Analysis of a Municipal Solid Waste Disposal Site: Use of Geographic Information Technology Tools for Decision Making
"> Figure 1
<p>Study area: municipality of Reforma, state of Chiapas, Mexico.</p> "> Figure 2
<p>Survey information in the field: (<b>a</b>) infrastructure and operation of the dumping site; (<b>b</b>) waste parameters and characteristics.</p> "> Figure 3
<p>Workflow of LULC analysis.</p> "> Figure 4
<p>Workflow of landfill gas dispersion analysis.</p> "> Figure 5
<p>Workflow of leachate dispersion analysis.</p> "> Figure 6
<p>Workflow of LST analysis.</p> "> Figure 7
<p>Operation of the FDS of Reforma, Chiapas: (<b>a</b>) landfill infrastructure; (<b>b</b>) waste dump area without cover; (<b>c</b>) disposal cell with final coverage; (<b>d</b>) current landfill cell; (<b>e</b>) leachate lagoon; (<b>f</b>) useful volume for waste confinement.</p> "> Figure 8
<p>MSW deposited in the FDS of Reforma, Chiapas.</p> "> Figure 9
<p>Composition of MSW deposited in the FDS of Reforma, Chiapas.</p> "> Figure 10
<p>Spatial analysis of distances and restrictions: (<b>a</b>) local scale; (<b>b</b>) regional scale.</p> "> Figure 11
<p>LULC analysis in the area of influence of the FDS: (<b>a</b>) year 2005; (<b>b</b>) year 2013; (<b>c</b>) year 2015; (<b>d</b>) year 2021.</p> "> Figure 12
<p>Dispersion of gaseous emissions in the FDS of the study area: (<b>a</b>) landfill gas; (<b>b</b>) H<sub>2</sub>S.</p> "> Figure 13
<p>Modeling of liquid emissions in the FDS: (<b>a</b>) conservative pollutant dispersion; (<b>b</b>) behavior of concentration vs. distance.</p> "> Figure 14
<p>LST modeling in the surroundings of the FDS for the period 2005–2021: (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) temperatures in summer season; (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) temperatures in winter season.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Spatial Analysis and Use of GIT
3. Results and Discussion
3.1. Operation of the FDS
3.2. Analysis of Distances and Restrictions
3.3. LULC Analysis
3.4. Landfill Gas Dispersion Analysis
3.5. Leachates Dispersion Analysis
3.6. LST Analysis
3.7. Recommendations in Decision Making
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Shafy, H.; Mansour, M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Silpa, K.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development; World Bank: Washington, DC, USA, 2018; p. 272. [Google Scholar]
- OJEU, Official Journal of the European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, L 312, 3-30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 23 January 2023).
- Araiza, J.; Chávez, J.; Moreno, J.; Rojas, M. Municipal Solid Waste Management in a Municipality of Chiapas, Mexico. Soc. Sci. 2017, 6, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, M.; López, M.; Pellón, A.; Robert, M.; Díaz, S.; González, A.; Rodríguez, N.; Fernández, A. Analysis of the behavior of leachates generated in a municipal solid waste landfill in the city of Havana. Rev. Int. Contam. Ambie. 2010, 26, 313–325. [Google Scholar]
- Hereher, M.; Al-Awadhi, T.; Mansour, S. Assessment of the optimized sanitary landfill sites in Muscat, Oman. Egypt. J. Remote. Sens. Space Sci. 2019, 23, 355–362. [Google Scholar] [CrossRef]
- Owusu-Nimo, F.; Oduro-Kwarteng, S.; Essandoh, H.; Wayo, F.; Shamudeen, M. Characteristics and management of landfill solid waste in Kumasi, Ghana. Sci. Afr. 2019, 3, e00052. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series; World Bank: Washington, DC, USA, 2012; p. 98. [Google Scholar]
- Yan, W.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef]
- Gouveia, N.; Prado, R. Health risks in areas close to urban solid waste landfill sites. Rev. Saude Publ. 2010, 44, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, F.; Li, J. Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res. 2020, 39, 360–367. [Google Scholar] [CrossRef]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef]
