A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA
<p>Daly-Gold Study Area in the Sapphire Mountains of the Bitterroot National Forest in western Montana, USA is shown. The yellow linear features describe the National Forest Systems administrative boundary and the land within it, and the yellow point features illustrate the location of plots and associated field measurements used in this study.</p> "> Figure 2
<p>Composition and structure of common stand exam plot design, with outer circle (orange) representing a 0.04 hectare plot for trees greater than or equal to 12.7 cm diameter at breast height (radius = 11.4 m) and inner circle (yellow) representing a 0.0013 ha plot for trees less than 12.7 cm DBH (radius = 2 m). The outer square represents the area summarized for the NAIP imagery and LiDAR data.</p> "> Figure 3
<p>Flow diagram of the data sources, processing steps, modeling, and comparisons made within the study. NAIP, LiDAR, and TOPO data were converted to texture, height, and elevation metrics and transformed to spatial surfaces using principal component analysis (PCA). PCA surface values were then related to field data based on plot locations (Overlay) and were used to model basal area weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH) and trees per hectare (TPH) relationships. Modeled relationships were then used to create raster surfaces that were compared at the spatial resolution of the plot and stand.</p> "> Figure 4
<p>Daly-Gold Study Area lifeform classification with randomly selected forest polygons highlighted in black. Summarized metric predictions were compared in these polygons.</p> "> Figure 5
<p>Distribution of basal area weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH), and trees per hectare (TPH) collected on 60 plots within the study area.</p> "> Figure 6
<p>Principal component graph, where LiDAR is solid black, NAIP is dashed, and TOPO is dotted. The solid horizontal line indicates the minimum 95% threshold of the cumulative variation that is explained by the number of principal components.</p> "> Figure 7
<p>Illustration of TOPO, NAIP, and LiDAR principal component raster datasets. Note that only the first three components are displayed by the red-green-blue-color composite. The proportion of correlation explained (λ) by those components is display above each raster dataset.</p> "> Figure 8
<p>Linear relationship between basal area weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH), and trees per hectare (TPH) estimates derived from NAIP and LiDAR models (<a href="#ijgi-08-00024-t001" class="html-table">Table 1</a>). Observed versus predicted values for NAIP and LiDAR based BAWD, QMD, BAH, and TPH are given in <a href="#ijgi-08-00024-f0A2" class="html-fig">Figure A2</a>.</p> "> Figure 9
<p>Variation in out of bag root mean squared error (RMSE) for 10 basal area weighted diameter Random Forest models. Results for quadratic mean diameter, basal area per hectare, and trees per hectare are given in <a href="#ijgi-08-00024-f0A3" class="html-fig">Figure A3</a>.</p> "> Figure A1
