Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera
<p>Plants after 6 weeks of cultivation: <span class="html-italic">D. peltata</span> (<b>A</b>–<b>C</b>); <span class="html-italic">D. indica</span> (<b>D</b>–<b>F</b>); <span class="html-italic">D. regia</span> (<b>G</b>–<b>I</b>); <span class="html-italic">D. binata</span> (<b>J</b>–<b>L</b>). (<b>A</b>,<b>D</b>,<b>G</b>,<b>J</b>)—solid medium; (<b>B</b>,<b>E</b>,<b>H</b>,<b>K</b>)—agitated culture; (<b>C</b>,<b>F</b>,<b>I</b>,<b>L</b>)—temporary immersion bioreactor Plantform<sup>TM</sup>.</p> "> Figure 2
<p>Sum of phenolic compounds (mg × 100 g<sup>−1</sup> DW) in <span class="html-italic">D. peltata</span>, <span class="html-italic">D. indica</span>, <span class="html-italic">D. regia</span>, and <span class="html-italic">D. binata</span> cultivated in solid medium, agitated cultures, and temporary immersion bioreactor Plantform<sup>TM</sup>. Lower case letters indicate statistical significance of means according to two-way ANOVA, post hoc Tukey test at <span class="html-italic">p</span> < 0.05; the bar represents the standard deviation; DW—dry weight.</p> "> Figure 3
<p>Phenolic acid productivity (mg × 100 mL<sup>−1</sup> of medium) in <span class="html-italic">D. peltata</span>, <span class="html-italic">D. indica</span>, <span class="html-italic">D. regia</span>, and <span class="html-italic">D. binata</span> cultivated in solid medium, agitated cultures, and temporary immersion bioreactor Plantform<sup>TM</sup>. Lower case letters indicate statistical significance of means according to two-way ANOVA, post hoc Tukey test at <span class="html-italic">p</span> < 0.05; the bar represents the standard deviation.</p> "> Figure 4
<p>Flavonoid productivity (mg × 100 mL<sup>−1</sup> of medium) in <span class="html-italic">D. peltata</span>, <span class="html-italic">D. indica</span>, <span class="html-italic">D. regia</span>, and <span class="html-italic">D. binata</span> cultivated in solid medium, agitated cultures, and temporary immersion bioreactor Plantform<sup>TM</sup>. Lower case letters indicate statistical significance of means according to two-way ANOVA, post hoc Tukey test at <span class="html-italic">p</span> < 0.05; the bar represents the standard deviation.</p> "> Figure 5
<p>Naphthoquinone productivity (mg × 100 mL<sup>−1</sup> of medium) in <span class="html-italic">D. peltata</span>, <span class="html-italic">D. indica</span>, <span class="html-italic">D. regia</span>, and <span class="html-italic">D. binata</span> cultivated in solid medium, agitated cultures, and temporary immersion bioreactor Plantform<sup>TM</sup>. Lower case letters indicate statistical significance of means according to two-way ANOVA, post hoc Tukey test at <span class="html-italic">p</span> < 0.05; the bar represents the standard deviation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Examined In Vitro Culture Systems
2.2.1. Cultures in Solid Medium
2.2.2. Agitated Culture
2.2.3. Cultures in Temporary Immersion Bioreactors
2.3. Growth Index and Dry Weight Estimation
2.4. Phytochemical Analysis
2.4.1. Extraction Procedure
2.4.2. High-Pressure Liquid Chromatography
2.5. Chemical Synthesis of Ramentaceone (5-Hydroxy-7-methyl-1,4-naphthoquinone)
2.6. Calculation of the Sum of Phenolic Compounds
2.7. Calculation of the Productivity of Phenolic Compounds