- Vongdala, N.; Tran, H.; Teschke, R.; Khanh, T. Heavy Metal Accumulation in Water, Soil, and Plants of Municipal Solid Waste Landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 2019, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- Przydatek, G. Multi-indicator analysis of the influence of old municipal landfill sites on the aquatic environment: Case study. Environ. Monit. Assess. 2019, 191, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Dhar, H.; Nair, V.; Rena, J.; Arya, S.; Bhattacharya, K.; Vaidya, A.; Akolkar, A. Environmental quality monitoring and impact assessment of solid waste dumpsites in high altitude sub-tropical regions. J. Environ. Manag. 2019, 252, 109681. [Google Scholar] [CrossRef]
- Araiza, J.; Cram, S.; Ruiz, N.; Oropeza, O.; Fernández, M.; Rojas, M. What does ‘risk’ mean in municipal solid waste management? Investigaciones Geográficas 2021, 105, 1–20. [Google Scholar] [CrossRef]
- El-Fadel, M.; Findikakis, A.; Leckie, J. Environmental Impacts of Solid Waste Landfilling. J. Environ. Manag. 1997, 50, 1–25. [Google Scholar] [CrossRef]
- OJEU, Official Journal of the European Union. Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031 (accessed on 23 January 2023).
- Mexican Official Standard NOM-083-SEMARNAT-2003; Specifications for Environmental Protection Related to the Site Selection, Design, Construction, Monitoring, Closure and Complementary Works of a Final Disposal Site for Urban Solid Waste and of Special Management. OJF, Official Journal of the Federation: Federal District, Mexico, 2004.
- Zurita, L. Territorial Knowledge Management; RA-MA: Madrid, Spain, 2011; p. 204. [Google Scholar]
- Karimi, N.; Richter, A.; NG, K. Siting and ranking municipal landfill sites in regional scale using nighttime satellite imagery. J. Environ. Manag. 2020, 256, 109942. [Google Scholar] [CrossRef] [PubMed]
- Lacoboaea, C.; Petrescu, F. Landfill monitoring using remote sensing: A case study of Glina, Romania. Waste Manag. Res. 2013, 31, 1075–1080. [Google Scholar] [CrossRef]
- Mahmood, K.; Batool, A.; Faizi, F.; Chaudhry, M.; Ul-Haq, Z.; Rana, A.; Tariq, S. Bio-thermal effects of open dumps on surroundings detected by remote sensing—Influence of geographical conditions. Ecol. Indic. 2017, 82, 131–142. [Google Scholar] [CrossRef]
- Amal, L.; Son, L.; Chabchoub, H.; Lahini, H. Analysis of municipal solid waste collection using GIS and multi-criteria decision aid. Appl. Geomatics 2020, 12, 193–208. [Google Scholar] [CrossRef]
- Fennonato, N.; Preziosi, G.; Gorritty, M.; Guisbert, E.; Torretta, V. Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Manag. 2020, 102, 919–931. [Google Scholar] [CrossRef]
- Kinobe, J.; Bosona, T.; Gebresenbet, G.; Niwagaba, C.; Vinnerås, B. Optimization of waste collection and disposal in Kampala city. Habitat Int. 2015, 49, 126–137. [Google Scholar] [CrossRef]
- Khorsandi, H.; Faramarzi, A.; Aghapour, A.; Jafari, S. Landfill site selection via integrating multi-criteria decision techniques with geographic information systems: A case study in Naqadeh, Iran. Environ. Monit. Assess. 2019, 191, 730. [Google Scholar] [CrossRef]
- Damasceno, I.; Ennes, R.; de Almeida, T.; Zandonadi, L.; Contreras, F. Allocation of sanitary landfill in consortium: Strategy for the Brazilian municipalities in the State of Amazonas. Environ. Monit. Assess. 2019, 191, 39. [Google Scholar] [CrossRef] [PubMed]
- Ağacsapan, B.; Cabuk, S. Determination of suitable waste transfer station areas for sustainable territories: Eskisehir case. Sustain. Cities Soc. 2020, 52, 101829. [Google Scholar] [CrossRef]
- Araiza, J.; Cram, S.; Ruiz, N.; Oropeza, O.; Fernández, M.; Rojas, M. GIS-based approach to zoning the risk associated with municipal solid waste management: Application to regional scale. Environ. Monit. Assess. 2021, 193, 69. [Google Scholar] [CrossRef]
- Mexican Standard NMX-AA-015-1985; Environmental Protection—Soil pollution—Municipal Solid Waste—Sampling—Quartering Method. General Directorate of Standards. Secretariat of Commerce and Industrial Development: Federal District, Mexico, 1985.