<p>Example of minor differences in basal area weighted diameter (BAWD with field measured min: 0.00 cm, and max: 58.62 cm), quadratic mean diameter (QMD, with field measured min: 1.27 cm, and max: 53.34 cm), basal area per hectare (BAH with field measured min: 0.00 cm, and max: 45.22 cm), and trees per hectare (TPH with field measured min: 0.00, and max: 41,439.54) estimated values for NAIP, LiDAR and TOPO based models. Additional summary statistics are given in <a href="#ijgi-08-00024-t0A1" class="html-table">Table A1</a>.</p> "> Figure A2
<p>Observed verse predicted values for NAIP (left) and LiDAR (right) based, basal area weighted diameter (BAWD), quadratic mean diameter (QMD), basal area per hectare (BAH), trees per hectare (TPH), best fitting Random Forest models.</p> "> Figure A3
<p>Variation in out of bag root mean squared error (RMSE) for 10 quadratic mean diameter (QMD), basal area per hectare (BAH), and trees per hectare (TPH) Random Forest models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing
2.3.1. Processing Plot Data
2.3.2. Processing NAIP Data
2.3.3. Processing TOPO Data
2.3.4. Processing LiDAR Data
2.3.5. Computing Principal Components
2.3.6. Algorithm Development and Evaluation
2.3.7. Spatial Summary Comparison
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ATTRIBUTE | DESCRIPTION | Mean | SD | Min | Max |
---|---|---|---|---|---|
BAWD | Basal area weighted diameter at breast height (cm) | 27.99 | 14.61 | 0.00 | 58.62 |
QMD | Quadratic mean diameter at breast height (cm) | 23.81 | 11.17 | 1.27 | 53.34 |
BAH | Basal area (m2 per ha) | 18.28 | 12.09 | 0.00 | 45.22 |
TPH | Trees per ha | 3407.58 | 6726.09 | 0.00 | 41,439.54 |
Elev_minimum | Minimum elevation recorded | 0.01 | 0.00 | 0.01 | 0.04 |
Elev_maximum | Maximum elevation recorded | 44.19 | 15.99 | 11.41 | 77.10 |
Elev_mean | Mean elevation recorded | 9.89 | 5.44 | 0.38 | 20.14 |
Elev_mode | Mode elevation recorded | 1.49 | 4.41 | 0.01 | 17.79 |
Elev_stddev | Standard deviation of elevation values recorded | 8.53 | 3.80 | 0.80 | 15.74 |
Elev_variance | Variance of elevation values recorded | 87.25 | 64.14 | 0.65 | 247.70 |
Elev_CV | Coefficient of variation of elevation values recorded | 1.03 | 0.41 | 0.49 | 2.29 |
Elev_IQ | Interquartile distance of elevation values recorded | 12.34 | 7.14 | 0.23 | 28.52 |
Elev_skewness | Histogram skewness of elevation values recorded | 1.16 | 1.00 | (0.13) | 5.37 |
Elev_kurtosis | Histogram kurtosis of elevation values recorded | 5.50 | 7.26 | 1.84 | 45.88 |
Elev_AAD | Average absolute deviation of elevation values recorded | 6.99 | 3.35 | 0.40 | 13.81 |
Elev_MAD_median | Median of the absolute deviations from the overall median of AAD | 5.21 | 3.71 | 0.06 | 14.01 |
Elev_MAD_mode | Median of the absolute deviations from the overall mode of AAD | 6.99 | 5.63 | 0.08 | 20.71 |
Elev_L1 | L-moment 1 | 9.89 | 5.44 | 0.38 | 20.14 |
Elev_L2 | L-moment 2 | 4.59 | 2.19 | 0.26 | 8.97 |
