Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods
<p>Schematic diagrams of specimen size (<b>a</b>) and specimen orientation (<b>b</b>).</p> "> Figure 2
<p>The illustration of the heat treatment process.</p> "> Figure 3
<p>Diagram of the specimen microstructural observation zone.</p> "> Figure 4
<p>The true stress–strain curves under different heat treatment processes: (<b>a</b>) as-received; (<b>b</b>) SST; (<b>c</b>) AAT; and (<b>d</b>) DCAT.</p> "> Figure 5
<p>The relationship between yield strength and specimen orientation.</p> "> Figure 6
<p>The fracture morphology of 6082 aluminum alloy with different heat treatment conditions: (<b>a</b>) SST 0°; (<b>b</b>) SST 45°; (<b>c</b>) SST 90°; (<b>d</b>) AAT 0°; (<b>e</b>) AAT 45°; (<b>f</b>) AAT 90°; (<b>g</b>) DCAT 0°; (<b>h</b>) DCAT 45°; and (<b>i</b>) DCAT 90°.</p> "> Figure 7
<p>The microstructure of the 6082 aluminum alloy with different heat treatment conditions before the tensile test: (<b>a</b>) as-received; (<b>b</b>) SST; (<b>c</b>) AAT; and (<b>d</b>) DCAT.</p> "> Figure 8
<p>The microstructure near fracture of the 6082 aluminum alloy with different heat treatment conditions after the tensile experiment (<b>a</b>) SST 0°; (<b>b</b>) SST 45°; (<b>c</b>) SST 90°; (<b>d</b>) as-received 0°; (<b>e</b>) AAT 0°; and (<b>f</b>) DCAT 0°.</p> "> Figure 8 Cont.
<p>The microstructure near fracture of the 6082 aluminum alloy with different heat treatment conditions after the tensile experiment (<b>a</b>) SST 0°; (<b>b</b>) SST 45°; (<b>c</b>) SST 90°; (<b>d</b>) as-received 0°; (<b>e</b>) AAT 0°; and (<b>f</b>) DCAT 0°.</p> "> Figure 9
<p>TEM images of 6082 aluminum alloy with different heat treatment conditions before the tensile test: (<b>a</b>) as-received; (<b>b</b>) SST; (<b>c</b>) AAT; and (<b>d</b>) DCAT.</p> "> Figure 10
<p>TEM images of the 6082 aluminum alloy with different heat treatment conditions after the tensile test: (<b>a</b>) as-received; (<b>b</b>) SST; (<b>c</b>) AAT; and (<b>d</b>) DCAT.</p> "> Figure 10 Cont.
<p>TEM images of the 6082 aluminum alloy with different heat treatment conditions after the tensile test: (<b>a</b>) as-received; (<b>b</b>) SST; (<b>c</b>) AAT; and (<b>d</b>) DCAT.</p> ">
Abstract
:1. Introduction
2. Description of Materials and the Experimental Method
3. Experimental Results and Discussion
3.1. True Stress–True Strain Curves
3.2. Fracture Morphology
3.3. Microstructure Observation
4. Conclusions
- The yield strength of 6082 aluminum alloy after artificial aging treatment is significantly higher than that of solid solution treatment alloy; the yield strengths in three directions are around 340 MPa, because the precipitates in the matrix can effectively pin the dislocation and improve the deformation resistance. The yield strength of the 6082 alloy treated by the deep cryogenic aging process is slightly higher than that of artificially aged alloy because deep cryogenic treatment can promote the nucleation and precipitation of precipitates.
- The studied alloys in three different heat treatment conditions show ductile fracture characteristics. The elongation of the solid solution treatment alloy is over 16%; the fracture dimples are deep with high quantity. The elongation of artificially aged and cryogenic aged alloys is lower, and the dimple is shallower with a smaller size. The precipitates are potential stress concentration points during the tensile deformation process, which may lead to failure of the material.