- Mexican Standard NMX-AA-019-1985; Environmental Protection—Soil pollution—Municipal Solid Waste—Volumetric Weight “In Situ”. General Directorate of Standards. Secretariat of Commerce and Industrial Development: Federal District, Mexico, 1985.
- Mexican Standard NMX-AA-022-1985; Environmental Protection—Soil Pollution—Municipal Solid Waste—Selection and Quantification of Subproducts. General Directorate of Standards. Secretariat of Commerce and Industrial Development: Federal District, Mexico, 1985.
- Araiza, J.; Chávez, J.; Moreno, J. Quantification of municipal solid waste generated in the municipal seat of Berriozabal, Chiapas. Int. J. Environ. Pollut. 2017, 33, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Araiza, J.; Nájera, H.; Gutiérrez, R.; Rojas, M. Emplacement of solid waste management infrastructure for the Frailesca region, Chiapas, México, using GIS tools. Egypt. J. Remote. Sens. Space Sci. 2018, 21, 391–399. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Shanableh, A.; Omar, M.; Al-Khayyat, G. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates. Environ. Monit. Assess. 2018, 190, 147. [Google Scholar] [CrossRef]
- Abd-El Monsef, H.; Smith, S. Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arab. J. Geosci. 2019, 12, 155. [Google Scholar] [CrossRef]
- CONABIO, National Commission for the Knowledge and Use of Biodiversity. Land Cover Monitoring. Available online: https://www.biodiversidad.gob.mx/monitoreo/cobertura-suelo (accessed on 23 January 2021).
- Hu, O.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Lisita, A.; Sano, E.; Durieux, L. Identifying potential areas of Cannabis sativa plantations using object-based image analysis of SPOT-5 satellite data. Int. J. Remote Sens. 2013, 34, 5409–5428. [Google Scholar] [CrossRef]
- Pontius, R.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence, Agriculture. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization. Forest Resources Assessment 1990, Survey of Tropical Forest Cover and Study of Change Processes; FAO: Rome, Italy, 1996; p. 130. [Google Scholar]
- CONAGUA, National Water Commission. Automatic Meteorological Stations. Available online: https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s (accessed on 10 June 2019).
- INEGI, National Institute of Statistic and Geography. Mexican Elevations Continuum (CEM). Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 12 June 2021).
- Castillo, M.; Gandini, M.; Laín, S. Simulation of transport and dispersion of atmospheric emissions from Navarro solid waste dump site, Cali (Colombia). Ingeniería y Universidad 2012, 16, 501–516. [Google Scholar] [CrossRef]
- Araiza, J.; Rojas, M. Spatial modelling of gaseous emissions from two municipal solid waste dump sites. Int. J. Environ. Stud. 2019, 76, 213–224. [Google Scholar] [CrossRef]
- ESRI, Environmental Systems Research Institute. An overview of the Groundwater Toolset. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-groundwater-tools.htm (accessed on 23 January 2021).
