Lead(II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation
<p>Progress in interest in synthesizing coordination polymers (CPs) (Source: Scopus).</p> "> Figure 2
<p>From 1D CP in [Pb(baea)(N<sub>3</sub>).(N<sub>3</sub>)]<sub>n</sub> to 2D CP with supramolecular interactions. Reprinted with permission from [<a href="#B83-nanomaterials-12-02257" class="html-bibr">83</a>]. Copyright 2012, Springer Nature.</p> "> Figure 3
<p>ORTEP diagram and representation of Pb(II) space in [Pb<sub>2</sub>(µ-N<sub>3</sub>)(µ-NO<sub>3</sub>)L<sub>2</sub>]<sub>n</sub>. Reprinted with permission from [<a href="#B79-nanomaterials-12-02257" class="html-bibr">79</a>]. Copyright 2013, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 4
<p>ORTEP view of [Pb<sub>2</sub>(pbap)(N<sub>3</sub>)<sub>4</sub>] (1) with atom-numbering scheme and 20% probability ellipsoids for all non-H atoms. Reprinted with permission from [<a href="#B84-nanomaterials-12-02257" class="html-bibr">84</a>]. Copyright 2010, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 5
<p>(<b>a</b>) A piece of the CP indicating the one-dimensional (1D) zig-zag polymeric chain and (<b>b</b>) the relation between chains linked with dual symmetry through Pb–N3 relations. Reprinted with permission from [<a href="#B86-nanomaterials-12-02257" class="html-bibr">86</a>]. Copyright 2015, Springer Nature.</p> "> Figure 6
<p>A piece of the CP indicating a 1D polymer. Reprinted with permission from [<a href="#B87-nanomaterials-12-02257" class="html-bibr">87</a>]. Copyright 2009, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> "> Figure 7
<p>SEM images of the nano-hexagonal rods. Reprinted with permission from [<a href="#B88-nanomaterials-12-02257" class="html-bibr">88</a>]. Copyright 2012, Springer Nature.</p> "> Figure 8
<p>Packing of 1D chains for the formation of 3D supramolecular layers through pi…pi stacking relations. Reprinted with permission from [<a href="#B88-nanomaterials-12-02257" class="html-bibr">88</a>]. Copyright 2012, Springer Nature.</p> "> Figure 9
<p>Piece of CP indicating a 1D zig-zag polymer. Reprinted with permission from [<a href="#B81-nanomaterials-12-02257" class="html-bibr">81</a>]. Copyright 2013, Springer Nature.</p> "> Figure 10
<p>SEM images of PbO nanopowders created by [Pb(pcih)N<sub>3</sub>MeOH]<sub>n</sub> calculations. Reprinted with permission from [<a href="#B89-nanomaterials-12-02257" class="html-bibr">89</a>]. Copyright 2013, Springer Nature.</p> "> Figure 11
<p>From 3 nuclear building blocks (monomer) to 1D CP. Reprinted with permission from [<a href="#B90-nanomaterials-12-02257" class="html-bibr">90</a>]. Copyright 2015, Springer Nature.</p> "> Figure 12
<p>Piece of the CP indicating the 1D polymer. Reprinted with permission from [<a href="#B91-nanomaterials-12-02257" class="html-bibr">91</a>]. Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> "> Figure 13
<p>C axis indicates the lead atoms’ coordination. Reprinted with permission from [<a href="#B92-nanomaterials-12-02257" class="html-bibr">92</a>]. Copyright 2010, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 14
<p>SEM images of (<b>a</b>) [Pb(3-pyc)(N<sub>3</sub>)(H<sub>2</sub>O)]<sub>n</sub> (1) nanostructure balls in aqua solution, (<b>b</b>) [Pb(3-pyc)(N<sub>3</sub>)(H<sub>2</sub>O)]<sub>n</sub> (1) nanoplates inethanolic solution, (<b>c</b>) [Pb(3-pyc)I]<sub>n</sub> (2) NPs, and (<b>d</b>) [Pb(3-pyc)Br]<sub>n</sub> (3) nanofibers. Reprinted with permission from [<a href="#B93-nanomaterials-12-02257" class="html-bibr">93</a>]. Copyright 2010, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 15
<p>ORTEP image of complex [Pb(2-pyc)(N<sub>3</sub>)(H<sub>2</sub>O)]<sub>n</sub>. i: −x, y + 1/2, −z + 1/2; ii: −x, −y, −z; iii: −x, −y + 1/2, z + 1/2. Reprinted with permission from [<a href="#B81-nanomaterials-12-02257" class="html-bibr">81</a>]. Copyright 2010, Springer Nature.</p> "> Figure 16
<p>Molecular configuration of [Pb<sub>2</sub>(tmph)<sub>2</sub>(μ-N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>]. Reprinted with permission from [<a href="#B94-nanomaterials-12-02257" class="html-bibr">94</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 17
<p>Schematic view of Pb(II) space. Reprinted with permission from [<a href="#B94-nanomaterials-12-02257" class="html-bibr">94</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 18