- The solid solution alloy shows obvious mechanical properties of anisotropy, which is caused by the elongated grain. The anisotropy of artificially aging and deep cryogenic aging treatment alloys is not obvious. The reason is that the precipitates has a habitus plane; the large ratio of long and short axes during plastic deformation can inhibit the anisotropy caused by elongated grains.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Zhu, W.; Yuan, M.; Liang, C.; Deng, Y. The effect of Zn content on the microstructure and mechanical properties of the Al-mg-Si alloy. Mater. Charact. 2023, 198, 112714. [Google Scholar] [CrossRef]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Liu, S.; Xu, G.; Jin, J.; Li, Y.; Peng, X. Good combination of strength and mechanical isotropy in AA6082 alloy processed by high temperature intermediate annealing. J. Alloys Compd. 2022, 922, 166229. [Google Scholar] [CrossRef]
- Khangholi, S.; Javidani, M.; Maltais, A.; Chen, X. Review on recent progress in Al-Mg-Si 6xxx conductor alloys. J. Mater. Res. 2022, 37, 670–691. [Google Scholar] [CrossRef]
- Dash, S.; Li, D.; Zeng, X.; Chen, D. Heterogeneous microstructure and deformation behavior of an automotive grade aluminum alloy. J. Alloys Compd. 2021, 870, 159413. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Coloma, P.; Francisco, J.; Brusciotti, F.; Brizuela, M. Design of Corrosion Protective and Antistatic Hybrid Sol-Gel Coatings on 6XXX AlMgSi Alloys for Aerospace Application. Coatings 2020, 10, 441. [Google Scholar] [CrossRef]
- Winter, L.; Lampke, T. Influence of Hydrothermal Sealing on the High Cycle Fatigue Behavior of the Anodized 6082 Aluminum Alloy. Coatings 2022, 12, 1070. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Y.; Shuiqing, C.; Xiaobin, G. Effect of interrupted ageing treatment on the mechanical properties and intergranular corrosion behavior of Al-Mg-Si alloys. J. Mater. Res. Technol. 2020, 9, 230–241. [Google Scholar] [CrossRef]
- Siddesh-Kumar, N.; Dhruthi; Pramod, G.; Samrat, P.; Sadashiva, M. A Critical Review on Heat Treatment of Aluminium Alloys. Mater. Today Proc. 2022, 58, 71–79. [Google Scholar] [CrossRef]
- Yao, S.; Tang, Q.; Yang, J.; Wang, C.; Sun, H.; Rong, R.; Sun, H.; Chu, G. Microstructural characterization and mechanical properties of 6061 aluminum alloy processed with short-time solid solution and aging treatment. J. Alloys Compd. 2023, 960, 170704. [Google Scholar] [CrossRef]
- Pogatscher, S.; Antrekowitsch, H.; Leitner, H.; Ebner, T.; Uggowitzer, P. Mechanisms controlling the artificial aging of Al–Mg–Si Alloys. Acta Mater. 2011, 59, 3352. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ashtiani, H. Influence of Heat Treatment on the AA6061 and AA6063 Aluminum Alloys Behavior at Elevated Deformation Temperature. Iran. J. Mater. Sci. Eng. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Amel-Soula, A.; Jean-Philippe-Couzinié, B.; Hanen-Heni, A.; Julie-Bourgon, B.; Yannick-Champion, B.; Nabil-Njah, A. Activation Volume and the role of solute atoms in Al-Mg-Si alloy processed by Equal Channel Angular Extrusion. J. Alloys Compd. 2022, 899, 163334. [Google Scholar] [CrossRef]
- Kang, H. Influence of the solution and artificial aging treatments on the microstructure and mechanical properties of die-cast Al–Si–Mg alloys. Metals 2022, 12, 71. [Google Scholar] [CrossRef]
- Yin, Q.; Jiang, L.; Guo, F.; Wang, Z. Microstructure and Properties of 6 Series Aluminum Alloy Under Different Aging Treatment Systems. Mater. Sci. 2023, 29, 439–444. [Google Scholar] [CrossRef]
- Prathap, S.; Tittugeorge, D.; Anittojoexavier, A.; Abinicksraja, G. Effect of heat treatment on the hardness behaviour of the aluminium 6061 alloy. Mater. Today Proc. 2023, 02, 1–5. [Google Scholar] [CrossRef]
- Guo, J.; Jin, M.; Su, R.; Li, G.; Qu, Y. Microstructural morphology and mechanical properties of deep cryogenic treatment modified Al-Cu-Mg-Ag alloy. Mater. Today Commun. 2024, 38, 1–11. [Google Scholar] [CrossRef]
- Jovičevićklug, M.; Rezar, R.; Jovičevićklug, P.; Podgornik, B. Influence of deep cryogenic treatment on natural and artificial aging of Al-Mg-Si alloy EN AW 6026. J. Alloys Compd. 2022, 899, 163323. [Google Scholar] [CrossRef]
- Yuanchun, H.; Li, Y.; Ren, X.; Xiao, Z. Effect of Deep Cryogenic Treatment on Aging Processes of Al–Mg–Si Alloy. Phys. Met. Metallogr. 2019, 120, 914–918. [Google Scholar] [CrossRef]
- Barnwal, V.; Raghavan, R.; Tewari, A.; Narasimhan, K.; Mishrasushil, K. Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater. Sci. Eng. A 2017, 679, 56–65. [Google Scholar] [CrossRef]