Elev_L3 | L-moment 3 | 0.97 | 0.67 | (0.18) | 3.35 |
Elev_L4 | L-moment 4 | 0.29 | 0.30 | (0.62) | 1.28 |
Elev_L_CV | L-moment coefficient of variation | 0.52 | 0.13 | 0.27 | 0.82 |
Elev_L_skewness | L-moment skewness | 0.26 | 0.18 | (0.04) | 0.72 |
Elev_L_kurtosis | L-moment kurtosis | 0.10 | 0.11 | (0.08) | 0.49 |
Elev_P01 | Elevation values of the 1st percentile | 0.06 | 0.07 | 0.01 | 0.35 |
Elev_P05 | Elevation values of the 5th percentile | 0.35 | 0.62 | 0.01 | 3.17 |
Elev_P10 | Elevation values of the 10th percentile | 0.78 | 1.29 | 0.02 | 6.20 |
Elev_P20 | Elevation values of the 20th percentile | 2.06 | 2.43 | 0.04 | 9.98 |
Elev_P25 | Elevation values of the 25th percentile | 2.87 | 3.05 | 0.04 | 11.36 |
Elev_P30 | Elevation values of the 30th percentile | 3.73 | 3.67 | 0.05 | 12.47 |
Elev_P40 | Elevation values of the 40th percentile | 5.62 | 4.90 | 0.07 | 15.85 |
Elev_P50 | Elevation values of the 50th percentile | 7.92 | 6.02 | 0.09 | 20.72 |
Elev_P60 | Elevation values of the 60th percentile | 10.51 | 7.22 | 0.12 | 25.26 |
Elev_P70 | Elevation values of the 70th percentile | 13.53 | 8.17 | 0.19 | 31.01 |
Elev_P75 | Elevation values of the 75th percentile | 15.22 | 8.65 | 0.28 | 33.75 |
Elev_P80 | Elevation values of the 80th percentile | 17.13 | 9.16 | 0.35 | 36.39 |
Elev_P90 | Elevation values of the 90th percentile | 22.05 | 10.41 | 0.77 | 41.91 |
Elev_P95 | Elevation values of the 95th percentile | 25.96 | 11.49 | 1.75 | 46.58 |
Elev_P99 | Elevation values of the 99th percentile | 33.00 | 13.38 | 3.98 | 56.37 |
Canopy_relief_ratio | ((mean elevation − min elevation)/(max elevation − min elevation)) | 0.21 | 0.09 | 0.03 | 0.44 |
Elev_SQRT_mean_SQ | Generalized means for the 2nd power (elevation quadratic mean) | 13.20 | 6.36 | 0.89 | 25.56 |
Elev_CURT_mean_CUBE | Generalized means for the 3rd power (elevation cubic mean) | 15.60 | 6.99 | 1.53 | 29.05 |
NAIP_Band1 | NAIP1 focal mean 23 × 23 | 51.54 | 22.74 | 22.33 | 107.58 |
NAIP_Band2 | NAIP2 focal mean 23 × 23 | 71.51 | 20.58 | 37.15 | 121.52 |
NAIP_Band3 | NAIP3 focal mean 23 × 23 | 61.19 | 13.47 | 42.29 | 93.70 |
NAIP_Band4 | NAIP4 focal mean 23 × 23 | 75.31 | 32.52 | 12.96 | 140.43 |
NAIP_Band5 | NAIP_SD1 focal standard deviation 23 × 23 | 18.93 | 7.85 | 6.07 | 45.33 |
NAIP_Band6 | NAIP_SD2 focal standard deviation 23 × 23 | 19.78 | 6.27 | 5.33 | 39.10 |
NAIP_Band7 | NAIP_SD3 focal standard deviation 23 × 23 | 7.54 | 4.24 | 1.49 | 25.89 |
NAIP_Band8 | NAIP_SD4 focal standard deviation 23 × 23 | 30.18 | 9.99 | 6.39 | 52.53 |
NAIP_Band9 | GLCM1 horizontal 23 × 23 | 93.18 | 60.60 | 10.15 | 308.79 |
NAIP_Band10 | GLCM2 horizontal 23 × 23 | 96.82 | 43.48 | 9.71 | 199.63 |
NAIP_Band11 | GLCM3 horizontal 23 × 23 | 8.61 | 9.83 | 0.33 | 63.97 |
NAIP_Band12 | GLCM4 horizontal 23 × 23 | 180.40 | 111.01 | 6.35 | 483.20 |
TOPO_Band1 | ELEVATION focal mean 23 × 23 | 2,020.00 | 253.78 | 1597.45 | 2422.87 |
TOPO_Band2 | EASTING focal mean 23 × 23 | (0.65) | 0.32 | (1.00) | 0.00 |
TOPO_Band3 | NORTHING focal mean 23 × 23 | 0.58 | 0.34 | 0.00 | 1.00 |