<p>[Pb<sub>3</sub>(tmph)<sub>4</sub>(µ-N<sub>3</sub>)<sub>5</sub>(µ-NO<sub>3</sub>)] molecular structure (A = i = −x, −y, −z). Reprinted with permission from [<a href="#B95-nanomaterials-12-02257" class="html-bibr">95</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 19
<p>SEM photographs of [Pb(phen)(μ-N<sub>3</sub>)(μ-NO<sub>3</sub>)]<sub>n</sub> nanorods obtained from ultrasonic radiation. Reprinted with permission from [<a href="#B96-nanomaterials-12-02257" class="html-bibr">96</a>]. Copyright 2012, Springer Nature.</p> "> Figure 20
<p>A piece of the CP indicating a 1D polymer. Reprinted with permission from [<a href="#B97-nanomaterials-12-02257" class="html-bibr">97</a>]. Copyright 2006, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> "> Figure 21
<p>XRD pattern of PbO prepared after thermolysis of compound [Pb2(tmph)2(µ-N3)2(CH3COO)2]. Reprinted with permission from [<a href="#B94-nanomaterials-12-02257" class="html-bibr">94</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 22
<p>SEM photographs of PbO nanopowders (produced by thermolysis of nanorods). Reprinted with permission from [<a href="#B94-nanomaterials-12-02257" class="html-bibr">94</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 23
<p>TEM photographs of PbO nanopowders (produced by thermolysis of nanorods). Reprinted with permission from [<a href="#B95-nanomaterials-12-02257" class="html-bibr">95</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Figure 24
<p>XRD pattern of PbO prepared after thermolysis of compound [Pb3(tmph)4(µ-N3)5(µ-NO3)]n. Reprinted with permission from [<a href="#B95-nanomaterials-12-02257" class="html-bibr">95</a>]. Copyright 2015, Elsevier Ltd., Amsterdam, The Netherlands.</p> "> Scheme 1
<p>Some of the applications and potential properties of coordination polymers.</p> "> Scheme 2
<p>The stereochemical effect of the 6s pair on the coordination sphere (a ligand’s D donor atom).</p> "> Scheme 3
<p>Usual bridging states of azido ligand.</p> "> Scheme 4
<p>Application of ultrasonic sonochemistry method in different research fields.</p> "> Scheme 5
<p>Schematic graphs of synthetic methods.</p> "> Scheme 6
<p>Materials produced and synthetic manners.</p> "> Scheme 7
<p>Produced materials and synthetic approaches.</p> "> Scheme 8
<p>Produced materials and synthetic approaches.</p> ">
Abstract
:1. Introduction
1.1. Coordination Polymer
1.2. Lead
1.2.1. Lead Coordination Chemistry
1.2.2. Pb(II) Electron Pair 6s2 in Coordination Structures
1.2.3. Holodirected and Hemidirected Structures
1.3. Azide
2. Sonochemical Method
3. Synthesis of Lead Azide Coordination Polymers
4. Use of Lead Azide CPs as Precursors for PbO Preparation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amo-Ochoa, P.; Zamora, F. Coordination polymers with nucleobases: From structural aspects to potential applications. Coord. Chem. Rev. 2014, 276, 34–58. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, R.; Jin, Y.; Li, T. Two PbII-based coordination polymers based on 5-aminonicotinic acid and 5-hydroxynicotinic acid for Knoevenagel condensation reaction and luminescent sensor. J. Solid State Chem. 2019, 278, 120927. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.-N.; Dong, W.-W.; Wu, Y.-P.; Li, D.-S.; Zhang, Q.-C. A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules. Inorg. Chem. 2016, 55, 3265–3271. [Google Scholar] [CrossRef]
- Kurmoo, M. Magnetic metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Lin, W. Rational Synthesis of Noncentrosymmetric Metal–Organic Frameworks for Second-Order Nonlinear Optics. Chem. Rev. 2011, 112, 1084–1104. [Google Scholar] [CrossRef]
- Givaja, G.; Amo-Ochoa, P.; Gómez-García, C.J.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2011, 41, 115–147. [Google Scholar] [CrossRef]
- O’Keeffe, M. Design of MOFs and intellectual content in reticular chemistry: A personal view. Chem. Soc. Rev. 2009, 38, 1215–1217. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Yaghi, O.M. Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2011, 112, 675–702. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2011, 112, 933–969. [Google Scholar] [CrossRef] [PubMed]
- Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.R.; Uemura, T.; Kitagawa, S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 2016, 45, 3828–3845. [Google Scholar] [CrossRef]
