Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling
<p>Evaluation metrics of MaxEnt model generated by ENMeval.</p> "> Figure 2
<p>ROC curve for <span class="html-italic">Nitraria</span> L. using the MaxEnt model.</p> "> Figure 3
<p>The effect of environmental variables on the distribution of <span class="html-italic">Nitraria</span> L. plants was evaluated by the knife-cutting method.</p> "> Figure 4
<p>Response curves for key environmental predictors in the species distribution model for <span class="html-italic">Nitraria</span> L. (The red line represents the average value of all candidate models, and the blue range indicates the standard deviation, the same below).</p> "> Figure 5
<p>Maps of current potential habitat of <span class="html-italic">Nitraria</span> L. across the world.</p> "> Figure 6
<p>Future species distribution models (SDMs) of <span class="html-italic">Nitraria</span> L. under four climate change scenarios.</p> "> Figure 7
<p>Distribution changes in the future climate scenario of <span class="html-italic">Nitraria</span> L. compared to the current. Red means range shrinkage, orange means range unchanged, and yellow means range expansion.</p> "> Figure 8
<p>The core distributional shifts under different climate scenario/year for <span class="html-italic">Nitraria</span> L.</p> "> Figure 9
<p>Distribution of potential suitable areas in the current protection area of <span class="html-italic">Nitraria</span> L.</p> "> Figure 10
<p>Locations of 3307 distribution points of <span class="html-italic">Nitraria</span> L. across the world.</p> "> Figure 11
<p>Heat map of correlation between 29 environmental variables.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Result and Analysis
2.1.1. Model Optimization and Accuracy Evaluation Results
2.1.2. Important Environmental Variables Preference
2.1.3. Potential Distribution Areas Under Current Climate
2.1.4. Changes in the Suitable Habitat Areas of Nitraria L. in the Future
2.1.5. The Spatial Shift in Potential Habitats Centroid in the Future
2.1.6. Conservation Status of Nitraria L.
3. Discussion
3.1. The Influence of Environmental of Nitraria L.
3.2. Changes in the Geographic Distribution of Nitraria L. Under Diferent Climate-Change Scenarios
3.3. Conservation Strategies and Recommendations
4. Materials and Methods
4.1. Data Collection
4.1.1. Occurrence Data
4.1.2. Predictor Variables
4.2. Data Processing and Selection
4.2.1. Bioclimatic Variables Screening
4.2.2. MaxEnt Model Optimization
4.2.3. Species Distribution Model Parameter Setting
4.2.4. Prediction of Potential Suitable Habitats
4.2.5. Changes in the Area and Shifts in the Distribution Center of Suitable Habitats
4.2.6. World Protected Area Data Acquisition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges—ScienceDirect. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Cannell, M.; Grace, J.; Booth, A. Possible impacts of climatic warming on trees and forests in the United Kingdom: A review. For. Int. J. For. Res. 1989, 62, 337–364. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, S.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.; Scheel Monteiro, P.M. IPCC, 2021: Summary for policymakers. In Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Kosanic, A.; Anderson, K.; Harrison, S.; Turkington, T.; Bennie, J. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS ONE 2018, 13, e0191021. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Huang, T.; Zhang, H.; Yue, J.; Zhao, B. Prediction of Potential Distribution Patterns of Three Larix Species on Qinghai-Tibet Plateau under Future Climate Scenarios. Forests 2023, 14, 1058. [Google Scholar] [CrossRef]