TOPO_Band4 | SLOPE focal mean 23 × 23 | 24.66 | 8.68 | 3.44 | 43.75 |
Compare V1–V2 | N | Difference | T-Stat | p-Value |
---|---|---|---|---|
NAIP-LIDAR | 100 | −0.119 | −0.234 | 0.8150 |
NAIP-NAIP_TOPO | 100 | 0.645 | 2.057 | 0.0423 |
NAIP-NAIP_LIDAR | 100 | −0.643 | −1.842 | 0.0684 |
NAIP-NAIP_TOPO_LIDAR | 100 | 0.084 | 0.220 | 0.8260 |
LIDAR-NAIP_TOPO | 100 | 0.767 | 1.504 | 0.1359 |
LIDAR-NAIP_LIDAR | 100 | −0.521 | −2.520 | 0.0133 |
LIDAR-NAIP_TOPO_LIDAR | 100 | 0.206 | 0.924 | 0.3580 |
NAIP_TOPO-NAIP_LIDAR | 100 | −1.288 | −3.315 | 0.0013 |
Compare V1–V2 | N | Difference | T-Stat | p-Value |
---|---|---|---|---|
NAIP-LIDAR | 100 | −0.173 | −0.494 | 0.6219 |
NAIP-NAIP_TOPO | 100 | 0.155 | 0.5318 | 0.5960 |
NAIP-NAIP_LIDAR | 100 | −0.249 | −0.934 | 0.3524 |
NAIP-NAIP_TOPO_LIDAR | 100 | 0.292 | 0.9857 | 0.3267 |
LIDAR-NAIP_TOPO | 100 | 0.330 | 0.8504 | 0.3972 |
LIDAR-NAIP_LIDAR | 100 | −0.074 | −0.487 | 0.6267 |
LIDAR-NAIP_TOPO_LIDAR | 100 | 0.467 | 3.1312 | 0.0023 |
NAIP_TOPO-NAIP_LIDAR | 100 | −0.404 | −1.144 | 0.2551 |
Compare V1–V2 | N | Difference | T-Stat | p-Value |
---|---|---|---|---|
NAIP-LIDAR | 100 | −2.211 | −3.42 | 0.0009 |
NAIP-NAIP_TOPO | 100 | 0.218 | 1.25 | 0.2125 |
NAIP-NAIP_LIDAR | 100 | −1.666 | −3.90 | 0.0002 |
NAIP-NAIP_TOPO_LIDAR | 100 | −1.498 | −3.48 | 0.0007 |
LIDAR-NAIP_TOPO | 100 | 2.430 | 4.11 | <0.0001 |
LIDAR-NAIP_LIDAR | 100 | 0.546 | 2.24 | 0.0275 |
LIDAR-NAIP_TOPO_LIDAR | 100 | 0.714 | 2.98 | 0.0036 |
NAIP_TOPO-NAIP_LIDAR | 100 | −1.884 | −4.87 | <0.0001 |
Compare V1–V2 | N | Difference | T-Stat | p-Value |
---|---|---|---|---|
NAIP-LIDAR | 100 | 128 | 0.464 | 0.6434 |
NAIP-NAIP_TOPO | 100 | 525 | 3.305 | 0.0013 |
NAIP-NAIP_LIDAR | 100 | 384 | 2.621 | 0.0102 |
NAIP-NAIP_TOPO_LIDAR | 100 | 717 | 3.893 | 0.0002 |
LIDAR-NAIP_TOPO | 100 | 397 | 2.370 | 0.0197 |
LIDAR-NAIP_LIDAR | 100 | 256 | 1.787 | 0.0770 |
LIDAR-NAIP_TOPO_LIDAR | 100 | 588 | 4.532 | <0.0001 |
NAIP_TOPO-NAIP_LIDAR | 100 | −141 | −1.427 | 0.1567 |
References
- Sheridan, R.D.; Popescu, S.C.; Gatziolis, D.; Morgan, C.L.S.; Ku, N.W. Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest. Remote Sens. 2015, 7, 229–255. [Google Scholar] [CrossRef]
- Mitchell, B.; Jacokes-Mancini, R.; Fisk, H.; Evans, D. Considerations for Using Lidar Data—A Project Implementation Guide; RSAC-10032-MAN1; USDA Forest Service, Remote Sensing Applications Center: Salt Lake City, UT, USA, 2012; 13p.
- McRoberts, R.E.; Naesset, E.; Gobakken, T. Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Moser, P.; Vibrans, A.C.; McRoberts, R.E.; Naesset, E.; Gobakken, T.; Chirici, G.; Mura, M.; Marchetti, M. Methods for variable selection in LiDAR-assisted forest inventories. Forestry 2017, 90, 112–124. [Google Scholar] [CrossRef]
- USDA Farm Service Agency. Four Band Digital Imagery Information Sheet. 2016. Available online: https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/support-documents/pdfs/fourband_infosheet_2016.pdf (accessed on 14 February 2017).
