Spatiotemporal Influence of Urban Environment on Taxi Ridership Using Geographically and Temporally Weighted Regression
<p>Flowchart of the proposed method for estimating hourly taxi trips on a 500 × 500 m<sup>2</sup> grid unit.</p> "> Figure 2
<p>Location and grid-based segmentation of Xiamen Island.</p> "> Figure 3
<p>Hourly average taxi ridership of Xiamen Island.</p> "> Figure 4
<p>Spatial distribution of taxi ridership at different periods. (<b>a</b>) Whole day; (<b>b</b>) morning peak; (<b>c</b>) afternoon peak; and (<b>d</b>) evening peak.</p> "> Figure 5
<p>Spatial distribution of different explanatory variables. (<b>a</b>) Residential; (<b>b</b>) commercial; (<b>c</b>) employment; (<b>d</b>) public services; (<b>e</b>) hotels; (<b>f</b>) attractions; (<b>g</b>) bus stops; and (<b>h</b>) road density.</p> "> Figure 5 Cont.
<p>Spatial distribution of different explanatory variables. (<b>a</b>) Residential; (<b>b</b>) commercial; (<b>c</b>) employment; (<b>d</b>) public services; (<b>e</b>) hotels; (<b>f</b>) attractions; (<b>g</b>) bus stops; and (<b>h</b>) road density.</p> "> Figure 6
<p>The parameter selection for the GTWR model.</p> "> Figure 7
<p>Scatter plots for model fitting and cross validation. (<b>a</b>) OLS; (<b>b</b>) GWR; and (<b>c</b>) GTWR.</p> "> Figure 8
<p>Spatial distribution of the coefficients of ‘residential density’. (<b>a</b>) GWR; and (<b>b</b>) GTWR. Region A has the highest density of residential buildings. Regions B and C are two newly developed zones.</p> "> Figure 9
<p>Spatial distribution of the coefficients of ‘attraction density’ (quantified by natural breaks style). (<b>a</b>) GWR; and (<b>b</b>) GTWR. Region A has negative coefficients of ‘attraction density’; Regions B and C have positive coefficients of ‘attraction density’.</p> "> Figure 10
<p>Temporal variations in the predicted and observed values.</p> "> Figure 11
<p>Spatial and temporal distribution of the average coefficient for the “road length” variable at three peaks. (<b>a</b>) Moring peak; (<b>b</b>) afternoon peak; and (<b>c</b>) evening peak. Region A represents high density of road; Region B represents railway station.</p> "> Figure 12
<p>Location of four representative regions.</p> "> Figure 13
<p>Temporal variation in taxi ridership and coefficients of explanatory variables at four selected regions based on the GTWR model. (<b>a</b>) Railway station; (<b>b</b>) high density of the residential buildings region; (<b>c</b>) high density of the region comprising places of employment; and (<b>d</b>) high density at attractions region.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Geographically Weighted Regression Model
2.2. Geographically and Temporally Weighted Regression Model
3. Study Area and Data
3.1. Taxi Ridership Data
- Missing coordinates for OD location or location outside the study area.
- Missing trip distance d or d <300 m or d >40 km.
- Missing trip time t or t <1 min or t >4 h.
3.2. Urban Environment Assessment
4. Model Results
5. Discussion
5.1. Spatial Variations of the Coefficients
5.2. Temporal Variations of the Coefficients
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, D.A.; Peters, J.R.; Daus, M.W. Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Presented at the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Nie, Y.M. How can the taxi industry survive the tide of ridesourcing? Evidence from Shenzhen, China. Transp. Res. Part C Emerg. Technol. 2017, 79, 242–256. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mishra, S. Land use and transit ridership connections: Implications for state-level planning agencies. Land Use Policy 2013, 30, 458–469. [Google Scholar] [CrossRef]
- Taylor, B.D.; Miller, D.; Iseki, H.; Fink, C. Nature and/or nurture? Analyzing the determinants of transit ridership across us urbanized areas. Transp. Res. Part A Policy Pract. 2009, 43, 60–77. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Ding, C.; Wang, Y. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban Syst. 2018, 70, 113–124. [Google Scholar] [CrossRef]