- Lu, K.; He, Y.-M.; Mao, W.; Zy, D.; Wang, L.-J.; Liu, G.-M.; Feng, W.-J.; Duan, Y.-Z. Potential geographical distribution and changes of Artemisia ordosica in China under future climate change. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2020, 31, 3758–3766. [Google Scholar]
- Sun Lei, S.L.; Ding ChunRui, D.C. Nutritional components of Amygdalus communis L. and Amygdalus communis L. kernel oil in Xinjiang. China Oils and Fats 2018, 43, 87–89. [Google Scholar]
- Qiu, H.-J.; Sun, J.-J.; Xu, D.; Shen, A.-H.; Jiang, B.; Yuan, W.-G.; Li, S. Maxent model-based prediction of potential distribution of Liriodendron chinense in China. J. Zhejiang A F Univ. 2020, 10, e81073. [Google Scholar]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef]
- Wang, G.; Gen, Q.; Xiao, M.; Zhang, M.; Zhang, Y.; Wang, Z. Predicting Pseudolarix amabilis potential habitat based on four Niche models. Acta Ecol. Sin. 2020, 40, 6096–6104. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Hastie, T.J. Generalized additive models. In Statistical Models in S; Routledge: Oxfordshire, UK, 2017; pp. 249–307. [Google Scholar]
- Su, H.; Bista, M.; Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 2021, 11, 14135. [Google Scholar] [CrossRef] [PubMed]
- Data, C. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorol. Organ. 2009, 1500, 72. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Lemmen, C.; Van Oosterom, P.; Bennett, R. The land administration domain model. Land Use Policy 2015, 49, 535–545. [Google Scholar] [CrossRef]
- Lu, K.; Liu, M.; Hu, K.; Liu, Y.; He, Y.; Bai, H.; Du, Z.; Duan, Y. Potential Global Distribution and Habitat Shift of Prunus subg. Amygdalus Under Current and Future Climate Change. Forests 2024, 15, 1848. [Google Scholar]
- Du, Z.; He, Y.; Wang, H.; Wang, C.; Duan, Y. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. Chin. J. Biotechnol. 2021, 184, 104328. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, G.; Shading, P.; Wang, X.; Jiang, H. Early Iron-Age ornaments of the Yanghai people in Xinjiang, China: A necklace made of drupes from Nitraria tangutorum (Zygophyllaceae). J. Archaeol. Sci. Rep. 2022, 44, 103526. [Google Scholar] [CrossRef]
- Chang, Y.; Lv, G. Dynamic change mechanism of the desert plant Nitraria sibirica growth in natural habitat. Ecol. Indic. 2023, 154, 110695. [Google Scholar] [CrossRef]
- Pan, X.-Y.; Yu, Q.-S.; Wang, G.-X. Polyploidy: Classification, Evolution and Applied Perspective of the Genus Nitraria L. Chin. Bull. Bot. 2003, 20, 632. [Google Scholar]
- Chen, S.; Zhou, H.; Zhang, G.; Dong, Q.; Wang, Z.; Wang, H.; Hu, N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem. 2021, 353, 129435. [Google Scholar] [CrossRef]
- Chaâbane, M.; Koubaa, M.; Soudani, N.; Elwej, A.; Grati, M.; Jamoussi, K.; Boudawara, T.; Ellouze Chaabouni, S.; Zeghal, N. Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes. Pharm. Biol. 2017, 55, 1061–1073. [Google Scholar] [CrossRef]
- Jin, D.; Ronghan, Z.; Shouxun, Z.; Mingshi, W.; Zhentao, C. The chemical constituents of flavonoids and phenolic acid compounds of leaves from Nitraria tangutorum Bor. in China. J. Plant Resour. Environ. Int. 1999, 8, 6–9. [Google Scholar]
- Su, Z.; Zhang, M. Evolutionary response to Quaternary climate aridification and oscillations in north-western China revealed by chloroplast phylogeography of the desert shrub Nitraria sphaerocarpa (Nitrariaceae). Biol. J. Linn. Soc. 2013, 109, 757–770. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Shi, Y.; Qian, C.; Zhou, H.; Wang, W.; Ma, X.-F.; Tran, L.-S.P.; Zhang, B. The East Asian winter monsoon acts as a major selective factor in the intraspecific differentiation of drought-tolerant Nitraria tangutorum in northwest China. Plants 2020, 9, 1100. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, W.-Z.; Luo, W.-C.; Liu, B. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum in the Desert Steppes of China. Ecol. Res. 2015, 30, 735–744. [Google Scholar] [CrossRef]
