Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells
<p>Statistical distribution of (<b>a</b>) PCE, (<b>b</b>) Voc, (<b>c</b>) FF, and (<b>d</b>) Jsc of PSCs with different percentages of MACl additives.</p> "> Figure 2
<p>SEM images of (<b>a</b>) control perovskite film and (<b>b</b>) target perovskite film; AFM images of (<b>c</b>) control perovskite film and (<b>d</b>) target perovskite film.</p> "> Figure 3
<p>(<b>a</b>) XRD spectra, (<b>b</b>) absorbance spectra, (<b>c</b>) Tauc plots, and (<b>d</b>) PL spectra of control and target perovskite films.</p> "> Figure 4
<p>(<b>a</b>) Diagram of structure of PSCs; (<b>b</b>) J-V curves of best-performing target PSCs fabricated with 10% MACl additive and control device; (<b>c</b>) dark current curves of control and target PSCs; (<b>d</b>) light intensity dependence of Voc of control and target PSCs.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Material
2.2. Device Fabrication
2.3. Characterization and Test
3. Results and Discussion
3.1. Optimal Amount of Introduced MACl Additive
3.2. Improvement in the Quality of Perovskite Films by Employing MACl
3.3. Performance of PSC Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Gong, C.; Li, H.; Xu, Z.; Li, Y.; Wang, H.; Zhuang, Q.; Wang, A.; Li, Z.; Guo, Z.; Zhang, C.; et al. Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport. Nat. Commun. 2024, 15, 9154. [Google Scholar] [CrossRef]
- Yeom, K.M.; Kim, S.U.; Woo, M.Y.; Noh, J.H.; Im, S.H. Recent Progress in Metal Halide Perovskite-Based Tandem Solar Cells. Adv. Mater. 2020, 32, e2002228. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Xiao, W.; Chen, R.; Sun, Z.; Zhang, Y.; Lei, X.; Hu, S.; Kober-Czerny, M.; Wang, J.; et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 2024, 632, 536–542. [Google Scholar] [CrossRef]
- Zhao, Y.; Cruse, K.; Abdelsamie, M.; Ceder, G.; Sutter-Fella, C.M. Synthetic approaches for thin-film halide double perovskites. Matter 2021, 4, 1801–1831. [Google Scholar] [CrossRef]
- Li, T.; Pan, Y.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A 2017, 5, 12602–12652. [Google Scholar] [CrossRef]
- Cao, X.; Zhi, L.; Jia, Y.; Li, Y.; Zhao, K.; Cui, X.; Ci, L.; Zhuang, D.; Wei, J. A Review of the Role of Solvents in Formation of High-Quality Solution-Processed Perovskite Films. ACS Appl. Mater. Interfaces 2019, 11, 7639–7654. [Google Scholar] [CrossRef]
- Mateen, M.; Arain, Z.; Liu, X.; Iqbal, A.; Ren, Y.; Zhang, X.; Liu, C.; Chen, Q.; Ma, S.; Ding, Y.; et al. Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. Sci. China Mater. 2020, 63, 2477–2486. [Google Scholar] [CrossRef]
- Bi, L.; Fu, Q.; Zeng, Z.; Wang, Y.; Lin, F.R.; Cheng, Y.; Yip, H.L.; Tsang, S.W.; Jen, A.K. Deciphering the Roles of MA-Based Volatile Additives for alpha-FAPbI(3) to Enable Efficient Inverted Perovskite Solar Cells. J. Am. Chem. Soc. 2023, 145, 5920–5929. [Google Scholar] [CrossRef]
- Huang, Z.; Bai, Y.; Huang, X.; Li, J.; Wu, Y.; Chen, Y.; Li, K.; Niu, X.; Li, N.; Liu, G.; et al. Anion-pi interactions suppress phase impurities in FAPbI3 solar cells. Nature 2023, 623, 531–537. [Google Scholar] [CrossRef]
- Wang, C.; He, B.; Fu, M.; Su, Z.; Zhang, L.; Zhang, J.; Mei, B.; Gao, X. Influence of MACl on the Crystallization Kinetics of Perovskite via a Two-Step Method. Crystals 2024, 14, 399. [Google Scholar] [CrossRef]
- Shen, X.; Gallant, B.M.; Holzhey, P.; Smith, J.A.; Elmestekawy, K.A.; Yuan, Z.; Rathnayake, P.; Bernardi, S.; Dasgupta, A.; Kasparavicius, E.; et al. Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells. Adv. Mater. 2023, 35, e2211742. [Google Scholar] [CrossRef]