- Hogland, J.; Anderson, N.; Wells, L.; Chung, W. Estimating forest characteristics using NAIP imagery and ArcObjects. In Proceedings of the 2014 ESRI International Users Conference, San Diego, CA, USA, 9–13 August 2004. [Google Scholar]
- Hogland, J.; Anderson, N. Estimating FIA plot characteristics using NAIP imagery, function modeling, and the RMRS Raster Utility coding library. In Pushing Boundaries: New Directions in Inventory Techniques and Applications: Forest Inventory and Analysis (FIA) Symposium 2015, Portland, Oregon, 8–10 December 2015; Stanton, S.M., Christensen, G.A., Eds.; General Technical Report PNW-GTR-931; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2015; pp. 340–344. [Google Scholar]
- Hogland, J.; Anderson, N. Function modeling improves the efficiency of spatial modeling using big data from remote sensing. Big Data Cogn. Comput. 2017, 1, 3. [Google Scholar] [CrossRef]
- Hogland, J.; Anderson, N.; St. Peters, J.; Drake, J.; Medley, P. Mapping Forest Characteristics at Fine Resolution Across Large Landscapes of the Southeastern United States Using NAIP Imagery and FIA Field Plot Data. Int. J. Geo-Inf. 2018, 7, 140. [Google Scholar] [CrossRef]
- Haralick, R.; Shanmugam, K.; Dinstein, J. Texture features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Gesch, D.; Oimoen, M.; Geenlee, S.; Nelson, C.; Steuck, M.; Tyler, D. The National Elevation Dataset. Photogramm. Eng. Remote Sens. 2002, 68, 5–11. [Google Scholar]
- Aerial Photography Field Office (APFO). Imagery Programs. 2018. Available online: https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/index (accessed on 17 December 2018).
- Sugarbaker, L.; Eldridge, D.; Jason, A.; Lukas, V.; Saghy, D.; Stoker, J.; Thunen, D. Status of the 3D Elevation Program; U.S. Geological Survey Open-File Report 2016–1196; U.S. Geological Survey: Reston, VA, USA, 2015; 13p.
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3; ORNL DAAC: Oak Ridge, TN, USA, 2013. Available online: http://dx.doi.org/10.3334/ORNLDAAC/1328 (accessed on 25 January 2017).
- Burns, R.; Honkala, B. Silvics of North America: 1. Conifers; 2. Hardwoods; Agriculture Handbook 654, Tech. Coords; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 2, 877p.
- Freese, F. Elementary Forest Sampling; Agriculture Handbook No. 232; USDA Southern Forest Experiment Station, Forest Service: Knoxville, TN, USA, 1973. Available online: https://www.fs.fed.us/fmsc/ftp/measure/cruising/other/docs/AgHbk232.pdf (accessed on 25 January 2017).
- USDA Forest Service. Region One Vegetation Classification, Mapping, Inventory and Analysis Report 16-5 v6.0. Region 1 Common Stand Exam and Inventory and Monitoring Field Guide. 2016. Available online: http://fsweb.r1.fs.fed.us/forest/inv/cse_exams/R1_CSE_IM_FG_v2016.zip (accessed on 25 January 2017).
- Holden, Z.A.; USDA Forest Service. Region 1 Regional Office, Forest and Rangeland Management, 26 Fort Missoula Rd. Missoula, MT 59804, USA. Personal communications, 2016.
- USDA Farm Service Agency. National Agriculture Imagery Program (NAIP) Information Sheet. 2015. Available online: https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/ naip_info_sheet_2015.pdf (accessed on 25 January 2017).
- USDI Geological Survey. File Transfer Protocol. Staged NAIP, 2018. Available online: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NAIP/ (accessed on 9 March 2018).
- USDI Geological Survey. File Transfer Protocol. Staged NED, 2018. Available online: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/ (accessed on 9 March 2018).