- Noori, Y.; Akhbari, K. Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties. RSC Adv. 2017, 7, 1782–1808. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Walczak, R.; Oschatz, M.; Tarakina, N.V.; Schmidt, B.V.K.J. Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals. Small 2019, 15, e1901986. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Gong, Q.; Olson, D.H.; Li, J. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chem. Rev. 2012, 112, 836–868. [Google Scholar] [CrossRef] [PubMed]
- Getman, R.B.; Bae, Y.-S.; Wilmer, C.E.; Snurr, R.Q. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112, 703–723. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112, 782–835. [Google Scholar] [CrossRef]
- Kepert, C.J. Advanced functional properties in nanoporous coordination framework materials. Chem. Commun. 2006, 7, 695–700. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Lohe, M.R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chem. Commun. 2011, 47, 3075–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2007, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.J.; Dincă, M.; Long, J.R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P.L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.-S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 2010, 40, 550–562. [Google Scholar] [CrossRef]
- Chen, Z.; Xiang, S.; Arman, H.D.; Li, P.; Tidrow, S.; Zhao, D.; Chen, B. A Microporous Metal—Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. Eur. J. Inorg. Chem. 2010, 2010, 3745–3749. [Google Scholar] [CrossRef]
- Ma, F.; Liu, S.; Liang, D.; Ren, G.; Zhang, C.; Wei, F.; Su, Z. Hydrogen Adsorption in Polyoxometalate Hybrid Compounds Based on Porous Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2010, 2010, 3756–3761. [Google Scholar] [CrossRef]
- Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013, 166, 67–78. [Google Scholar] [CrossRef]
- Bastani, D.; Esmaeili, N.; Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013, 19, 375–393. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Nune, S.K.; Thallapally, P.K.; McGrail, B.P. Metal organic gels (MOGs): A new class of sorbents for CO2 separation applications. J. Mater. Chem. 2010, 20, 7623–7625. [Google Scholar] [CrossRef]
- Hao, G.-P.; Li, W.-C.; Lu, A.-H. Novel porous solids for carbon dioxide capture. J. Mater. Chem. 2011, 21, 6447–6451. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Ahmad, R.; Matzger, A.J. Liquid phase separations by crystalline microporous coordination polymers. Chem. Sci. 2010, 1, 293–302. [Google Scholar] [CrossRef]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Jeazet, H.B.T.; Staudt, C.; Janiak, C. Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans. 2012, 41, 14003–14027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. MOFs for CO2capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity. Chem. Commun. 2012, 49, 653–661. [Google Scholar] [CrossRef]
- Morris, R.E.; Wheatley, P.S. Gas Storage in Nanoporous Materials. Angew. Chem. Int. Ed. 2008, 47, 4966–4981. [Google Scholar] [CrossRef]
- Suh, M.P.; Cheon, Y.E.; Lee, E.Y. Syntheses and functions of porous metallosupramolecular networks. Coord. Chem. Rev. 2008, 252, 1007–1026. [Google Scholar] [CrossRef]
- Li, J.-R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P.B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823. [Google Scholar] [CrossRef]
- Düren, T.; Bae, Y.-S.; Snurr, R.Q. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev. 2009, 38, 1237–1247. [Google Scholar] [CrossRef]
- Han, S.S.; Mendoza-Cortés, J.L.; Iii, W.A.G. Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 2009, 38, 1460–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bétard, A.; Fischer, R.A. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 2011, 112, 1055–1083. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-L.; Yi, F.-Y.; Chen, D.; Wu, M.-K.; Han, L. Metal-organic frameworks based chemical sensors. Chem. Rev. 2016, 112, 1105–1125. [Google Scholar]
- Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 2011, 112, 1196–1231. [Google Scholar] [CrossRef] [PubMed]
- Farrusseng, D.; Aguado, S.; Pinel, C. Minireviews MOFs in Catalysis Metal—Organic Frameworks: Opportunities for Catalysis, Angew. Chem. Int. Ed. 2009, 48, 7502–7513. [Google Scholar] [CrossRef]
- Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1248–1256. [Google Scholar] [CrossRef]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Dadashi, J. IRMOF-3 Functionalized GO/CuFe2O4: A New and Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3-c]Pyrazoles under Ultrasound Irradiations. J. Mol. Struct. 2022, 1261, 132843. [Google Scholar] [CrossRef]
- Dadashi, J.; Ghasemzadeh, M.A.; Alipour, S.; Zamani, F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. Arab. J. Chem. 2022, 15, 104023. [Google Scholar] [CrossRef]
- Dadashi, J.; Ghafuri, H.; Sajjadi, M. Fe3O4@SiO2 nanoparticles-supported Cu(II) complex: An efficient and reusable nanocatalyst for treating environmental pollutants in aqueous medium. Colloid Interface Sci. Commun. 2021, 44, 100455. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, J.; Hong, M.; Cao, R. Metal–organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem Soc Rev. 2014, 43, 5867–5895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Guo, X.; He, C.; Duan, C. Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catal. 2016, 6, 7935–7947. [Google Scholar] [CrossRef]
- Dadashi, J.; Khaleghian, M.; Mirtamizdoust, B.; Hanifehpour, Y.; Joo, S.W. Fabrication of Copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2: An effective and recoverable catalyst for reduction/degradation of environmental pollutants. Crystals 2022, 12, 862. [Google Scholar] [CrossRef]
- Moeinian, M.; Akhbari, K.; Kawata, S.; Ishikawa, R. Solid state conversion of a double helix thallium(i) coordination polymer to a corrugated tape silver(i) polymer. RSC Adv. 2016, 6, 82447–82449. [Google Scholar] [CrossRef]
- Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 2009, 38, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Ehrenmann, J.; Henninger, S.K.; Janiak, C. Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs (Eur. J. Inorg. Chem. 4/2011). Eur. J. Inorg. Chem. 2011, 2011, 471–474. [Google Scholar] [CrossRef]
- Henninger, S.K.; Jeremias, F.; Kummer, H.; Janiak, C. MOFs for Use in Adsorption Heat Pump Processes. Eur. J. Inorg. Chem. 2011, 2012, 2625–2634. [Google Scholar] [CrossRef]
- Biemmi, E.; Darga, A.; Stock, N.; Bein, T. Direct growth of Cu3(BTC)2(H2O)3·xH2O thin films on modified QCM-gold electrodes—Water sorption isotherms. Microporous Mesoporous Mater. 2008, 114, 380–386. [Google Scholar] [CrossRef]
- Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 2012, 157, 89–93. [Google Scholar] [CrossRef]
- Jeremias, F.; Khutia, A.; Henninger, S.K.; Janiak, C. MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—A promising application. J. Mater. Chem. 2011, 22, 10148–10151. [Google Scholar] [CrossRef]
- Henninger, S.K.; Habib, H.A.; Janiak, C. MOFs as Adsorbents for Low Temperature Heating and Cooling Applications. J. Am. Chem. Soc. 2009, 131, 2776–2777. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Zhu, A.-X.; Lin, R.-B.; Qi, X.-L.; Chen, X.-M. Pore Surface Tailored SOD-Type Metal-Organic Zeolites. Adv. Mater. 2011, 23, 1268–1271. [Google Scholar] [CrossRef]
- Doherty, C.M.; Knystautas, E.; Buso, D.; Villanova, L.; Konstas, K.; Hill, A.J.; Takahashi, M.; Falcaro, P. Magnetic framework composites for polycyclic aromatic hydrocarbon sequestration. J. Mater. Chem. 2012, 22, 11470–11474. [Google Scholar] [CrossRef]
- Engelhardt, L.M.; Furphy, B.M.; Harrowfield, J.M.; Patrick, J.M.; White, A.H. 1:1 Adducts of lead(II) thiocyanate with 1,10-phenanthroline and 2,2′,6′,2′′-terpyridine. Inorg. Chem. 1989, 28, 1410–1413. [Google Scholar] [CrossRef]
- Shimoni-Livny, L.; Glusker, J.P.; Bock, C.W. Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37, 1853–1867. [Google Scholar] [CrossRef]
- Casas, J.S.; Sordo, J. Lead, Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed.; Elsevier: Boston, FL, USA, 2006. [Google Scholar]
- Imran, M.; Mix, A.; Neumann, B.; Stammler, H.-G.; Monkowius, U.; Gründlinger, P.; Mitzel, N.W. Hemi- and holo-directed lead(ii) complexes in a soft ligand environment. Dalton Trans. 2014, 44, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-D.; Li, Y.; Zhang, S.; Liu, R.-M.; Qian, G.-X.; Zhang, H.-Z.; Gao, J.-G. Two new crystal structures of two-dimensional lead(II) coordination polymers with flexible alicyclic carboxylate ligands. Inorg. Nano-Metal Chem. 2016, 47, 717–721. [Google Scholar] [CrossRef]
- Catalano, J.; Murphy, A.; Yao, Y.; Yap, G.P.A.; Zumbulyadis, N.; Centeno, S.A.; Dybowski, C. Coordination geometry of lead carboxylates—spectroscopic and crystallographic evidence. Dalton Trans. 2014, 44, 2340–2347. [Google Scholar] [CrossRef] [Green Version]