- Pinelli, F.; Nair, R.; Calabrese, F.; Berlingerio, M.; Di Lorenzo, G.; Sbodio, M.L. Data-driven transit network design from mobile phone trajectories. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1724–1733. [Google Scholar] [CrossRef]
- Yang, Z.; Franz, M.L.; Zhu, S.; Mahmoudi, J.; Nasri, A.; Zhang, L. Analysis of Washington, DC taxi demand using GPS and land-use data. J. Transp. Geogr. 2018, 66, 35–44. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from gps-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Zhao, J.; Qu, Q.; Zhang, F.; Xu, C.; Liu, S. Spatio-temporal analysis of passenger travel patterns in massive smart card data. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3135–3146. [Google Scholar] [CrossRef]
- Davis, L.W. The effect of driving restrictions on air quality in Mexico city. J. Political Econ. 2008, 116, 38–81. [Google Scholar] [CrossRef]
- Qian, X.; Ukkusuri, S.V. Exploring Spatial Variation of Urban Taxi Ridership Using Geographically Weighted Regression. Presented at the 94th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- O’Sullivan, D. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Fotheringham, A.S., Brunsdon, C., Charlton, M., Eds.; The Ohio State University: Columbus, OH, USA, 2003; Volume 35, pp. 272–275. [Google Scholar]
- Cardozo, O.D.; García-Palomares, J.C.; Gutiérrez, J. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Appl. Geogr. 2012, 34, 548–558. [Google Scholar] [CrossRef]
- Chow, L.F.; Zhao, F.; Liu, X.; Li, M.T.; Ubaka, I. Transit ridership model based on geographically weighted regression. Transp. Res. Rec. J. Transp. Res. Board 2006, 1972, 105–114. [Google Scholar] [CrossRef]
- Chiou, Y.-C.; Jou, R.-C.; Yang, C.-H. Factors affecting public transportation usage rate: Geographically weighted regression. Transp. Res. Part A Policy Pract. 2015, 78, 161–177. [Google Scholar] [CrossRef]
- Chen, C.; Varley, D.; Chen, J. What affects transit ridership? A dynamic analysis involving multiple factors, lags and asymmetric behaviour. Urban Stud. 2011, 48, 1893–1908. [Google Scholar] [CrossRef]
- Ma, T.; Motta, G.; Liu, K. Delivering real-time information services on public transit: A framework. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2642–2656. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A geographically and temporally weighted regression model for ground-level PM2. 5 estimation from satellite-derived 500 m resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Q.; Gong, D.-Y.; Zhang, Z. Estimating ground-level pm2. 5 concentrations in beijing using a satellite-based geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140–149. [Google Scholar] [CrossRef]
- Chu, H.-J.; Kong, S.-J.; Chang, C.-H. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Lam, K.-F.; Wu, J.T.; Lam, T.T.-Y. Geographically weighted temporally correlated logistic regression model. Sci. Rep. 2018, 8, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peruggia, M. Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.).(telegraphic reviews)(book review). J. Wildl. Manag. 2002, 67, 175–196. [Google Scholar]
- Zhan, X.; Qian, X.; Ukkusuri, S.V. A graph-based approach to measuring the efficiency of an urban taxi service system. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2479–2489. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Zhang, F.; Liu, R.; Zhou, Y. Extending geographically and temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal variations in coastal seas. Ecol. Inform. 2018, 43, 185–199. [Google Scholar] [CrossRef]
Type | Variable | Description |
---|---|---|
Urban environment | Residential | Number of residential records in each cell |
Commercial | Number of retail stores, shopping malls, restaurants and entertainment centres in each cell | |
Employment | Number of companies, education and government offices in each cell | |
Public service | Number of financial, telecommunication, automobile and medical services in each cell | |
Hotel | Number of hotels in each cell | |
