sugar. J. Biol. Chem. 1945, 160, 61–68. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Correa Uriburu, F.M.; Zampini, I.C.; Maldonado, L.M.; Gómez Mattson, M.; Salvatori, D.; Isla, M.I. Chemical Characterization and Biological Activities of a Beverage of Zuccagnia punctata, an Endemic Plant of Argentina with Blueberry Juice and Lemon Honey. Plants 2024, 13, 3143. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized Enzymatic Colorimetric Assay for Determination of Hydrogen Peroxide (H2O2) Scavenging Activity of Plant Extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Zampini, I.C.; Torres, S.; Alberto, M.R.; Ramos, L.L.P.; Schmeda-Hirschmann, G.; Isla, M.I. Chemical and Functional Characterization of Skin, Pulp, and Seed Powder from the Argentine Native Fruit Mistol (Ziziphus mistol). Effects of Phenolic Fractions on Key Enzymes Involved in Metabolic Syndrome and Oxidative Stress. J. Funct. Foods 2017, 37, 531–540. [Google Scholar] [CrossRef]
- Chobot, V. Simultaneous Detection of Pro- and Antioxidative Effects in the Variants of the Deoxyribose Degradation Assay. J. Agric. Food Chem. 2010, 58, 2088–2094. [Google Scholar] [CrossRef]
- M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard—Tenth Edition Document; Clinical Laboratory Standards Institute (CLSI): Wayne, NJ, USA, 2015.
- Zampini, I.C.; Cuello, S.; Alberto, M.R.; Ordoñez, R.M.; D’Almeida, R.; Solorzano, E.; Isla, M.I. Antimicrobial Activity of Selected Plant Species from “The Argentine Puna” Against Sensitive and Multi-Resistant Bacteria. J. Ethnopharmacol. 2009, 30, 499–505. [Google Scholar] [CrossRef]
- Leal, M.; Mercado, M.I.; Moreno, M.A.; Martínez Chamas, J.J.; Zampini, I.C.; Ponessa, G.I.; Simirgiotis, M.J.; Isla, M.I. Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn.: A Plant with Medicinal Value against Inflammatory Disorders and Infections. Heliyon 2023, 9, e15276. [Google Scholar] [CrossRef] [PubMed]
- Labena, A.; Hegazy, M.A.; Sami, R.M.; Hozzein, W.N. Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Available online: https://www.infostat.com.ar/ (accessed on 12 December 2022).
Peak | Tentative Identification | [M − H]− | Retention Time (min.) | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (ppm) | Metabolite Type | MS Ions (ppm) |
---|---|---|---|---|---|---|---|---|
1 | Na formiate (internal standard) | C4H2O4 | 0.37 | 112.9829 | 112.9856 | 3.1 | Standard | |
2 | Melibiose | C12H21O11 | 0.77 | 341.10894 | 341.10893 | −0.0 | Sugar | 991.9541, 290.08844, 133.01217 |
3 | L-glutamic acid | C5H9NO4 | 1.12 | 146.04597 | 146.05394 | 0.57 | Aminoacid | 998.9541 |
4 | Salicylic acid | C7H6O3 | 6.45 | 137.02442 | 137.02441 | 0.0 | Phenolic acid | 998.9541 |
5 | Pinellic acid | C18H33O5 | 7.62 | 329.23335 | 329.23252 | −2.50 | Fatty acids | 237.05534 |
6 | 2’,4’-Dihydroxychalcone | C15H11O3 | 8.51 | 239.07137 | 239.07021 | −4.85 | Chalcone | 180.9677 |
7 | Caffeoyl -D-Glucose | C15H18O9 | 9.68 | 341.1030 | 341.1041 | −6.9 | Phenolic acid | 191.0513 |
8 | 2’,3’-Dihydroxychalcone | C15H11O3 | 10.01 | 239.07137 | 239.07011 | −5.27 | Chalcone | 296.04122, 179.0316 |
9 | Zinniol | C15H22O4 | 10.22 | 265.14763 | 265.14763 | 11.68 | Methoxybencene | 150.05522 |
10 | 9,10-Dihydroxy-12-octadecenoic acid | C18H33O4 | 10.73 | 313.23906 | 313.23805 | 0.22 | Fatty acid | 150.05522 |
11 | Kallolide B | C13H27O8 | 11.05 | 311.17114 | 311.16930 | −5.91 | Pseudopterane diterpenoid | 270.21780 |
12 | Hederagenin | C30H47O4 | 11.55 | 471.24798 | 471.35001 | 4.29 | Triterpenoid | 293.21130 |
13 | Asiatic acid | C30H47O5 | 11.72 | 487.34290 | 487.34202 | −1.82 | Triterpene | 291.19983, 267.20309 |
14 | Coriolic acid | C18H31O3 | 12.05 | 295.22787 | 295.22747 | −1.36 | Fatty acid | 269.21455 |