- Nugent, J.W.; Lee, H.-S.; Reibenspies, J.H.; Hancock, R.D. Spectroscopic, structural, and thermodynamic aspects of the stereochemically active lone pair on lead(II): Structure of the lead(II) dota complex. Polyhedron 2015, 91, 120–127. [Google Scholar] [CrossRef]
- Abedini, J.; Morsali, A.; Zeller, M. Three-dimensional Hemidirected Mixed-ligand Lead(II) Coordination Polymer, [Pb2(bpa)2(SCN)3(NO3)]n(bpa = 1,2-di(4-pyridyl)ethane). Z. Anorg. Allg. Chem. 2008, 634, 2659–2662. [Google Scholar] [CrossRef]
- Massoud, S.S.; Henary, M.M.; Maxwell, L.; Martín, A.; Ruiz, E.; Vicente, R.; Fischer, R.C.; Mautner, F.A. Structure, magnetic properties and DFT calculations of azido-copper(ii) complexes with different azido-bonding, nuclearity and dimensionality. New J. Chem. 2018, 42, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Morsali, A.; Mahjoub, A.R. Direct Synthesis of the Novel 2-D Mixed-ligands Lead(II) Complex, Crystal Structure of [Pb(4,4′-bpy)(NO3)(SCN)]n(4,4′-bpy = 4,4′-bipyridine): (A New Polymeric Compound with Three Bridged Ligand and Inactive Lone Pair). Chem. Lett. 2004, 33, 64–65. [Google Scholar] [CrossRef]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and Engineering. Ultrason. Sonochem. 2016, 29, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Rath, B.B.; Vittal, J.J. Single-Crystal-to-Single-Crystal [2 + 2] Photocycloaddition Reaction in a Photosalient One-Dimensional Coordination Polymer of Pb(II). J. Am. Chem. Soc. 2020, 142, 20117–20123. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443–451. [Google Scholar] [CrossRef]
- Dreakhshandeh, P.G.; Soleimannejad, J.; Janczak, J. Sonochemical synthesis of a new nano-sized cerium(III) coordination polymer and its conversion to nanoceria. Ultrason. Sonochem. 2015, 26, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Ann. Rev. Mater. Sci. 1999, 29, 295–326. [Google Scholar] [CrossRef] [Green Version]
- Fard, M.J.S.; Rastaghi, F.; Ghanbari, N. Sonochemical synthesis of new nano-two-dimensional lead(II) coordination polymer: As precursor for preparation of PbO nano-structure. J. Mol. Struct. 2013, 1032, 133–137. [Google Scholar] [CrossRef]
- Fard-Jahromi, M.J.S.; Morsali, A. Sonochemical synthesis of nanoscale mixed-ligands lead(II) coordination polymers as precursors for preparation of Pb2(SO4)O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies. Ultrason. Sonochem. 2010, 17, 435–440. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Morsali, A. Sonochemical Syntheses of Nano-Scale Mixed-Ligand Lead(II) Coordination Polymers; Different Nano-Structures with Different Anions. J. Inorg. Organomet. Polym. Mater. 2010, 20, 733–738. [Google Scholar] [CrossRef]
- Aboutorabi, L.; Morsali, A. Sonochemical synthesis of two new nano lead(II) coordination polymers: Evaluation of structural transformation via mechanochemical approach. Ultrason. Sonoche. 2016, 32, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Mirtamizdoust, B.; Shalamzari, M.S.; Behrouzi, S.; Florêncio, M.H.; Fun, H.-K. Synthesis and Characterization of the New Nano Flowers Lead(II) Coordination Polymer with Hemidirected Coordination Sphere. J. Inorg. Organomet. Polym. Mater. 2012, 22, 1358–1364. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Bhar, K.; Khan, S.; Mitra, P.; Butcher, R.J.; Ghosh, B.K. Synthesis, structure and luminescence behaviour of bis(tridentate) Schiff base bridged dinuclear lead(II) pseudohalides. J. Mol. Struct. 2010, 966, 102–106. [Google Scholar] [CrossRef]
- Marandi, F.; Mirtamizdoust, B.; Soudi, A.A.; Fun, H.-K. Synthesis and crystal structure of two novel polymeric PbII compounds: [Pb(phen)(N3)2]n and [Pb(deta)(N3)·(N3)]n. Inorg. Chem. Commun. 2007, 10, 174–177. [Google Scholar] [CrossRef]
- Mirtamizdoust, B.; Bieńko, D.; Hanifehpour, Y.; Tiekink, E.R.T.; Yilmaz, V.; Talemi, P.; Joo, S.W. Preparation of a Novel Nano-scale Lead (II) Zig-Zag Metal–Organic Coordination Polymer with Ultrasonic Assistance: Synthesis, Crystal Structure, Thermal Properties, and NBO Analysis of [Pb(μ-2-pinh)N3 H2O]n. J. Inorg. Organomet. Polym. Mater. 2016, 26, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Shaabani, B.; Mirtamizdoust, B.; Shadman, M.; Fun, H.-K. A Novel Polymeric Lead(II)-Azido Compound: Synthesis, Structural Characterization, and DFT Calculations of [Pb(dmp)(N3)2]n. ZAAC 2009, 635, 2642–2647. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Mirtamizdoust, B.; Joo, S.W. Sonochemical Synthesis and Characterization of the New Micro-Hexagonal-Rod Lead (II)-Azido Coordination Compound. J. Inorg. Organomet. Polym. Mater. 2012, 22, 916–922. [Google Scholar] [CrossRef]