2.8. Antibacterial Activity of Plant-Derived Extracts
2.9. Statistical Analyses
3. Results
3.1. Morphological Observations of Drosera Tissue Cultures
3.2. Sum of Phenolic Compounds in Sundew Tissue Cultures
3.3. Accumulation of Phenolic Derivatives in Sundew Tissue Cultures
3.4. Phenolic Compounds Productivity in Sundew Tissue Cultures
3.5. Bactericidal Properties of Sundew Tissue Cultures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tokarz, K.; Makowski, W.; Banasiuk, R.; Krolicka, A.; Piwowarczyk, B. Response of Dionaea muscipula J. Ellis to light stress in in vitro: Physiological study. Plant Cell Tissue Organ Cult. 2018, 134, 65–77. [Google Scholar] [CrossRef]
- Yilamujiang, A.; Reichelt, M.; Mithöfer, A. Slow food: Insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants. Ann. Bot. 2016, 118, v369–v375. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Rhodes, D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic. Res. 2016, 3, 16046. [Google Scholar] [CrossRef]
- Tkalec, M.; Dobos, M.; Babic, M.; Jurak, E. The acclimation of carnivorous round-leaved sundew (Drosera rotundifolia L.) to solar radiation. Acta Physiol. Plant. 2015, 37, 78. [Google Scholar] [CrossRef]
- Lingwan, M.; Pradhan, A.A.; Kushwaha, A.K.; Dar, M.A.; Bhagavatula, L.; Datta, S. Photoprotective role of plant secondary metabolites: Biosynthesis, photoregulation, and prospects of metabolic engineering for enhanced protection under excessive light. Environ. Exp. Bot. 2023, 209, 105300. [Google Scholar] [CrossRef]
- Freund, M.; Graus, D.; Fleischmann, A.; Gilbert, K.J.; Lin, Q.; Renner, T.; Stigloher, C.; Albert, V.A.; Hedrich, R.; Fukushima, K. The Digestive Systems of Carnivorous Plants. Plant Physiol. 2022, 190, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Poppinga, S.; Hartmeyer, S.R.H.; Masselter, T.; Hartmeyer, I.; Speck, T. Trap diversity and evolution in the family Droseraceae. Plant Signal. Behav. 2013, 8, 20–22. [Google Scholar] [CrossRef]
- Krolicka, A.; Szpitter, A.; Stawujak, K.; Baranski, R.; Gwizdek-Wisniewska, A.; Skrzypczak, A.; Kaminski, M.; Lojkowska, E. Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue Organ Cult. 2010, 103, 285–292. [Google Scholar] [CrossRef]
- Wójciak, M.; Feldo, M.; Stolarczyk, P.; Płachno, B.J. Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023, 28, 2155. [Google Scholar] [CrossRef]
- Krychowiak, M.; Grinholc, M.; Banasiuk, R.; Krauze-Baranowska, M.; Glod, D.; Kawiak, A.; Krolicka, A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS ONE 2014, 9, e115727. [Google Scholar] [CrossRef]
- Durán, A.G.; Chinchilla, N.; Simonet, A.M.; Gutiérrez, M.T.; Bolívar, J.; Valdivia, M.M.; Molinillo, J.M.G.; Macías, F.A. Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds. Toxins 2023, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Kao, W.Y. The population of Drosera indica, a carnivorous plant, in a wetland of Taiwan is limited by its neighboring plants. Flora 2021, 285, 151939. [Google Scholar] [CrossRef]
- Makowski, W.; Królicka, A.; Tokarz, B.; Szopa, A.; Ekiert, H.; Tokarz, K.M. Temporary immersion bioreactors as a useful tool for obtaining high productivity of phenolic compounds with strong antioxidant properties from Pontechium maculatum. Plant Cell Tissue Organ Cult. 2023, 153, 525–537. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Tabaka, P.; Weremczuk-Jeżyna, I. Enhancing polyphenol yield in Salvia viridis L. shoot culture through liquid medium optimization and light spectrum manipulation. Plant Cell Tissue Organ Cult. 2024, 156, 88. [Google Scholar] [CrossRef]