15 | Gypsogenin | C30H45O4 | 12.18 | 469.33233 | 469.33334 | −14.4 | Triterpenoid | 339.20057 |
16 | Maslinic acid | C30H47O4 | 12.45 | 471.34798 | 471.34846 | 1.00 | Triterpenoid | 339.20042, 297.24288 |
17 | Piperochromenoic acid | C22H27O3 | 12.58 | 339.17993 | 339.20244 | −7.97 | Chromene | 319.22666, 297.24435 |
18 | Piperochromenoic acid derivative | C23H29O3 | 13.23 | 353.21222 | 353.21538 | 8.94 | Chromene | 299.20221, 136.98970 |
19 | 5 Alpha-spirostan-3,6 -diol, 6-O-Glucoside | C34H57O9 | 13.31 | 609.40557 | 609.40081 | 7.82 | Spirostanol | 589.24615 |
20 | Kadangustin C | C34H37O11 | 13.55 | 621.24001 | 621.23826 | 7.82 | Lignans | 476.34991, 539.24991 |
21 | Mogroside I-A-1 | C36H61O9 | 14.21 | 637.43211 | 637.42216 | −15.61 | Triterpene | 606.24214, 499.33086 |
22 | Recurvoside A | C35H59O9 | 14.34 | 623.41646 | 623.41588 | −0.92 | Triterpene | 473.32190 |
23 | Oleanolic acid | C30H47O3 | 14.72 | 455.35307 | 455.35473 | 3.64 | Triterpene | 339.25154 |
24 | Bryonioside A | C36H59O9 | 15.15 | 635.41646 | 635.42096 | 7.08 | Cucurbitane | 621.40445, 602.40931, 279.23243 |
25 | (R)-2-Hydroxystearic acid | C16H31O2 | 15.62 | 299.26188 | 299.26182 | 1.24 | Fatty acid | 169.04162 |
26 | Palmitic acid | C16H31O2 | 16.02 | 255.23295 | 255.23207 | −3.48 | Fatty acid | 169.04162 |
27 | Cirsimaritin | C17H13O6 | 15.87 | 313.0717 | 313.0662 | 7.8 | Flavonoid | 271.0798, 627.14120 (2M-H)-270.0795 |
28 | 6-Deoxocastasterone | C28H47O4 | 16.13 | 447.34798 | 447.34829 | 0.68 | Brassinosteroid | 307.13505 |
29 | Apigenin | C15H10O5 | 16.45 | 269.04568 | 269.04554 | 0.48 | Flavonoid | 179.0318 |
30 | Dictamnin A | C36H59O8 | 17.17 | 619.42165 | 619.42155 | 1.62 | Alkaloid | 577.43479 |
31 | Chrysoeriol | C16H12O6 | 17.26 | 299.0502 | 299.0520 | 4.2 | Flavonoid | 271.0550 |
32 | Homocastasterone | C29H49O5 | 17.52 | 477.35855 | 477.35693 | −3.39 | Brassinosteroid | 455.01804 |
33 | Panaxynol linoleate | C35H53O2 | 18.75 | 505.39753 | 505.40510 | −14.98 | Triterpene | 414.99256 |
TPC | TF | ABTS•+ | H2O2 | HO• | AAPH | |
---|---|---|---|---|---|---|
TPC | 1.00 | 0.20 | 0.30 | 0.11 | 0.23 | 0.07 |
TF | 0.95 | 1.00 | 0.09 | 0.09 | 0.03 | 0.13 |
ABTS•+ | 0.89 | 0.99 | 1.00 | 0.18 | 0.06 | 0.23 |
H2O2 | 0.98 | 0.99 | 0.96 | 1.00 | 0.12 | 0.04 |
HO• | 0.93 | 1.00 | 1.00 | 0.98 | 1.00 | 0.17 |
AAPH | 0.99 | 0.98 | 0.94 | 1.00 | 0.97 | 1.00 |
S. aureus Strain | MIC µg/mL | Phenotype of S. aureus (MIC μg/mL) |
---|---|---|
INBIOFIV-S1 | 3.7 | LEVS (CIM ≤ 1), METR, (CIM ≥ 4), GENR (CIM ≥ 16) |
(CIM ≥ 16)INBIOFIV-S9 | 3.7 | LEVR, (CIM ≥ 4), METR (CIM ≥ 4), GENR, (CIM ≥ 16) |
ATCC 43300 | 7.5 | METR (CIM ≥ 4) |
ATCC 29213 | 7.5 | METS (CIM = 0.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, L.I.; Correa Uriburu, F.M.; Martínez Chamás, J.J.; Suárez, G.M.; Zampini, I.C.; Simirgiotis, M.J.; Isla, M.I. Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials. Plants 2025, 14, 253. https://doi.org/10.3390/plants14020253
Jiménez LI, Correa Uriburu FM, Martínez Chamás JJ, Suárez GM, Zampini IC, Simirgiotis MJ, Isla MI. Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials. Plants. 2025; 14(2):253. https://doi.org/10.3390/plants14020253
Chicago/Turabian StyleJiménez, Luis Ignacio, Florencia Maria Correa Uriburu, José Javier Martínez Chamás, Guillermo Martin Suárez, Iris Catiana Zampini, Mario J. Simirgiotis, and María Inés Isla. 2025. "Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials" Plants 14, no. 2: 253. https://doi.org/10.3390/plants14020253
APA StyleJiménez, L. I., Correa Uriburu, F. M., Martínez Chamás, J. J., Suárez, G. M., Zampini, I. C., Simirgiotis, M. J., & Isla, M. I. (2025). Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials. Plants, 14(2), 253. https://doi.org/10.3390/plants14020253