- Duan, Y.; Zhu, G.; Du, Z.; Li, Y.; Lu, K.; Shi, J. Simulation and analysis of the suitable environment for Nitraria L. in the arid area of Northwest China. J. Arid. Land Resour. Environ. 2021, 35, 124–129. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Deng, Z.; Xia, X.; Zhang, M.; Chen, X.; Ding, X.; Zhang, B.; Deng, G.; Yang, D. Predicting the Spatial Distribution of the Mangshan Pit Viper (Protobothrops mangshanensis) under Climate Change Scenarios Using MaxEnt Modeling. Forests 2024, 15, 723. [Google Scholar] [CrossRef]
- Pan, J.; Fan, X.; Luo, S.; Zhang, Y.; Qian, Z. Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests 2020, 11, 1159. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Q.; Jin, H.; Fan, B.; Wang, D.; Lin, H. Change in characteristics of soil carbon and nitrogen during the succession of Nitraria Tangutorum in an arid desert area. Sustainability 2019, 11, 1146. [Google Scholar] [CrossRef]
- Du, J.; Yan, P.; Dong, Y. Phenological response of Nitraria tangutorum to climate change in Minqin County, Gansu Province, northwest China. Int. J. Biometeorol. 2010, 54, 583–593. [Google Scholar] [CrossRef]
- Zhang, J.M.; Song, M.; Li, Z.J.; Peng, X.; Su, S.; Li, B.; Xu, X.Q.; Wang, W. Effects of Climate Change on the Distribution of Akebia quinata. Front. Ecol. Evol. 2021, 9, 752682. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Teixeira da Silva, J.A. Antibacterial, antioxidant, antifungal and anti-inflammatory activities of crude extract from Nitraria schoberi fruits. Biotech 2015, 5, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, X.; Wu, H.; Wang, P.; Wang, Y.; Wu, X.; Li, W.; Huang, Y. Differences in water-use strategies along an aridity gradient between two coexisting desert shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic approaches with physiological evidence. Plant Soil 2017, 419, 169–187. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.P.; Zhang, Q.; Zhang, D.F.; Liu, X. Prediction for the potential distribution area of Codonopsis pilosula at global scale based on Maxent model. J. Appl. Ecol. 2017, 28, 992–1000. [Google Scholar]
- Zhen, J.H. Change of landscape pattern and its impact in the distribution region of Tetraena mongolica Maxim. Appl. Mech. Mater. 2012, 229, 2694–2697. [Google Scholar] [CrossRef]
- Xu, D.; Yu, X.; Chen, J.; Liu, H.; Zheng, Y.; Qu, H.; Bao, Y. Arbuscular Mycorrhizae Fungi Diversity in the Root–Rhizosphere–Soil of Tetraena mongolica, Sarcozygium xanthoxylon, and Nitraria tangutorum Bobr in Western Ordos, China. Agronomy 2023, 13, 1485. [Google Scholar] [CrossRef]
- Kumar, S.; Stohlgren, T. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [Google Scholar]
- He, Y.; Ma, J.; Chen, G. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid. Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Ma, H.; Mo, L.; Crowther, T.W.; Maynard, D.S.; van den Hoogen, J.; Stocker, B.D.; Terrer, C.; Zohner, C.M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 2021, 5, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Li, C.; Yan, C. Characteristics of soil evaporation, plant transpiration and water budget of Nitraria dune in the arid Northwest China. Agric. For. Meteorol. 2015, 203, 107–117. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Li, C.; Li, Y. A systematic review on the morphology structure, propagation characteristics, resistance physiology and exploitation and utilization of Nitraria tangutorum Bobrov. PeerJ 2024, 12, e17830. [Google Scholar] [CrossRef]
- Voronkova, M.; Banaev, E.; Tomoshevich, M.; Taigana, A.-L. Possibilities of using the HPLC method in the taxonomy of the genus Nitraria (Nitrariaceae). BIO Web Conf. 2020, 24, 00096. [Google Scholar] [CrossRef]