- Banasiuk, R.; Kawiak, A.; Krolicka, A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Biotechnologia 2012, 93, 87–96. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Jafernik, K.; Luczkiewicz, M.; Ekiert, H. Bioreactor type affects the accumulation of phenolic acids and flavonoids in microshoot cultures of Schisandra chinensis (Turcz.) Baill. Plant Cell Tissue Organ Cult. 2019, 139, 199–206. [Google Scholar] [CrossRef]
- Makowski, W.; Tokarz, K.M.; Tokarz, B.; Banasiuk, R.; Witek, K.; Królicka, A. Elicitation-Based Method for Increasing the Production of Antioxidant and Bactericidal Phenolic Compounds in Dionaea muscipula J. Ellis Tissue. Molecules 2020, 25, 1794. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Rytczak, P.; Bielecki, S.; Wysokińska, H. The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2017, 128, 479–486. [Google Scholar] [CrossRef]
- De Carlo, A.; Tarraf, W.; Lambardi, M.; Benelli, C. Temporary Immersion System for Production of Biomass and Bioactive Compounds from Medicinal Plants. Agronomy 2021, 11, 2414. [Google Scholar] [CrossRef]
- Kim, K.S.; Jang, G.W. Micropropagation of Drosera peltata, a Tuberous Sundew, by Shoot Tip Culture. Plant Cell Tissue Organ Cult. 2004, 77, 211–214. [Google Scholar] [CrossRef]
- Rajninec, M.; Fratrikova, M.; Boszoradova, E.; Jopcik, M.; Bauer, M.; Libantova, J. Basic β-1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants. Plants 2021, 10, 1747. [Google Scholar] [CrossRef]
- Junichi, S.; Nagano, K.; Hoshi, Y. A chromosome study of two centromere differentiating Drosera species, D. arcturi and D. regia. Caryologia 2011, 64, 453–463. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, A.; Tshikalange, T.E.; Meyer, J.J.M.; Lall, N. Synthesis and HIV-1 reverse transcriptase inhibition activity of 1,4-naphthoquinone derivatives. Chem. Nat. Compd. 2012, 47, 883–887. [Google Scholar] [CrossRef]
- Redaelli, M.; Mucignat-Caretta, C.; Ahmed Isse, A.; Gennaro, A.; Pezzani, R.; Pasquale, R.; Pavan, V.; Crisma, M.; Ribaudo, G.; Zagotto, G. New naphthoquinone derivatives against glioma cells. Eur. J. Med. Chem. 2015, 96, 458–466. [Google Scholar] [CrossRef]
- Braunberger, C.; Zehl, M.; Conrad, J.; Wawrosch, C.; Strohbach, J.; Beifuss, U.; Krenn, L. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry 2015, 118, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Gerschler, S.; Neumann, N.; Schultze, N.; Guenther, S.; Schulze, C. Quality parameters for the medicinal plant Drosera rotundifolia L.: A new approach with established techniques. Arch. Pharm. 2024, 357, e2300436. [Google Scholar] [CrossRef]
- Hwang, H.-D.; Kwon, S.-H.; Murthy, H.N.; Yun, S.-W.; Pyo, S.-S.; Park, S.-Y. Temporary Immersion Bioreactor System as an Efficient Method for Mass Production of In Vitro Plants in Horticulture and Medicinal Plants. Agronomy 2022, 12, 346. [Google Scholar] [CrossRef]
- Malik, S.; Sharma, M.; Ahuja, P.S. An efficient and economic method for in vitro propagation of Arnebia euchroma using liquid culture system. Am. J. Biotechnol. Med. Res. 2016, 1, 19–25. [Google Scholar] [CrossRef]
