A Novel High-Throughput Sample-in-Result-Out Device for the Rapid Detection of Viral Nucleic Acids
<p>Schematic of CRISPR-based high-throughput sample-in-result-out viral nucleic acid assays. The device integrates heating, centrifugation, optical detection, data analysis, and result output functions. The detection process includes treating nasopharyngeal swabs with sample release reagents, adding the mixture to the inner tube of the reaction tube containing RT-RPA-lyophilized spheres, and centrifuging the amplification products to mix with CRISPR-lyophilized reagents after completing the RT-RPA reaction to participate in the CRISPR-Cas reaction. The optical detection channel has two channels, FAM and ROX, which enable simultaneous dual-target detection in a single tube.</p> "> Figure 2
<p>Nucleic acid extraction-free technology and lyophilization of reagents. (<b>a</b>,<b>b</b>) Sample release reagent testing: For comparison, nucleic acid extraction and two sample release reagents were used. The figures demonstrate the real-time fluorescence profile (<b>a</b>) and copy number (<b>b</b>) of the qPCR assay (NTC, nontemplate control reaction). (<b>c</b>) Lyophilized bead performance testing: 100 copies/μL, 10 copies/μL, and 1 copy/μL of ASFV plasmid were tested before and after lyophilization, and images were captured under blue LED light. To evaluate the fluorescence intensity, the fluorescence images of samples were analyzed by ImageJ2 software. (<b>d</b>) Lyophilized reagent storage testing: Difference in fluorescence of lyophilized reagents after 0, 1, 2, 3 and 4 weeks of storage at room temperature, 4 °C and −20 °C. Bar graph data presented as the mean ± SD of three experimental replicates.</p> "> Figure 3
<p>Schematic diagrams of the high-throughput sample-in-result-out viral nucleic acid detection device. (<b>a</b>) Physical diagram of the virus nucleic acid detection device. (<b>b</b>) Exploded view of the internal structure of the device: (1) sample tube rack, (2) heat sink, (3) heating pads, (4) motor, (5) LED light source, (6) circuit board, (7) HMI, (8) CCD, (9) power supply, (10) test chamber shell. (<b>c</b>) Diagram showing experimental results of the virus nucleic acid detection devices.</p> "> Figure 4
<p>The detection limit and specificity analyses for ASFV detection. (<b>a</b>) The detection limit of the CRISPR-Cas12a assay was tested under RPA isothermal pre-amplification conditions with ASFV template of 100 copies/μL that was stepwise diluted and nontemplate control reaction (NTC). Figures were captured by the high-throughput sample-in-result-out viral nucleic acid detection device, and the fluorescence intensity was analyzed using ImageJ2 software. (<b>b</b>) The real-time fluorescence curves indicate the detection results obtained by qPCR. (<b>c</b>) RPV and MDV, double-stranded DNA viruses structurally similar to ASFV, were used for comparison with NTC and normal targets. The concentrations of 5 copies/μL of ASFV and 50 copies/μL of RPV and MDV were measured. Bar graph data presented as the mean ± SD of three experimental replicates.</p> "> Figure 5
<p>RPA-CRISPR-Cas12a assay for the detection of clinical ASFV samples. After detection by the high-throughput sample-in-result-out nucleic acid detection equipment, the fluorescence images of the endpoint were captured by the designed device. The results were compared to those of the qPCR method. Finally, the endpoint fluorescence images of the same samples were combined with the graphs.</p> "> Figure 6