- Tomoshevich, M.A.; Banaev, E.V.; Ak-Lama, T.A. Nitraria komarovii Iljin & Lava ex Bobrov (Nitrariaceae), a new record for the flora of Kazakhstan. Check List. 2019, 15, 891–897. [Google Scholar]
- Wang, X.; Zhang, R.; Wang, J.; Di, L.; Sikdar, A. The Effects of Leaf Extracts of Four Tree Species on Amygdalus pedunculata Seedlings Growth. Front. Plant Sci. 2021, 11, 587579. [Google Scholar] [CrossRef]
- Zhao, X.; Lei, M.; Wei, C.; Guo, X. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model. Sci. Total Environ. 2022, 852, 158202. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Longzhu, D.; Lu, X.; Songzha, C.; Miao, Q.; Sun, F.; Suonan, J. Habitat suitability of Corydalis based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 10345–10362. [Google Scholar]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.-F.; Momohara, A.; Herrando-Moraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018, 9, 4488. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kass, J.; Muscarella, R.; Galante, P.; Bohl, C.; Pinilla-Buitrago, G.; Boria, R.; Soley-Guardia, M.; Anderson, R.; Galante, P.; Maitner, B. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2023; pp. 3–32. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.F.; You, X.Y. An innovative approach to identify environmental variables with conservation priorities in habitat patches. J. Environ. Manag. 2021, 292, 112788. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Bai, J.; Wang, H.; Hu, Y. Prediction of Potential Suitable Distribution of Liriodendron chinense (Hemsl.) Sarg. in China Based on Future Climate Change Using the Optimized MaxEnt Model. Forests 2024, 15, 988. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Coad, L.; Leverington, F.; Knights, K.; Geldmann, J.; Eassom, A.; Kapos, V.; Kingston, N.; de Lima, M.; Zamora, C.; Cuardros, I. Measuring impact of protected area management interventions: Current and future use of the Global Database of Protected Area Management Effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140281. [Google Scholar] [CrossRef]
Models | SP_0 | SP_1 | SP_2 | SP_3 | SP_4 | SP_5 | SP_6 | SP_7 | SP_8 | SP_9 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
TSS | 0.906 | 0.920 | 0.917 | 0.915 | 0.920 | 0.905 | 0.911 | 0.911 | 0.914 | 0.912 | 0.913 |
Environment Variable. | Description | Unit | Contribution (%) | Importance (%) | Total Suitable Range |
---|---|---|---|---|---|
Bio1 | Annual Mean Temperature | °C | 1.80 | 4.00 | −24.10–30.58 |
Bio2 | Mean diurnal temperature range | °C | 2.60 | 1.60 | 1.00–20.62 |
Bio3 | Isothermality (Bio2/Bio7) (×100) | - | 1.20 | 1.10 | 0.37–100.00 |
Bio4 | Seasonal variation coefficient of temperature (standard deviation × 100) | - | 1.30 | 0.70 | 0.00–2350.52 |
Bio5 | Max Temperature of Warmest Month | × | × | × | |
Bio6 | Min Temperature of Coldest Month | °C | 0.50 | 1.60 | −40.03–23.53 |
Bio7 | Temperature Annual Range | °C | × | × | × |
Bio8 | Mean temperature of the wettest quarter | °C | × | × | × |
Bio9 | Mean Temperature of Driest Quarter | °C | × | × | × |
Bio10 | Mean Temperature of Warmest Quarter | °C | × | × | × |
Bio11 | Mean Temperature of Coldest Quarter | °C | × | × | × |
Bio12 | Annual Precipitation | mm | 4.10 | 30.10 | 0.00–6964.00 |
Bio13 | Precipitation of Wettest Month | mm | × | × | × |
Bio14 | Precipitation of Driest Month | mm | × | × | × |
Bio15 | Precipitation Seasonality | mm | × | × | × |
Bio16 | Precipitation of Wettest Quarter | mm | × | × | × |
Bio17 | Precipitation of the Driest Quarter | mm | × | × | × |
Bio18 | Precipitation of Warmest Quarter | mm | 8.30 | 3.10 | 0.00–4443.00 |
Bio19 | Precipitation of Coldest Quarter | mm | × | × | × |
SC | Soil Organic Carbon | g/kg | 0.50 | 0.30 | 0.00–47.24 |