- Kawka, B.; Kwiecień, I.; Ekiert, H. Endogenous production of specific flavonoids and verbascoside in agar and agitated microshoot cultures of Scutellaria lateriflora L. and biotransformation potential. Plant Cell Tissue Organ Cult. 2020, 142, 471–482. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1. [Google Scholar] [CrossRef] [PubMed]
- Makowski, W.; Królicka, A.; Nowicka, A.; Zwyrtková, J.; Tokarz, B.; Pecinka, A.; Banasiuk, R.; Tokarz, K.M. Transformed Tissue of Dionaea muscipula J. Ellis as a Source of Biologically Active Phenolic Compounds with Bactericidal Properties. Appl. Microbiol. Biotechnol. 2021, 105, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Kunakhonnuruk, B.; Kongbangkerd, A.; Inthima, P. Improving large-scale biomass and plumbagin production of Drosera communis A. St.-Hil. by temporary immersion system. Ind. Crops Prod. 2019, 137, 197–202. [Google Scholar] [CrossRef]
- Gerschler, S.; Guenther, S.; Schulze, C. Antibiofilm Activity of Sundew Species against Multidrug-Resistant Escherichia coli Strains. Int. J. Mol. Sci. 2022, 23, 13720. [Google Scholar] [CrossRef]
Growth Index | Dry Weight | ||
---|---|---|---|
% [±SD] | |||
Drosera peltata | Solid medium | 61.3 ± 9.3 bc | 16.5 ± 1.8 c |
Agitation | 78.5 ± 2.2 e | 14.1 ± 1.6 bc | |
Temporary immersion | 57.4 ± 8.3 ab | 23.2 ± 2.5 d | |
Drosera indica | Solid medium | 56.2 ± 7.0 ab | 12.4 ± 0.5 bc |
Agitation | 73.9 ± 4.1 de | 6.3 ± 0.4 a | |
Temporary immersion | 78.4 ± 3.8 e | 17.5 ± 4.6 c | |
Drosera regia | Solid medium | 58.3 ± 6.7 ab | 16.0 ± 1.0 c |
Agitation | 58.9 ± 6.0 ab | 14.1 ± 2.1 bc | |
Temporary immersion | 72.2 ± 0.3 de | 25.1 ± 4.8 d | |
Drosera binata | Solid medium | 63.9 ± 3.9 bcd | 7.5 ± 0.5 a |
Agitation | 51.3 ± 5.6 a | 6.9 ± 0.5 a | |
Temporary immersion | 62.4 ± 0.5 abcd | 9.5 ± 1.6 ab |
Gallic Acid | Protocatechic Acid | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | Ellagic Acid | ||
---|---|---|---|---|---|---|---|
mg ×100 g−1 DW [±SD] | |||||||
Drosera peltata | Solid medium | 39.5 ± 0.1 f | 2.5 ± 0.1 ab | 25.7 ± 0.1 f | 6.2 ± 0.2 ab | 20.9 ± 0.1 ab | 98.0 ± 8.5 d |
Agitation | 44.8 ± 0.1 g | 3.1 ± 0.1 b | 38.6 ± 0.2 g | 8.0 ± 0.2 abc | 36.1 ± 0.2 ab | 98.4 ± 7.6 d | |
Temporary immersion | 28.6 ± 0.3 d | 11.0 ± 0.2 f | 9.0 ± 0.1 bc | 5.1 ± 0.1 a | 109.6 ± 3.5 c | 90.6 ± 0.9 cd | |
Drosera indica | Solid medium | 39.7 ± 0.3 f | 10.8 ± 0.1 ef | 12.7 ± 0.3 d | 8.3 ± 0.1 abc | 141.8 ± 9.4 cd | 93.4 ± 15.6 cd |
Agitation | 33.6 ± 0.2 e | 16.9 ± 0.1 h | 7.6 ± 0.1 b | 6.6 ± 0.1 ab | 157.7 ± 5.5 de | 123.5 ± 0.6 e | |
Temporary immersion | 5.2 ± 0.2 a | 1.8 ± 0.1 a | 1.8 ± 0.6 a | 2.5 ± 0.2 a | 9.3 ± 0.1 a | 11.4 ± 0.4 a | |
Drosera regia | Solid medium | 33.5 ± 1.1 e | 9.8 ± 0.2 d | 16.4 ± 0.2 e | 32.0 ± 11.0 ef | 231.8 ± 37.9 f | 89.7 ± 0.3 cd |
Agitation | 26.7 ± 0.3 bc | 7.2 ± 0.4 c | 7.3 ± 0.3 b | 36.1 ± 0.9 g | 241.5 ± 18.4 f | 142.2 ± 2.3 e | |
Temporary immersion | 27.9 ± 0.3 cd | 9.9 ± 0.3 de | 11.2 ± 2.4 cd | 17.6 ± 1.3 cd | 180.4 ± 11.6 e | 102.7 ± 10.7 d | |
Drosera binata | Solid medium | 27.7 ± 0.9 cd | 9.8 ± 0.7 d | 11.5 ± 1.8 cd | 16.0 ± 3.3 bcd | 45.9 ± 1.8 ab | 77.8 ± 0.9 c |
Agitation | 32.3 ± 0.4 e | 12.9 ± 0.2 g | 17.8 ± 0.1 e | 22.1 ± 1.7 de | 52.9 ± 0.8 b | 83.7 ± 2.7 cd | |
Temporary immersion | 26.3 ± 0.5 b | 9.4 ± 0.6 d | 11.0 ± 1.2 cd | 10.8 ± 2.1 abc | 46.6 ± 0.8 ab | 55.9 ± 2.4 b |