<p>CRISPR-Cas12a/Cas13a orthogonal detection system. (<b>a</b>) Schematic diagram of the CRISPR-Cas12a/Cas13a orthogonal detection system. (<b>b</b>) Validation of orthogonal specificity. The presence of each target RNA (100 copies/μL) was confirmed by fluorescence heatmap analysis. (<b>c</b>,<b>d</b>) Detection limit assessment of CRISPR-Cas12a/Cas13a-assisted RPA for SARS-CoV-2. RNA templates were progressively diluted from 1000 copies/μL to 1 copy/μL and NTC. (<b>c</b>) Fluorescence images were captured by high-throughput sample-in-results-out viral nucleic acid detection device. (<b>d</b>) Analysis of the green and red fluorescence using ImageJ2 software. Bar graph data presented as the mean ± SD of three replicates.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Design and Detection Process
2.3. ASFV DNA and SARS-CoV-2 RNA Extraction
2.4. qPCR Assay
2.5. RPA and CRISPR-Cas12a Reactions
2.6. RT-RPA and CRISPR-Cas12a/Cas13a Reactions
2.7. Lyophilization of Reagents
2.8. ASFV Clinical Samples
3. Results and Discussion
3.1. Nucleic Acid Extraction-Free Technology and Lyophilization of Reagents
3.2. High-Throughput Sample-in-Results-Out Viral Nucleic Acid Detection Device
3.3. Detection Limit and Specificity Analysis of CRISPR Detection Platforms
3.4. Clinical ASFV Sample Detection
3.5. CRISPR-Cas12a/Cas13a Orthogonal Nucleic Acid Assay for SARS-CoV-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Downes, K.J.; Shah, S.S. Biomarkers in Infectious Diseases. J. Pediatr. Infect. Dis. Soc. 2012, 1, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A., 2nd; Hewlett, A.; Kraft, C.S.; Vega, M.A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, A.A.Z. Zika, the Newest TORCH Infectious Disease in the Americas. Clin. Infect. Dis. 2020, 70, 2673–2674. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Radmard, S.; Reid, S.; Ciryam, P.; Boubour, A.; Ho, N.; Zucker, J.; Sayre, D.; Greendyke, W.G.; Miko, B.A.; Pereira, M.R.; et al. Clinical Utilization of the FilmArray Meningitis/Encephalitis (ME) Multiplex Polymerase Chain Reaction (PCR) Assay. Front. Neurol. 2019, 10, 281. [Google Scholar] [CrossRef]
- Kostyusheva, A.; Brezgin, S.; Babin, Y.; Vasilyeva, I.; Glebe, D.; Kostyushev, D.; Chulanov, V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2022, 203, 431–446. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Velasco, A.; Ramilo-Fernández, G.; Denis, F.; Oliveira, L.; Shum, P.; Silva, H.; Sotelo, C.G. A New Rapid Method for the Authentication of Common Octopus (Octopus vulgaris) in Seafood Products Using Recombinase Polymerase Amplification (RPA) and Lateral Flow Assay (LFA). Foods 2021, 10, 1825. [Google Scholar] [CrossRef]
- Yue, S.; Li, Y.; Qiao, Z.; Song, W.; Bi, S. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Sorek, R.; Lawrence, C.M.; Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013, 82, 237–266. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Ma, E.B.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.; Gao, S.; Cao, R.-B.; Zhao, G.-P. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, M.; Liu, Y.; Ma, P.; Dang, L.; Meng, Q.; Wan, W.; Ma, X.; Liu, J.; Yang, G.; et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci. Bull. 2020, 65, 1436–1439. [Google Scholar] [CrossRef]
- Lin, C.; Chen, F.; Huang, D.; Li, W.; He, C.; Tang, Y.; Li, X.; Liu, C.; Han, L.; Yang, Y.; et al. A universal all-in-one RPA-Cas12a strategy with de novo autodesigner and its application in on-site ultrasensitive detection of DNA and RNA viruses. Biosens. Bioelectron. 2023, 239, 115609. [Google Scholar] [CrossRef]
- Lu, S.; Tong, X.; Han, Y.; Zhang, K.; Zhang, Y.; Chen, Q.; Duan, J.; Lei, X.; Huang, M.; Qiu, Y.; et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat. Biomed. Eng. 2022, 6, 286–297. [Google Scholar] [CrossRef]
- Allicock, O.M.; Yolda-Carr, D.; Todd, J.A.; Wyllie, A.L. Pooled RNA-extraction-free testing of saliva for the detection of SARS-CoV-2. Sci. Rep. 2023, 13, 7426. [Google Scholar] [CrossRef]