- Shin, H.-J.; Min, B.-K. Direct Synthesis of PbO Nanoparticles from a Lead(II) Nanoflower Coordination Polymer Precursor: Synthesis, Crystal Structure and DFT Calculations of [Pb(pcih)N3H2O] n with the Terminal Azide Unit. J. Inorg. Organomet. Polym. Mater. 2013, 23, 1305–1312. [Google Scholar] [CrossRef]
- Shahverdizadeh, G.H. From 1D chain to infinite 3D coordination polymer: Sonochemical syntheses and structural characterization of a new nano lead (II) coordination compound containing three interesting coordination modes of azide anions. J. Polym. Res. 2015, 22, 79. [Google Scholar] [CrossRef]
- Shaabani, B.; Mirtamizdoust, B.; Viterbo, D.; Croce, G.; Hammud, H.; Hojati-Lalemi, P.; Khandar, A. Sonochemical Synthesis of a Novel Nanoscale Lead(II) Coordination Polymer: Synthesis, Crystal Structure, Thermal Properties, and DFT Calculations of [Pb(dmp)(μ-N3)(μ-NO3)]n with the Novel Pb2(μ-N3)2(μ-NO3)2 Unit. 2011, 637, 713–719. 637. [CrossRef]
- Hayati, P.; Souri, B.; Rezvani, A.R.; Morsali, A.; Gutierrez, A. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand. J. Mol. Struct. 2017, 1150, 404–410. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Morsali, A.; Yilmaz, V.; Büyükgüngör, O. Sonochemical syntheses of strawberry-like nano-structure mixed-ligand lead(II) coordination polymer: Thermal, structural and X-ray powder diffraction studies. Inorg. Chim. Acta 2010, 363, 841–845. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Mirtamizdoust, B.; Morsali, A.; Joo, S.W. Sonochemical syntheses of binuclear lead(II)-azido supramolecule with ligand 3,4,7,8-tetramethyl-1,10-phenanthroline as precursor for preparation of lead(II) oxide nanoparticles. Ultrason. Sonochem. 2015, 23, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Hanifehpour, Y.; Morsali, A.; Mirtamizdoust, B.; Joo, S.W. Sonochemical synthesis of tri-nuclear lead(II)-azido nano rods coordination polymer with 3,4,7,8-tetramethyl-1,10-phenanthroline (tmph): Crystal structure determination and preparation of nano lead(II) oxide. J. Mol. Struct. 2015, 1079, 67–73. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Mirtamizdoust, B.; Farzam, A.R.; Joo, S.W. Synthesis and Crystal Structure of [Pb(phen)(μ-N3)(μ-NO3)]n and Its Thermal Decomposition to PbO Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2012, 22, 957–962. [Google Scholar] [CrossRef]
- Marandi, F.; Mirtamizdoust, B.; Soudi, A.A.; Yilmaz, V.T.; Kazak, C. A Novel 1D Coordination Polymer [Pb(phen)(μ-N3)(μ-NO3)]n with the First Pb2-(μ-N3)2 Unit (phen = 1,10-phenanthroline). Z. Anorg. Allg. Chem. 2006, 632, 2380–2382. [Google Scholar] [CrossRef]
- Marandi, F.; Hassanmohammadi, P.; Fun, H.-K.; Quah, C.K. Syntheses and Crystal Structures of Two 3D Lead(II) Coordination Polymers with Isonicotinic Acid N-Oxide and Pseudohalides. Z. Anorg. Allg. Chem. 2011, 638, 461–465. [Google Scholar] [CrossRef]
- Marandi, F.; Mirtamizdoust, B.; Chantrapromma, S.; Fun, H. Synthesis and Crystal Structure of a Novel Polymeric Lead(II) Compound: [Pb2 (phen)2 (N3)3 (ClO4)]n. Z. Anorg. Allg. Chem. 2007, 633, 1329–1332. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Morsali, A. Hedge balls nano-structure of a mixed-ligand lead(II) coordination polymer; thermal, structural and X-ray powder diffraction studies. CrystEngComm 2009, 12, 370–372. [Google Scholar] [CrossRef]
- Mohammadnezhad, G.; Ghanbarpour, A.R.; Amini, M.M.; Ng, S.W. catena-Poly[[(1,10-phenanthroline-κ2N,N′)lead(II)]-μ-azido-κ2N1:N3-μ-nitrito-κ3O,O′:O′-[(1,10-phenanthroline-κ2N,N′)lead(II)]-di-μ-azido-κ4N1:N1]. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, m821. [Google Scholar] [CrossRef] [Green Version]
- Marandi, F.; Quah, C.K.; Fun, H.K. The first crystal structures of two 2-D lead(II)-coordination polymers with picolinic acid N-oxide and pseudohalides extended to 3-D networks by intermolecular interactions. J. Coord. Chem. 2013, 66, 986–994. [Google Scholar] [CrossRef]
- Dayani, M.; Ghaemi, A.; Ng, S.W.; Tiekink, E.R.T. Bis(μ-azido-κ2N1:N1)bis{(acetato-κ2O,O′)[2,4,6-tris(2-pyridyl)-1,3,5-triazine-κ3N2,N1,N6]lead(II)}. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Liu, N.; Huang, X.; Huang, C.; Qin, X. Poly[(μ2-aqua-κ2O:O)(μ3-azido-κ3N1:N1:N3)(μ2-isonicotinato-κ2O:O′)lead(II)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2008, 64, m369–m371. [Google Scholar] [CrossRef] [PubMed]