Hyperoside | Myricetin | Quercetin | Kaempferol | Plumbagin | Ramentaceone | ||
---|---|---|---|---|---|---|---|
mg ×100 g−1 DW [±SD] | |||||||
Drosera peltata | Solid medium | 127.3 ± 3.5 cd | 44.2 ± 0.7 abc | 136.9 ± 0.7 ab | 17.1 ± 0.3 a | 1548.1 ± 60.8 bc | nd |
Agitation | 170.5 ± 1.3 d | 47.0 ± 2.5 abc | 102.5 ± 76.0 a | 50.7 ± 1.2 b | 1186.2 ± 40.2 a | nd | |
Temporary immersion | 47.6 ± 0.2 a | 35.2 ± 0.4 ab | 72.4 ± 1.0 a | 13.5 ± 0.4 a | 1492.5 ± 43.0 abc | nd | |
Drosera indica | Solid medium | 55.6 ± 0.6 ab | 77.9 ± 8.9 abc | 94.5 ± 1.4 a | 11.4 ± 0.5 a | 1448.0 ± 15.8 ab | 419.2 ± 6.1 a |
Agitation | 79.1 ± 0.3 abc | 44.7 ± 1.8 abc | 91.3 ± 3.6 a | 19.6 ± 0.1 a | 1769.4 ± 39.9 bcd | 752.4 ± 3.9 d | |
Temporary immersion | 97.9 ± 0.3 bc | 20.6 ± 0.7 a | 189.9 ± 0.8 bc | 11.1 ± 0.8 a | 1812.1 ± 83.8 cd | 462.6 ± 19.9 b | |
Drosera regia | Solid medium | 1337.3 ± 29.6 i | 338.3 ± 38.4 f | 260.9 ± 34.6 c | 51.0 ± 13.4 b | 4069.7 ± 116.3 g | 1358.7 ± 36.9 e |
Agitation | 939.7 ± 27.7 g | 259.4 ± 9.4 e | 453.7 ± 26.6 d | 141.8 ± 15.5 d | 1924.5 ± 29.7 d | 653.8 ± 15.0 c | |
Temporary immersion | 1150.3 ± 33.5 h | 331.6 ± 57.4 f | 233.51 ± 2.5 c | 83.3 ± 1.0 c | 4606.2 ± 39.3 h | 1268.0 ± 10.9 e | |
Drosera binata | Solid medium | 592.3 ± 19.3 f | 111.2 ± 1.8 cd | 982.0 ± 2.9 e | 96.9 ± 9.1 c | 2894.7 ± 165.7 e | nd |
Agitation | 579.5 ± 3.7 f | 147.7 ± 36.6 d | 908.3 ± 16.4 e | 123.0 ± 1.8 d | 3256.9 ± 178.1 f | nd | |
Temporary immersion | 498.2 ± 14.9 e | 99.4 ± 2.9 bcd | 949.5 ± 3.9 e | 53.5 ± 2.2 b | 3052.5 ± 260.9 ef | nd |
Staphylococcus aureus ATCC 25923 | Escherichia coli ATCC 25922 | ||
---|---|---|---|
[µg DW × mL−1] | |||
Drosera peltata | Solid medium | 834 | 4168 |
Agitation | 834 | 2000 | |
Temporary immersion | 834 | 4168 | |
Drosera indica | Solid medium | 417 | 1000 |
Agitation | 417 | 2000 | |
Temporary immersion | 417 | 1000 | |
Drosera regia | Solid medium | 417 | 2000 |
Agitation | 417 | 2000 | |
Temporary immersion | 417 | 2000 | |
Drosera binata | Solid medium | 417 | 4167 |
Agitation | 834 | 4167 | |
Temporary immersion | 834 | 4167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowski, W.; Mrzygłód, K.; Szopa, A.; Kubica, P.; Krychowiak-Maśnicka, M.; Tokarz, K.M.; Tokarz, B.; Ryngwelska, I.; Paluszkiewicz, E.; Królicka, A. Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera. Biomolecules 2024, 14, 1132. https://doi.org/10.3390/biom14091132
Makowski W, Mrzygłód K, Szopa A, Kubica P, Krychowiak-Maśnicka M, Tokarz KM, Tokarz B, Ryngwelska I, Paluszkiewicz E, Królicka A. Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera. Biomolecules. 2024; 14(9):1132. https://doi.org/10.3390/biom14091132
Chicago/Turabian StyleMakowski, Wojciech, Kinga Mrzygłód, Agnieszka Szopa, Paweł Kubica, Marta Krychowiak-Maśnicka, Krzysztof Michał Tokarz, Barbara Tokarz, Iga Ryngwelska, Ewa Paluszkiewicz, and Aleksandra Królicka. 2024. "Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera" Biomolecules 14, no. 9: 1132. https://doi.org/10.3390/biom14091132
APA StyleMakowski, W., Mrzygłód, K., Szopa, A., Kubica, P., Krychowiak-Maśnicka, M., Tokarz, K. M., Tokarz, B., Ryngwelska, I., Paluszkiewicz, E., & Królicka, A. (2024). Effect of Agitation and Temporary Immersion on Growth and Synthesis of Antibacterial Phenolic Compounds in Genus Drosera. Biomolecules, 14(9), 1132. https://doi.org/10.3390/biom14091132