- Bengtson, M.; Bharadwaj, M.; Franch, O.; van der Torre, J.; Meerdink, V.; Schallig, H.; Dekker, C. CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. Nanoscale 2022, 14, 1885–1895. [Google Scholar] [CrossRef]
- Arizti-Sanz, J.; Bradley, A.D.; Zhang, Y.B.; Boehm, C.K.; Freije, C.A.; Grunberg, M.E.; Kosoko-Thoroddsen, T.F.; Welch, N.L.; Pillai, P.P.; Mantena, S.; et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat. Biomed. Eng. 2022, 6, 932–943. [Google Scholar] [CrossRef]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Li, L.; Wu, P.; Fei, X.; Zhang, Y.; Wang, J.; Zhang, D.; Zhang, Q.; Yang, N.; Wang, X. RPA/CRISPR/Cas12a-Based On-Site and Rapid Nucleic Acid Detection of Toxoplasma gondii in the Environment. ACS Synth. Biol. 2022, 11, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Macaluso, N.C.; Pizzano, B.L.M.; Cash, M.N.; Spacek, J.; Karasek, J.; Miller, M.R.; Lednicky, J.A.; Dinglasan, R.R.; Salemi, M.; et al. A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. Ebiomedicine 2022, 77, 103926. [Google Scholar] [CrossRef]
- Curti, L.A.; Primost, I.; Valla, S.; Alegre, D.I.; Perglione, C.O.; Repizo, G.D.; Lara, J.; Parcerisa, I.; Palacios, A.; Llases, M.E.; et al. Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive, Specific, and Rapid Detection of SARS-CoV-2. Viruses 2021, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Ding, X.; Li, Z.; Zhao, H.; Cooper, K.; Liu, C. Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultrasensitive and Quantitative Molecular Diagnosis. Anal. Chem. 2020, 92, 8561–8568. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, R.; Wang, D.; Wu, J.; Li, J.; Wang, J.; Liu, H.; Wang, Y. Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal. Chem. 2019, 91, 12156–12161. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.; Zhao, S.; Zhang, Z.; Li, X.; Peng, N.; Jiang, Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens. Bioelectron. 2022, 202, 113994. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Shi, Y.; Wang, L.; Zhang, M.; Wu, J.; Chen, H. Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a. Biosens. Bioelectron. 2021, 178, 113001. [Google Scholar] [CrossRef]
- Hu, M.; Qiu, Z.; Bi, Z.; Tian, T.; Jiang, Y.; Zhou, X. Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics. Proc. Natl. Acad. Sci. USA 2022, 119, 10. [Google Scholar] [CrossRef]
- Pang, B.; Xu, J.; Liu, Y.; Peng, H.; Feng, W.; Cao, Y.; Wu, J.; Xiao, H.; Pabbaraju, K.; Tipples, G.; et al. Isothermal Amplification and Ambient Visualization in a Single Tube for the Detection of SARS-CoV-2 Using Loop-Mediated Amplification and CRISPR Technology. Anal. Chem. 2020, 92, 16204–16212. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lyon, C.J.; Wang, J.; Lu, S.; Hu, T.Y. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. Adv. Sci. 2023, 10, e2301697. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Zhang, K.; Han, Y.; Li, T.; Duan, M.; Ji, R.; Wang, X.; Zhou, X.; Zhang, Y.; Yin, H. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat. Chem. Biol. 2024, 20, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Lin, G.; Li, J. CRISPR-Cas system: A promising tool for rapid detection of SARS-CoV-2 variants. J. Med. Virol. 2024, 96, e29356. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, Y.; Teng, X.C.; Hou, H.; Deng, R.; Li, J. CRISPR-based nucleic acid diagnostics for pathogens. Trac Trends Anal. Chem. 2023, 160, 116980. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X. Nucleic Acid Extraction-Free Reagent Used e.g., As Nucleic Acid Detection Reagent, Comprises Trehalose, Polyethylene Glycol 8000, Tris(hydroxymethyl)aminomethane Hydrochloride, EDTA, Triton X-100 and Nucleic Acid Release Agent Mixed Liquid. CN112522370-A; CN112522370-B. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:202131827M (accessed on 21 August 2024).