- Ding, B.; Ding, Y.; Peng, J.; Romano-deGea, J.; Frederiksen, L.E.K.; Kanda, H.; Syzgantseva, O.A.; Syzgantseva, M.A.; Audinot, J.N.; Bour, J.; et al. Dopant-additive synergism enhances perovskite solar modules. Nature 2024, 628, 299–305. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Cuzzupè, D.T.; Öz, S.D.; Ling, J.; Illing, E.; Seewald, T.; Jose, R.; Olthof, S.; Fakharuddin, A.; Schmidt-Mende, L. Understanding the Methylammonium Chloride-Assisted Crystallization for Improved Performance of Lead-Free Tin Perovskite Solar Cells. Adv. Sol. RRL 2023, 7, 2300770. [Google Scholar] [CrossRef]
- Wu, G.; Cai, M.; Cao, Y.; Li, Z.; Zhang, Z.; Yang, W.; Chen, X.; Ren, D.; Mo, Y.; Yang, M.; et al. Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrystallization. J. Energy Chem. 2022, 65, 55–61. [Google Scholar] [CrossRef]
- Odysseas Kosmatos, K.; Theofylaktos, L.; Giannakaki, E.; Deligiannis, D.; Konstantakou, M.; Stergiopoulos, T. Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Up-Scalable Perovskite Solar Cells. Energy Environ. Mater. 2019, 2, 79–92. [Google Scholar] [CrossRef]
- Liu, H.; Sun, J.; Hu, H.; Li, Y.; Hu, B.; Xu, B.; Choy, W.C.H. Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin-Lead Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 45059–45067. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Guan, H.; Zheng, W.; Li, Z.; Cui, H.; Zhou, S.; Liang, J.; Li, G.; Wang, T.; et al. Bottom-up modification boosts the performance of narrow-bandgap lead–tin perovskite single-junction and tandem solar cells. Energy Environ. Sci. 2023, 16, 5852–5862. [Google Scholar] [CrossRef]
- Deng, X.; Qi, F.; Li, F.; Wu, S.; Lin, F.R.; Zhang, Z.; Guan, Z.; Yang, Z.; Lee, C.S.; Jen, A.K. Co-assembled Monolayers as Hole-Selective Contact for High-Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long-Term Stability. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203088. [Google Scholar] [CrossRef]
- Gao, J.; Liao, C.; Guo, Y.; Zhou, D.; Zeng, Z.; Cai, C. The effect of methyl ammonium chloride doping for perovskite solar cells on structure, crystallization and power conversion efficiency. Mod. Phys. Lett. B 2021, 35, 2150096. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, L.; Zhou, P.; Liu, D.; Chen, M.; Liang, Y.; Li, W.; Hu, R.; Liang, G. Unraveling Its Intrinsic Role of CH3NH3Cl Doping for Efficient Enhancement of Perovskite Solar Cells from Fine Insight by Ultrafast Charge-Transfer Dynamics. Sol. RRL 2023, 7, 2201039. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, S.; Zhu, D.; Yu, M.; Wang, H.; Lin, J.; Wang, Y.; Qin, Y.; Zhang, J.; Ai, X. Influence of the MACl additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 6162–6170. [Google Scholar] [CrossRef]
- Chang, J.; Feng, E.; Li, H.; Ding, Y.; Long, C.; Gao, Y.; Yang, Y.; Yi, C.; Zheng, Z.; Yang, J. Crystallization and Orientation Modulation Enable Highly Efcient Doctor Bladed Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 164. [Google Scholar] [CrossRef]
- Amalathas, A.; Landova, L.; Hajkova, Z.; Horak, L.; Ledinsky, M.; Holovský, J. Controlled Growth of Large Grains in CH3NH3PbI3 Perovskite Films Mediated by an Intermediate Liquid Phase without an Antisolvent for Efficient Solar Cells. ACS Appl. Energy Mater. 2020, 3, 12484–12493. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Liu, H.; Xing, J.; Li, B.; Liu, C.; Xie, F.; Zhang, X.; Zhao, W. Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells. Nanomaterials 2025, 15, 292. https://doi.org/10.3390/nano15040292
Cao Q, Liu H, Xing J, Li B, Liu C, Xie F, Zhang X, Zhao W. Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells. Nanomaterials. 2025; 15(4):292. https://doi.org/10.3390/nano15040292
Chicago/Turabian StyleCao, Qinghua, Hui Liu, Jiangping Xing, Bing’e Li, Chuangping Liu, Fobao Xie, Xiaoli Zhang, and Weiren Zhao. 2025. "Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells" Nanomaterials 15, no. 4: 292. https://doi.org/10.3390/nano15040292
APA StyleCao, Q., Liu, H., Xing, J., Li, B., Liu, C., Xie, F., Zhang, X., & Zhao, W. (2025). Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells. Nanomaterials, 15(4), 292. https://doi.org/10.3390/nano15040292