- Watershed Sciences. LiDAR Remote Sensing Collection: USFS Bitterroot National Forest, Montana; Delivery 2 October 29, 2010; Watershed Science: Corvallis, OR, USA, 2010; Available online: https://quantumspatial.com/ (accessed on 8 January 2018).
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; USDA Forest Service, Pacific Northwest Research Station: Washington, DC, USA, 2016. Available online: http://forsys.cfr.washington.edu/fusion/ FUSION_manual.pdf (accessed on 25 January 2017).
- Souza, C. A Tutorial on Principal Component Analysis with Accord.NET Framework; Technical Report; Department of Computing, Federal University of Sao Carlos: São Carlos, Brazil, 2012; Available online: http://arxiv.org/ftp/arxiv/papers/1210/1210.7463.pdf (accessed on 27 September 2013).
- Breiman, L. 2001. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. Available online: http://CRAN.R-project.org/doc/Rnews/ (accessed on 25 January 2017).
- Liaw, A. Documentation for R Package randomForest. 2015. Available online: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (accessed on 25 January 2017).
- USDA Forest Service. Geospatial Data: Northern Region Existing Vegetation Mapping Program. 2016. Available online: https://www.fs.usda.gov/detailfull/r1/landmanagement/gis/?cid=stelprdb5331054& width=full (accessed on 25 January 2017).
- Barber, J.; Brown, S.R.; Ahl, R. Mid-Level and Base-Level Databases of the R1 Existing Vegetation (VMap) Products; Region One Vegetation Classification, Mapping, Inventory and Analysis Report; USDA Forest Service: Washington, DC, USA, 2016; pp. 12–38. Available online: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/ stelprdb5364531.pdf (accessed on 25 January 2017).
- Ahl, R.; Brown, S. The Bitterroot and Lolo National Forests Region 1 Existing Vegetation Database (VMap) Revision of 2016; Northern Region Geospatial Group Project Report NRGG-PR-BITLO-VMAP2016; USDA Forest Service: Washington, DC, USA, 2017. Available online: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/ fseprd573432.pdf (accessed on 5 March 2017).
- Avery, T.; Burkhart, H. Forest Measurements, 4th ed.; McGraw Hill: Boston, MA, USA, 1994; p. 408. [Google Scholar]
- Smith, D.; Larson, B.; Kelty, M.; Ashton, P. The Practice of Silviculture Applied Forest Ecology, 9th ed.; John Wily & Sons, Inc.: New York, NY, USA, 1997; p. 537. [Google Scholar]
- Bush, R. Overview R1 Summary Database; Region One Vegetation Classification, Mapping, Inventory and Analysis Report 14-16 v2.0; USDA Forest Service: Washington, DC, USA, 2014. Available online: http://fsweb.r1.fs.fed.us/forest/inv/r1_tools/Overview_R1_SDB.pdf (accessed on 25 January 2017).
- Bush, R.; Reyes, R.; Zeiler, J.D. R1 Summary Database Reports and Utilities User’s Guide; Region One Vegetation Classification, Mapping, Inventory and Analysis Report 16-2 v3.2; USDA Forest Service: Washington, DC, USA, 2016. Available online: http://fsweb.r1.fs.fed.us/forest/inv/r1_tools/R1_SDB_Rep_Util.pdf (accessed on 25 January 2017).
- Mitchell, B.; Walterman, M.; Mellin, T.; Wilcox, C.; Lynch, A.M.; Anhold, J.; Falk, D.A.; Koprowski, J.; Laes, D.; Evans, D.; et al. Mapping Vegetation Structure in the Pinaleno Mountains Using Lidar-Phase 3: Forest Inventory Modeling; RSAC-10007-RPT; USDA Forest Service, Remote Sensing Applications Center: Salt Lake City, UT, USA, 2012; 17p.