- Tao, J.L.; Bauer, D.E.; Chiarle, R. Assessing and advancing the safety of CRISPR-Cas tools: From DNA to RNA editing. Nat. Commun. 2023, 14, 212. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Welch, N.L.; Zhu, M.L.; Hua, C.; Weller, J.; Mirhashemi, M.E.; Nguyen, T.G.; Mantena, S.; Bauer, M.R.; Shaw, B.M.; Ackerman, C.M.; et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 2022, 28, 1083–1094. [Google Scholar] [CrossRef]
- Xu, Z.C.; Chen, D.J.; Li, T.; Yan, J.; Zhu, J.; He, T.; Hu, R.; Li, Y.; Yang, Y.; Liu, M. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat. Commun. 2022, 13, 6480. [Google Scholar] [CrossRef]
- Ghouneimy, A.; Ali, Z.; Aman, R.; Jiang, W.; Aouida, M.; Mahfouz, M. CRISPR-Based Multiplex Detection of Human Papillomaviruses for One-Pot Point-of-Care Diagnostics. ACS Synth. Biol. 2024, 13, 837–850. [Google Scholar] [CrossRef]
- Tian, T.; Qiu, Z.; Jiang, Y.; Zhu, D.; Zhou, X. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosens. Bioelectron. 2022, 196, 113701. [Google Scholar] [CrossRef] [PubMed]
- Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19. A Comparative Review of Sars-Cov-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence (5′-3′) |
---|---|
RPA-Forward primer (ASFV) | ATATGACCACTGGGGTTGGTATTCCTCCCGT |
RPA-Reverse primer (ASFV) | ATCAACACCGAGATTGGCACAAGTTCGGAC |
crRNA (ASFV) | UAAUUUCUACUAAGUGUAGAUCAUCAAAGUUCUGCAGCUCUUACA |
ORF1ab-RPA-Forward primer (SARS-CoV-2) | AGATAATCAAGATCTCAATGGGTAACTGGGTA |
ORF1ab-RPA-Reverse primer (SARS-CoV-2) | CTGCAGTTAAAGCCCTGGGTCAAGGTTAATA |
N- RPA-Forward primer (SARS-CoV-2) | CCTCTAATACGACTCACTATAGGAGACGTGGTCCAGAACAAACCCAAGGAAATT |
N- RPA-Reverse primer (SARS-CoV-2) | TGTGTAGGTCAACCACGTTCCCGAAGGTGTGT |
ORF1ab-LbCas12a-crRNA (SARS-CoV-2) | UAAUUUCUACUAAGUGUAGAUCGGUGAUUUUCAUACAAACCA |
N-LbuCas13a-crRNA (SARS-CoV-2) | GACCACCCCAAAAAUGAAGGGGACUAAAACAUGCCAAUGCGCGAC AUUCCGAAGA |
ssDNA | FAM-UUAUU-BHQ |
ssRNA | ROX-TTATT-BHQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Hu, F.; Zhang, Y.; Li, X.; Ma, Q.; Wang, X.; Peng, N. A Novel High-Throughput Sample-in-Result-Out Device for the Rapid Detection of Viral Nucleic Acids. Biosensors 2024, 14, 549. https://doi.org/10.3390/bios14110549
Wang F, Hu F, Zhang Y, Li X, Ma Q, Wang X, Peng N. A Novel High-Throughput Sample-in-Result-Out Device for the Rapid Detection of Viral Nucleic Acids. Biosensors. 2024; 14(11):549. https://doi.org/10.3390/bios14110549
Chicago/Turabian StyleWang, Fangning, Fei Hu, Yunyun Zhang, Xichen Li, Qin Ma, Xincheng Wang, and Niancai Peng. 2024. "A Novel High-Throughput Sample-in-Result-Out Device for the Rapid Detection of Viral Nucleic Acids" Biosensors 14, no. 11: 549. https://doi.org/10.3390/bios14110549
APA StyleWang, F., Hu, F., Zhang, Y., Li, X., Ma, Q., Wang, X., & Peng, N. (2024). A Novel High-Throughput Sample-in-Result-Out Device for the Rapid Detection of Viral Nucleic Acids. Biosensors, 14(11), 549. https://doi.org/10.3390/bios14110549