SpH | Soil pH | - | 3.30 | 0.10 | 3.00–10.60 |
ST | Soil Texture | - | 0.10 | 0.10 | 0.00–3.00 |
UVB1 | Annual Mean UV-B | J/m2/day | × | × | × |
UVB2 | UV-B Seasonality | J/m2/day | 54.40 | 4.10 | 26,212.04–307,841.00 |
UVB3 | Mean UV-B of lightest Month | J/m2/day | × | × | × |
UVB4 | Mean UV-B of Lowest Month | J/m2/day | 11.10 | 45.10 | 1.83–6998.04 |
DEM | Digital Elevation Model | m | 7.40 | 8.30 | −406.00–5867.00 |
Aspect | Aspect | - | × | × | × |
Slope | Slope | ° | 3.30 | 0.00 | 0.00–47.24 |
Species | Period | Poorly Suitable Area | Moderately Suitable Area | Highly Suitable Area | Total Suitable Area | |
---|---|---|---|---|---|---|
Area of each suitable area × 106 km2 (change in the area compared to current) | ||||||
Nitraria L. | Current | - | 20.67 | 10.92 | 4.34 | 35.93 |
SSP1.26 | 2030 | 20.26 (−1.98%) | 11.15 (2.09%) | 4.83 (11.29%) | 36.24 (0.86%) | |
2050 | 20.26 (−1.98%) | 11.11 (1.76%) | 4.40 (1.31%) | 35.77 (−0.45%) | ||
2070 | 20.39 (−1.38%) | 10.89 (−0.27%) | 4.20 (−3.11%) | 35.48 (−1.25%) | ||
2090 | 21.00 (−10.18%) | 10.42 (6.24%) | 4.47 (6.31%) | 35.89 (−0.11%) | ||
SSP2.45 | 2030 | 20.90 (1.13%) | 11.12 (1.84%) | 4.44 (2.30%) | 36.46 (1.48%) | |
2050 | 19.53 (−5.51%) | 10.13 (−7.21%) | 4.33 (−0.11%) | 33.99 (−5.40%) | ||
2070 | 18.18 (−12.03%) | 8.76 (−19.75%) | 4.00 (−7.88%) | 30.94 (−13.89%) | ||
2090 | 20.41 (−1.28%) | 10.76 (−1.40%) | 4.48 (3.22%) | 35.65 (−0.78%) | ||
SSP3.70 | 2030 | 21.39 (3.46%) | 10.54 (−3.47%) | 4.55 (4.94%) | 36.48 (1.53%) | |
2050 | 21.22 (2.66%) | 10.43 (−4.44%) | 4.44 (2.32%) | 36.09 (0.45%) | ||
2070 | 20.24 (−2.07%) | 11.15 (2.12%) | 3.97 (−8.53%) | 35.36 (−1.58%) | ||
2090 | 20.65 (−0.10%) | 10.57 (−3.14%) | 4.31 (−0.57%) | 35.53 (−1.11%) | ||
SSP5.85 | 2030 | 20.25 (−2.10%) | 11.18 (2.32%) | 4.62 (6.05%) | 36.05 (0.33%) | |
2050 | 19.56 (−5.36%) | 10.21 (−6.43%) | 4.45 (2.49%) | 34.22 (−4.8%) | ||
2070 | 18.19 (−11.99%) | 9.71 (−11.02%) | 4.10 (−5.45%) | 32.00 (−10.94%) | ||
2090 | 21.77 (5.32%) | 11.08 (1.50%) | 4.52 (4.14%) | 37.37 (4.01%) |
Species | Period | Migration Distance of Centroid Shift (m) | Latiude (°) | Longitude (°) |
---|---|---|---|---|
Nitraria L. | Current | - | 25.430212 | 51.612514 |
2030-SSP126 | 144,526 | 25.430126 | 53.050112 | |
2050-SSP126 | 133,792 | 24.801214 | 50.481415 | |
2070-SSP126 | 144,014 | 24.922115 | 51.901022 | |
2090-SSP126 | 65,321 | 25.451025 | 51.620203 | |
2030-SSP245 | 165,124 | 24.851002 | 53.121016 | |
2050-SSP245 | 10,912 | 25.831215 | 53.130212 | |
2070-SSP245 | 280,183 | 26.601412 | 55.801245 | |
2090-SSP245 | 704,664 | 25.301512 | 48.910245 | |
2030-SSP370 | 123,545 | 25.201011 | 50.411241 | |
2050-SSP370 | 407,486 | 25.050124 | 54.451023 | |
2070-SSP370 | 519,618 | 25.321002 | 49.301216 | |
2090-SSP370 | 112,737 | 25.201011 | 50.413151 | |
2030-SSP585 | 71,701 | 25.401021 | 50.900121 | |
2050-SSP585 | 348,673 | 27.001015 | 53.901412 | |
2070-SSP585 | 87,125 | 26.371255 | 54.421536 | |
2090-SSP585 | 383,189 | 26.051326 | 50.601214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Liu, M.; Feng, Q.; Liu, W.; Zhu, M.; Duan, Y. Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling. Plants 2025, 14, 67. https://doi.org/10.3390/plants14010067
Lu K, Liu M, Feng Q, Liu W, Zhu M, Duan Y. Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling. Plants. 2025; 14(1):67. https://doi.org/10.3390/plants14010067
Chicago/Turabian StyleLu, Ke, Mili Liu, Qi Feng, Wei Liu, Meng Zhu, and Yizhong Duan. 2025. "Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling" Plants 14, no. 1: 67. https://doi.org/10.3390/plants14010067
APA StyleLu, K., Liu, M., Feng, Q., Liu, W., Zhu, M., & Duan, Y. (2025). Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling. Plants, 14(1), 67. https://doi.org/10.3390/plants14010067