- Masoomi, M.Y.; Morsali, A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 2012, 256, 2921–2943. [Google Scholar] [CrossRef]
- Stavila, V.; Whitmire, K.H.; Rusakova, I. Synthesis of Bi2S3 Nanostructures from Bismuth(III) Thiourea and Thiosemicarbazide Complexes. Chem. Mater. 2009, 21, 5456–5465. [Google Scholar] [CrossRef]
- Nagarathinam, M.; Chen, J.; Vittal, J.J. From Self-Assembled Cu(II) Coordination Polymer to Shape-Controlled CuS Nanocrystals. Cryst. Growth Des. 2009, 9, 2457–2463. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Dadashi, J.; Mirtamizdoust, B. Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. Crystals 2021, 11, 197. [Google Scholar] [CrossRef]
- Qiao, Z.-P.; Xie, G.; Tao, J.; Nie, Z.Y.; Lin, Y.Z.; Chen, X.-M. Coordination Polymer Route to Wurtzite ZnS and CdS Nanorods. J. Solid State Chem. 2002, 166, 49–52. [Google Scholar] [CrossRef]
- Puigmartí-Luis, J.; Rubio-Martínez, M.; Hartfelder, U.; Imaz, I.; Maspoch, D.; Dittrich, P.S. Coordination Polymer Nanofibers Generated by Microfluidic Synthesis. J. Am. Chem. Soc. 2011, 133, 4216–4219. [Google Scholar] [CrossRef]
- Sahu, R.K.; Ray, A.K.; Mishra, T.; Pathak, L.C. Microwave-Assisted Synthesis of Magnetic Ni Wire from a Metal−Organic Precursor Containing Ni(II) and Triethanolamine. Cryst. Growth Des. 2008, 8, 3754–3760. [Google Scholar] [CrossRef]
- Cho, W.; Lee, Y.H.; Lee, H.J.; Oh, M. Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology. Chem. Commun. 2009, 31, 4756–4758. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Dadashi, J.; Khaleghian, M.; Rezaei, M.; Mirtamizdoust, B.; Joo, S.W. Sonochemical synthesis of the novel 1D zig-zag Hg(II)-Iodo bridged metal-organic coordination compounds with thiosemicarbazide derivative ligand. J. Mol. Struct. 2021, 1250, 131902. [Google Scholar] [CrossRef]
- Lou, W.; Chen, M.; Wang, X.; Liu, W. Size Control of Monodisperse Copper Sulfide Faceted Nanocrystals and Triangular Nanoplates. J. Phys. Chem. C 2007, 111, 9658–9663. [Google Scholar] [CrossRef]
- Schriber, E.; Popple, D.C.; Yeung, M.; Brady, M.A.; Corlett, S.A.; Hohman, J.N. Mithrene Is a Self-Assembling Robustly Blue Luminescent Metal–Organic Chalcogenolate Assembly for 2D Optoelectronic Applications. ACS Appl. Nano Mater. 2018, 1, 3498–3508. [Google Scholar] [CrossRef]
- Guan, B.; Yu, X.-Y.; Bin Wu, H.; Lou, X.W. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. Adv. Mater. 2017, 29, 1703614. [Google Scholar] [CrossRef]
- Akhbari, K.; Morsali, A. Preparation of silver nanoparticles from silver(I) nano-coordination polymer. Inorg. Chim. Acta 2010, 363, 1435–1440. [Google Scholar] [CrossRef]
- Akhbari, K.; Hemmati, M.; Morsali, A. Fabrication of Silver Nanoparticles and 3D Interpenetrated Coordination Polymer Nanorods from the Same Initial Reagents. J. Inorg. Organomet. Polym. Mater. 2010, 21, 352–359. [Google Scholar] [CrossRef]
- Balmuri, S.R.; Selvaraj, U.; Kumar, V.V.; Anthony, S.P.; Tsatsakis, A.M.; Golokhvast, K.S.; Raman, T. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environ. Res. 2017, 152, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, J.; Hanifehpour, Y.; Mirtamizdoust, B.; Abdolmaleki, M.; Jegarkandi, E.; Rezaei, M.; Joo, S. Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters. Crystals 2021, 11, 682. [Google Scholar] [CrossRef]
- Ramesh, K.; Chen, L.; Chen, F.; Zhong, Z.; Chin, J.; Mook, H.; Han, Y.-F. Preparation and characterization of coral-like nanostructured α-Mn2O3 catalyst for catalytic combustion of methane. Catal. Commun. 2007, 8, 1421–1426. [Google Scholar] [CrossRef]
- Mahata, P.; Aarthi, T.; Madras, G.; Natarajan, S. Photocatalytic Degradation of Dyes and Organics with Nanosized GdCoO3. J. Phys. Chem. C 2007, 111, 1665–1674. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Mirtamizdoust, B.; Dadashi, J.; Wang, R.; Rezaei, M.; Abdolmaleki, M.; Joo, S.W. The Synthesis and Characterization of a Novel One-Dimensional Bismuth (III) Coordination Polymer as a Precursor for the Production of Bismuth (III) Oxide Nanorods. Crystals 2022, 12, 113. [Google Scholar] [CrossRef]