- Guleria, A.; Gupta, S.; Gupta, I.; Swami, D.; Shukla, D. Understanding the spatial and temporal dependence of the migration of conservative contaminant plume in urban groundwater environment in Panchkula region, Haryana, India. Groundw. Sustain. Dev. 2019, 8, 93–103. [Google Scholar] [CrossRef]
- CONAGUA, National Water Commission. Update of the Average Annual Availability of Water in the Reforma Aquifer (0702), State of Chiapas. General Technical Sub-Directorate-Groundwater Management. 2020. Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/chiapas/DR_0702.pdf (accessed on 2 July 2023).
- SGM, Mexican Geological Service. GeoInfoMex—SGM Database. Available online: https://www.sgm.gob.mx/GeoInfoMexGobMx/# (accessed on 20 January 2022).
- CONAGUA National Water Commission. Networks of Piezometric Wells. Available online: https://sigagis.conagua.gob.mx/gas1/sections/RedesMonirtoreo_Piezometrico.html (accessed on 23 January 2021).
- Govind, N.; Ramesh, H. The impact of spatiotemporal patterns of land use land cover and land surface temperature on an urban cool island: A case study of Bengaluru. Environ. Monit. Assess. 2019, 191, 283. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Batool, S.; Chaudhry, M. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Manag. 2016, 55, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Mondal, P.; Sutradhar, S.; Ghosh, R. Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivisión, Egypt. Egypt. J. Remote Sens. Space Sci. 2021, 24, 131–149. [Google Scholar] [CrossRef]
- Morsy, M.; Aboelkhair, H. Assessment of agricultural expansion and its impact on land Surface temperature in El-Beheira Governorate, Egypt. Egypt. J. Remote Sens. Space Sci. 2021, 24, 721–733. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhou, K.; Xu, Q.; Yin, J.; Peng, D.; Wang, D.; Li, W. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 2017, 14, 705–718. [Google Scholar] [CrossRef]
- Laner, D.; Fellner, J.; Brunner, P. Flooding of municipal solid waste landfills—An environmental hazard? Sci. Total Environ. 2009, 407, 3674–3680. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef]
- Jaramillo, J. Guide for the Design, Construction and Operation of Manual Sanitary Landfills; Pan-American Center for Sanitary Engineering and Environmental Sciences: Lima, Peru, 2002; p. 287. [Google Scholar]
- Silva, M.; García, A.; Hernando, A. Urban growth in the Metropolitan Area of Tuxtla Gutiérrez (Chiapas, México). Quehacer Científico en Chiapas 2015, 10, 35–41. [Google Scholar]
- Ramos, R.; Palomeque, M.; Nuñez, J.; Sánchez, R. Spatial analysis and geomatics of land use changes in Huimanguillo, Tabasco (2000-2010-2030). Rev. Mex. Cienc. For. 2019, 10, 118–139. [Google Scholar] [CrossRef] [Green Version]
- INEGI, National Institute of Statistic and Geography. Censuses and Population and Housing Counts. Available online: https://inegi.org.mx/programas/ccpv (accessed on 10 June 2022).
- INEGI, National Institute of Statistic and Geography. National Statistical Directory of Economic Units—Massive Data Download. Available online: https://www.inegi.org.mx/app/descarga/ (accessed on 20 August 2022).
- Themelis, N.; Ulloa, P. Methane generation in landfills. Renew. Energy 2007, 32, 1243–1257. [Google Scholar] [CrossRef]
- Daskalopoulos, E.; Badr, O.; Probert, S. Economic and Environmental Evaluations of Waste Treatment and Disposal Technologies for Municipal Solid Waste. Appl. Energy 1997, 58, 209–255. [Google Scholar] [CrossRef]
- Köfalusi, G.; Encarnación, G. The products and impacts of the decomposition of urban solid waste in final disposal sites. Gaceta ecológica 2006, 79, 39–51. Available online: https://www.redalyc.org/articulo.oa?id=53907903 (accessed on 23 January 2022).