- Mundt, J.T.; Streutker, D.R.; Glenn, N.F. Mapping sagebrush distribution using fusion of hyperspectral and lidar classifications. Photogramm. Eng. Remote Sens. 2006, 72, 47–54. [Google Scholar] [CrossRef]
Source | Description | Tiles/Plots |
---|---|---|
NAIP | Four band aerial imagery: 1 m, color infrared [12,21] | 19 |
LiDAR | Point cloud elevation data ≥6 points per m2 [24] | 752 |
TOPO | USGS 10 m national elevation dataset [23] | 8 |
Plots | Field measured height, DBH, and count [18,19] | 60 |
Response | Model | Variables | n | k | RMSE | MSE | AIC | Δ AIC |
---|---|---|---|---|---|---|---|---|
1 | NAIP * | 60 | 5 | 12.7 | 161 | 315 | 0 | |
2 | LiDAR | 60 | 5 | 13.2 | 174 | 320 | 5 | |
BAWD | 3 | NAIP TOPO | 60 | 8 | 12.2 | 149 | 316 | 1 |
4 | NAIP LiDAR | 60 | 10 | 11.7 | 137 | 315 | 0 | |
5 | NAIP TOPO LiDAR | 60 | 13 | 11.7 | 137 | 321 | 6 | |
1 | NAIP | 60 | 5 | 10.2 | 103 | 288 | 3 | |
2 | LiDAR | 60 | 5 | 11.7 | 137 | 305 | 20 | |
QMD | 3 | NAIP TOPO * | 60 | 8 | 9.4 | 88 | 285 | 0 |
4 | NAIP LiDAR | 60 | 10 | 9.9 | 98 | 295 | 10 | |
5 | NAIP TOPO LiDAR | 60 | 13 | 9.7 | 93 | 298 | 13 | |
1 | NAIP | 60 | 5 | 11.2 | 127 | 300 | 27 | |
2 | LiDAR * | 60 | 5 | 9.0 | 81 | 273 | 0 | |
BAH | 3 | NAIP TOPO | 60 | 8 | 11.5 | 131 | 309 | 35 |
4 | NAIP LiDAR | 60 | 10 | 8.6 | 75 | 279 | 5 | |
5 | NAIP TOPO LiDAR | 60 | 13 | 9.1 | 83 | 291 | 18 | |
1 | NAIP * | 60 | 5 | 6936.2 | 48,111,452 | 1071 | 0 | |
2 | LiDAR | 60 | 5 | 7015.3 | 49,214,653 | 1073 | 1 | |
TPH | 3 | NAIP TOPO | 60 | 8 | 6891.8 | 47,496,397 | 1077 | 5 |
4 | NAIP LiDAR | 60 | 10 | 6990.6 | 48,868,559 | 1082 | 11 | |
5 | NAIP TOPO LiDAR | 60 | 13 | 6815.2 | 46,446,411 | 1085 | 14 |
Characteristic | n | Difference | T-Stat | p-Value |
---|---|---|---|---|
BAWD | 100 | −0.119 | −0.234 | 0.8150 |
QMD | 100 | −0.173 | −0.494 | 0.6219 |
BAH | 100 | −2.211 | −3.42 | 0.0009 |
TPH | 100 | 128 | 0.464 | 0.6434 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahl, R.; Hogland, J.; Brown, S. A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA. ISPRS Int. J. Geo-Inf. 2019, 8, 24. https://doi.org/10.3390/ijgi8010024
Ahl R, Hogland J, Brown S. A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA. ISPRS International Journal of Geo-Information. 2019; 8(1):24. https://doi.org/10.3390/ijgi8010024
Chicago/Turabian StyleAhl, Robert, John Hogland, and Steve Brown. 2019. "A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA" ISPRS International Journal of Geo-Information 8, no. 1: 24. https://doi.org/10.3390/ijgi8010024
APA StyleAhl, R., Hogland, J., & Brown, S. (2019). A Comparison of Standard Modeling Techniques Using Digital Aerial Imagery with National Elevation Datasets and Airborne LiDAR to Predict Size and Density Forest Metrics in the Sapphire Mountains MT, USA. ISPRS International Journal of Geo-Information, 8(1), 24. https://doi.org/10.3390/ijgi8010024