Attraction | Number of tourist attractions in each cell | |
Transport | Bus stop | Number of bus stops in each cell |
Road | Length of road in each cell |
Res. | Com. | Emp. | Public Services | Hotel | Att. | Bus | Road | |
---|---|---|---|---|---|---|---|---|
Residential | 1 | |||||||
Commercial | 0.752 | 1 | ||||||
Employment | 0.528 | 0.627 | 1 | |||||
Public services | 0.757 | 0.779 | 0.503 | 1 | ||||
Hotel | 0.272 | 0.415 | 0.372 | 0.335 | 1 | |||
Attraction | 0.194 | 0.159 | 0.113 | 0.209 | 0.202 | 1 | ||
Bus stop | 0.475 | 0.474 | 0.373 | 0.504 | 0.322 | 0.188 | 1 | |
Road | 0.150 | 0.191 | 0.173 | 0.154 | 0.084 | 0.121 | 0.274 | 1 |
Variable | Coefficient | t-statistic | t-probability | VIF |
---|---|---|---|---|
Intercept | 1.834 | 20.100 | 0.000 | -- |
Residential | 0.053 | 10.075 | 0.000 | 1.651 |
Employment | −0.001 | −0.317 | 0.751 | 1.556 |
Hotel | 0.062 | 6.122 | 0.000 | 1.258 |
Attraction | −0.032 | −0.764 | 0.444 | 1.084 |
Bus stop | 0.036 | 12.943 | 0.000 | 1.517 |
Road | 0.216 | 7.933 | 0.000 | 1.125 |
Diagnostic Information | ||||
R2 | 0.4691 | |||
Adjusted R2 | 0.4662 | |||
AIC | 110,806.15 | |||
RSS | 19,085.87 |
Variable | AVG | MIN | MAX | LQ | MED | UQ |
---|---|---|---|---|---|---|
Intercept | 1.877 | 0.0100 | 5.5974 | 1.1780 | 1.6947 | 2.4620 |
Residential | 0.069 | −0.4256 | 1.1324 | 0.0243 | 0.0531 | 0.0905 |
Employment | 0.020 | −0.1162 | 0.5169 | −0.0048 | 0.0020 | 0.0302 |
Hotel | 0.213 | −0.8061 | 1.8083 | 0.0970 | 0.1790 | 0.2806 |
Attraction | −0.100 | −1.3732 | 1.5520 | −0.3395 | 0.0958 | 0.0806 |
Bus stop | 0.044 | −0.0537 | 0.3449 | 0.0149 | 0.0343 | 0.0730 |
Road | 0.177 | −0.4226 | 1.3716 | 0.0215 | 0.1560 | 0.2915 |
Diagnostic Information | ||||||
R2 | 0.7805 | |||||
Adjusted R2 | 0.7793 | |||||
AIC | 101,115.35 | |||||
RSS | 8060.91 |
Variable | AVG | MIN | MAX | LQ | MED | UQ |
---|---|---|---|---|---|---|
Intercept | 1.8463 | −3.2832 | 7.4410 | 0.8118 | 1.7029 | 2.6531 |
Residential | 0.0760 | −1.6402 | 2.4488 | 0.0102 | 0.0505 | 0.1134 |
Employment | 0.0216 | −0.4920 | 1.0506 | −0.0087 | 0.0027 | 0.0323 |
Hotel | 0.2414 | −12.1476 | 3.7126 | 0.0695 | 0.1974 | 0.3782 |
Attraction | −0.1390 | −4.8221 | 3.4925 | −0.4156 | −0.1002 | 0.1653 |
Bus stop | 0.0460 | −0.1327 | 0.7814 | 0.0107 | 0.0385 | 0.0723 |
Road | 0.1746 | −1.8823 | 3.1798 | −0.0358 | 0.1711 | 0.3821 |
Diagnostic Information | ||||||
R2 | 0.9527 | |||||
Adjusted R2 | 0.9524 | |||||
AIC | 84,026.81 | |||||
RSS | 1762.43 |
Proportion | 100% | 70% | 50% | 30% | 10% |
---|---|---|---|---|---|
R2 (GTWR) | 0.9783 | 0.9803 | 0.9837 | 0.9873 | 0.9389 |
R2 (GWR) | 0.8091 | 0.8360 | 0.8379 | 0.7824 | 0.7806 |
R2 (OLS) | 0.4699 | 0.4707 | 0.4890 | 0.4523 | 0.4478 |
Variable | Period | ||
---|---|---|---|
Morning Peak | Afternoon Peak | Evening Peak | |
Residential | 0.048 | 0.102 | 0.121 |
Employment | 0.136 | 0.050 | 0.046 |
Hotel | 0.093 | 0.013 | 0.057 |
Attraction | −0.294 | −0.155 | −0.215 |
Bus stop | 0.054 | 0.053 | 0.045 |
Road | 0.008 | 0.173 | 0.230 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, B.; Zhu, S. Spatiotemporal Influence of Urban Environment on Taxi Ridership Using Geographically and Temporally Weighted Regression. ISPRS Int. J. Geo-Inf. 2019, 8, 23. https://doi.org/10.3390/ijgi8010023
Zhang X, Huang B, Zhu S. Spatiotemporal Influence of Urban Environment on Taxi Ridership Using Geographically and Temporally Weighted Regression. ISPRS International Journal of Geo-Information. 2019; 8(1):23. https://doi.org/10.3390/ijgi8010023
Chicago/Turabian StyleZhang, Xinxin, Bo Huang, and Shunzhi Zhu. 2019. "Spatiotemporal Influence of Urban Environment on Taxi Ridership Using Geographically and Temporally Weighted Regression" ISPRS International Journal of Geo-Information 8, no. 1: 23. https://doi.org/10.3390/ijgi8010023
APA StyleZhang, X., Huang, B., & Zhu, S. (2019). Spatiotemporal Influence of Urban Environment on Taxi Ridership Using Geographically and Temporally Weighted Regression. ISPRS International Journal of Geo-Information, 8(1), 23. https://doi.org/10.3390/ijgi8010023