- Naga, K.; Ashfaq, M.; Susila, P.; Sivaprasad, K.; Venkateswarlu, K. Mechanical anisotropy and microstructural changes during cryorolling of Al-Mg-Si alloy. Mater. Charact. 2015, 107, 302–308. [Google Scholar] [CrossRef]
- Qiu, S.; Xia, E.; Liu, L.; Ye, T.; Liu, J.; Tang, J.; Liu, W.; Wu, Y. Tensile Behavior and Microstructure Evolution of an Extruded 6082 Aluminum Alloy Sheet at High Temperatures. Metals 2024, 14, 7. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Y.; Deng, B.; Liu, A.; Liu, W.; Sun, Q.; Ye, T. Effect of Aging Processes on the Anisotropic Mechanical Property of 6061 Aluminum Alloy and the related Microstructure Evolution. Mater. Rep. 2021, 35, 04138. [Google Scholar]
- Briseno, J.; Casanova-Del-Angel, F. Fracture Mechanics on Aluminum Specimens. World J. Mech. 2021, 11, 011–019. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J. Microstructure evolution and mechanical responses of Al–Zn–Mg–Cu alloys during hot deformation process. J. Mater. Sci. 2021, 56, 13429–13478. [Google Scholar] [CrossRef]
- Shen, F.; Yi, D.; Wang, B.; Liu, H.; Jiang, Y.; Tang, C.; Jiang, B. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets. Mater. Sci. Eng. A 2016, 675, 386–395. [Google Scholar] [CrossRef]
- Jin, S.; Gai, T.; Zhang, G.; Zhai, T.; Jia, S. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. Mater. Sci. Eng. A 2018, 724, 53–59. [Google Scholar] [CrossRef]
- Lipinska, M.; Chrominski, W.; Olejnik, L.; Golinski, J.; Rosochowski, A.; Lewandowska, M. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties. Metall. Mater. Trans. A 2017, 48A, 1–12. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, H.; Hu, Z.; Yan, Y.; Chen, T. Microstructure and mechanical properties of Al-Mg-Si alloy during solution heat treatment and forging integrated forming process. Mater. Charact. 2022, 185, 111762. [Google Scholar] [CrossRef]
- Sun, L.; Lin, C.; Fan, Z.; Li, H.; Yao, S. Experimental and numerical investigation on axial hydro-forging sequence of 6063 aluminum alloy tube. Int. J. Adv. Manuf. Technol. 2019, 105, 2869–2877. [Google Scholar] [CrossRef]
- Naumenko, K.; Gariboldi, E. Experimental analysis and constitutive modeling of anisotropic creep damage in a wrought age-hardenable Al alloy. Eng. Fract. Mech. 2021, 259, 108119. [Google Scholar] [CrossRef]
- Miao, W.; Laughlin, D. A differential scanning calorimetry study of aluminum alloy 6111 with different pre-aging treatments. J. Mater. Sci. Lett. 2000, 19, 201–203. [Google Scholar] [CrossRef]
- Bagui, S.; Sahu, B.; Laha, K.; Tarafder, S.; Mitra, R. Creep Deformation Behavior of Inconel 617 Alloy in the Temperature Range of 650 degrees C to 800 degrees C. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2021, 52, 94–107. [Google Scholar] [CrossRef]
- Li, K.; Wang, D.; Deng, L.; Jin, J.; Gong, P.; Wang, X. Research progress of low temperature performance and cryogenic treatment of high entropy alloys. Chin. J. Nonferr. Met. 2022, 32, 1237–1253. [Google Scholar]
- Chrominski, W.; Wenner, S.; Marioara, C.; Holmestad, R.; Lewandowska, M. Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion—Influence of ageing temperature. Mater. Sci. Eng. A 2016, 669, 447–458. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Ma, D.; Mao, Z.; Liang, T.; Ying, P.; Wang, A.; Wang, W. Effect of deep cryogenic treatment on the microstructure and mechanical properties of Al–Cu–Mg–Ag alloy. J. Mater. Res. Technol. 2023, 25, 6880–6885. [Google Scholar] [CrossRef]
Element | Fe | Cu | Si | Cr | Mg | Mn | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
wt. % | 0.1 | 0.2 | 0.89 | 0.1 | 0.75 | 0.43 | 0.02 | 0.09 | Balance |
Type | Solution Treatment | Deep Cryogenic | Artificial Aging |
---|---|---|---|
SST | 535 °C/1.5 h; water quenching | - | - |
AAT | 535 °C/1.5 h; water quenching | - | 180 °C/8 h |
DCAT | 535 °C/1.5 h; water quenching | −196 °C/24 h | 180 °C/8 h |
Condition | As-Received | SST | AAT | DCAT |
---|---|---|---|---|
IPA (%) | 1.58 | 5.40 | 0.58 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, E.; Ye, T.; Qiu, S.; Liu, J.; Luo, J.; Sun, L.; Wu, Y. Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods. Coatings 2024, 14, 602. https://doi.org/10.3390/coatings14050602
Xia E, Ye T, Qiu S, Liu J, Luo J, Sun L, Wu Y. Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods. Coatings. 2024; 14(5):602. https://doi.org/10.3390/coatings14050602
Chicago/Turabian StyleXia, Erli, Tuo Ye, Sawei Qiu, Jie Liu, Jiahao Luo, Longtao Sun, and Yuanzhi Wu. 2024. "Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods" Coatings 14, no. 5: 602. https://doi.org/10.3390/coatings14050602
APA StyleXia, E., Ye, T., Qiu, S., Liu, J., Luo, J., Sun, L., & Wu, Y. (2024). Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods. Coatings, 14(5), 602. https://doi.org/10.3390/coatings14050602