- Tagaris, E.; Sotiropoulou, R.; Pilinis, C.; Halvadakis, C. Atmospheric methane transport near landfill sites. Waste Manag. Res. 2003, 21, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.; Kjelden, P.; Bjerg, P.; Jensen, D.; Christensen, J.; Baun, A.; Albrechtsen, H.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- González, R.; Rodríguez, R.; Coronado, V. Natural attenuation in the Yucatecan aquifer. Rev. Int. Contam. Ambient. 2007, 23, 5–15. Available online: https://www.redalyc.org/articulo.oa?id=37023101 (accessed on 23 January 2022).
- Pokorny, J.; Brom, J.; Cermák, J.; Hesslerová, P.; Huryna, H.; Nadezhdina, N.; Rejšková, A. Solar energy dissipation and temperature control by water and plants. Int. J. Water 2010, 5, 311–336. [Google Scholar] [CrossRef]
Variables | Distances/Restriction | Source |
---|---|---|
Airports | 13 km | OJF, [19] Araiza et al. [35] Al-Ruzouq et al. [36] Abd-El Monsef and Smith [37] |
Protected natural areas | Stay out of them | |
Population settlements | 500 m | |
Surface water | 500 m | |
Water extraction wells | 500 m | |
Distance to roads | 500 m | |
Buyers nearby | 1000 m | |
Current land uses | Stay out of non-compatible land uses | |
Faults and fractures | Stay out of them |
Coverage | 2005 | 2021 | Increments | Losses | Persistence | Change Rate (%) | ||
---|---|---|---|---|---|---|---|---|
Ha | % | Ha | % | |||||
Water | 5.00 | 1.11 | 3.29 | 0.73 | 1.88 | 3.58 | 1.41 | −2.57 |
Urban/Anthropized | 43.47 | 9.61 | 107.52 | 23.78 | 81.45 | 17.41 | 26.06 | 5.82 |
Tree coverage | 79.68 | 17.62 | 53.57 | 11.85 | 33.77 | 59.88 | 19.79 | −2.45 |
Shrub and herbaceous coverage | 324.06 | 71.66 | 287.83 | 63.65 | 66.29 | 102.52 | 221.54 | −0.74 |
Total | 452.21 | 100.00 | 452.21 | 100.00 | 183.40 | 183.40 | 268.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araiza-Aguilar, J.A.; Rojas-Valencia, M.N.; Nájera-Aguilar, H.A.; Gutiérrez-Hernández, R.F.; García-Lara, C.M. Analysis of a Municipal Solid Waste Disposal Site: Use of Geographic Information Technology Tools for Decision Making. ISPRS Int. J. Geo-Inf. 2023, 12, 280. https://doi.org/10.3390/ijgi12070280
Araiza-Aguilar JA, Rojas-Valencia MN, Nájera-Aguilar HA, Gutiérrez-Hernández RF, García-Lara CM. Analysis of a Municipal Solid Waste Disposal Site: Use of Geographic Information Technology Tools for Decision Making. ISPRS International Journal of Geo-Information. 2023; 12(7):280. https://doi.org/10.3390/ijgi12070280
Chicago/Turabian StyleAraiza-Aguilar, Juan Antonio, María Neftalí Rojas-Valencia, Hugo Alejandro Nájera-Aguilar, Rubén Fernando Gutiérrez-Hernández, and Carlos Manuel García-Lara. 2023. "Analysis of a Municipal Solid Waste Disposal Site: Use of Geographic Information Technology Tools for Decision Making" ISPRS International Journal of Geo-Information 12, no. 7: 280. https://doi.org/10.3390/ijgi12070280
APA StyleAraiza-Aguilar, J. A., Rojas-Valencia, M. N., Nájera-Aguilar, H. A., Gutiérrez-Hernández, R. F., & García-Lara, C. M. (2023). Analysis of a Municipal Solid Waste Disposal Site: Use of Geographic Information Technology Tools for Decision Making. ISPRS International Journal of Geo-Information, 12(7), 280. https://doi.org/10.3390/ijgi12070280