- Wu, Z.-F.; Tan, B.; Du, C.-F.; Feng, M.-L.; Xie, Z.-L.; Huang, X.-Y. An ionothermally synthesized Mg-based coordination polymer as a precursor for preparing porous carbons. CrystEngComm 2015, 17, 4288–4292. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Uflyand, I.E. Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Adv. 2017, 7, 42242–42288. [Google Scholar] [CrossRef] [Green Version]
- Safarifard, V.; Morsali, A. Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 2012, 19, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Morsali, A.; Hashemi, L. Nanoscale coordination polymers: Preparation, function and application. Adv. Inorg. Chem. 2020, 76, 33–72. [Google Scholar] [CrossRef]
- Leong, W.L.; Vittal, J.J. One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 2010, 111, 688–764. [Google Scholar] [CrossRef]
- Ahmadzadi, H.; Marandi, F.; Morsali, A. Structural and X-ray powder diffraction studies of nano-structured lead(II) coordination polymer with η2 Pb⋯C interactions. J. Organomet. Chem. 2009, 694, 3565–3569. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Deng, B.; Zhong, S.-L.; Wang, L.; Xu, A.-W. Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(ii)–organic coordination polymers. J. Mater. Chem. 2011, 21, 12309–12315. [Google Scholar] [CrossRef]
- Hu, M.; Yamauchi, Y. Synthesis of a Titanium-Containing Prussian-Blue Analogue with a Well-Defined Cube Structure and Its Thermal Conversion into a Nanoporous Titanium-Iron-Based Oxide. Chem. Asian J. 2011, 6, 2282–2286. [Google Scholar] [CrossRef]
- Lu, Y.; Cao, H.; Zhang, S.; Zhang, X. Shape controlled synthesis of superhydrophobic zinc coordination polymers particles and their calcination to superhydrophobic ZnO. J. Mater. Chem. 2011, 21, 8633–8639. [Google Scholar] [CrossRef]
- Moradi, Z.; Akhbari, K.; Phuruangrat, A.; Costantino, F. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor. J. Mol. Struct. 2017, 1133, 172–178. [Google Scholar] [CrossRef]
- Li, J.-X.; Qin, Z.-B.; Li, Y.-H.; Cui, G.-H. Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason. Sonochem. 2018, 48, 127–135. [Google Scholar] [CrossRef] [PubMed]
Molecular Formula | Coordination Number of Pb | Geometry of Pb | Modes Of Azide Ion | Structure of Polymer | Ref |
---|---|---|---|---|---|
[Pb(INO)(N3)(H2O)]n | seven | hemidirected | End to end | 3D | [98] |
[Pb2(phen)2(N3)3(ClO4)]n | eight | hemidirected | bridging | 2D | [99] |
[Pb(3-pyc)(N3)H2O]n | seven | - | bridging | 2D | [100] |
[Pb2(N3)3(NO2)(C12H8-N2)2]n | - | - | bridging | - | [101] |
[Pb(PNO)(N3)]n | eight | hemidirected | End to end | 2D | [102] |
[Pb2(C2H3O2)2(N3)2(C18H12N6)2] | seven | hemidirected | bridging | - | [103] |
[Pb(C6H4NO2)(N3)(H2O)]n | seven | - | bridging | 2D | [104] |
Molecular Formula | Coordination Number of Pb | Geometry of Pb | Modes of Azide Ion | Structure of Polymer | Ref |
---|---|---|---|---|---|
[Pb2(μ-N3)(μ-NO3)L2]n | Five | Hemidirected | Bridging | 2D | [79] |
[Pb(μ-2-pinh)N3H2O]n | Six | Hemidirected | End to end | 1D | [86] |
[Pb(pcih)N3MeOH]n | Six | Hemidirected | Bridging | 1D | [89] |
[Pb3(p-2ma)3(N3)3(NO3)3]n | Six | Hemidirected | Bridging | 1D | [90] |
[Pb(3-pyc)(N3)(H2O)]n | Seven | - | End to end | 3D | [100] |
[Pb(2-pyc)(N3)(H2O)]n | Seven | Holodirected | End to end | 2D | [93] |
[Pb2(tmph)2(μ-N3)2(CH3COO)2]n | Seven | Hemidirected | Bridging | 1D | [95] |
[Pb3(tmph)4(μ-N3)5(μ-NO3)]n | Eight | Hemidirected | Bridging | 1D | [96] |
[Pb(μ-4-pyc)(μ-N3)(μ-H2O)]n | Eight | Hemidirected | Bridging | 2D | [80] |
[Pb(phen)(μ-N3)(μ-NO3)]n | Eight | Hemidirected | Bridging | 1D | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadashi, J.; Khaleghian, M.; Hanifehpour, Y.; Mirtamizdoust, B.; Joo, S.W. Lead(II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation. Nanomaterials 2022, 12, 2257. https://doi.org/10.3390/nano12132257
Dadashi J, Khaleghian M, Hanifehpour Y, Mirtamizdoust B, Joo SW. Lead(II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation. Nanomaterials. 2022; 12(13):2257. https://doi.org/10.3390/nano12132257
Chicago/Turabian StyleDadashi, Jaber, Mohammad Khaleghian, Younes Hanifehpour, Babak Mirtamizdoust, and Sang Woo Joo. 2022. "Lead(II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation" Nanomaterials 12, no. 13: 2257. https://doi.org/10.3390/nano12132257
APA StyleDadashi, J., Khaleghian, M., Hanifehpour, Y., Mirtamizdoust, B., & Joo, S. W. (2022). Lead(II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation. Nanomaterials, 12(13), 2257. https://doi.org/10.3390/nano12132257